E. Rodriguez, Wilson Barrios, R. Sandoval, N. Santos, I. Cortes
This article presents the methodology used and the results obtained in the construction, match and prediction of the first thermal composition simulation model done in Colombia by employing advanced thermal process commercial software, globally recognized because of its effectiveness in modeling these types of processes (CMG-STARS, 2005). The Santa Clara and Palermo fields were modeled and an excellent history match was achieved. All in all 28 wells and 17 years of production were matched. Two production scenes were proposed. The first involved primary production from existing wells, in other words: primary production; and a second escen where all the wells in the field are converted into injectors and producers, to simulate cyclic steam injection. This injection process included a series of sensitivity studies for several of the parameters involved in this technology, such as: pressure and temperature injection, time and rate of injection, heat injected, soaking period, steam quality, and injection cycles. This sensitivity study was focused on optimizing the processes to obtain the maximum end recovery possible. The information entered into the simulator was validated by laboratory tests developed at the Instituto Colombiano del Petróleo (ICP). Among the tests performed the following were assessed: rock compressibility, relative permeability curve behavior at different temperatures, formation sensitivity to injection fluids, DRX analysis and residual saturation of crude oil for steam injection. The aforementioned results are documented in this paper.
{"title":"NUMERICAL SIMULATION FOR CYCLIC STEAM INJECTION AT SANTA CLARA FIELD","authors":"E. Rodriguez, Wilson Barrios, R. Sandoval, N. Santos, I. Cortes","doi":"10.29047/01225383.466","DOIUrl":"https://doi.org/10.29047/01225383.466","url":null,"abstract":"This article presents the methodology used and the results obtained in the construction, match and prediction of the first thermal composition simulation model done in Colombia by employing advanced thermal process commercial software, globally recognized because of its effectiveness in modeling these types of processes (CMG-STARS, 2005). The Santa Clara and Palermo fields were modeled and an excellent history match was achieved. All in all 28 wells and 17 years of production were matched. Two production scenes were proposed. The first involved primary production from existing wells, in other words: primary production; and a second escen where all the wells in the field are converted into injectors and producers, to simulate cyclic steam injection. This injection process included a series of sensitivity studies for several of the parameters involved in this technology, such as: pressure and temperature injection, time and rate of injection, heat injected, soaking period, steam quality, and injection cycles. This sensitivity study was focused on optimizing the processes to obtain the maximum end recovery possible. The information entered into the simulator was validated by laboratory tests developed at the Instituto Colombiano del Petróleo (ICP). Among the tests performed the following were assessed: rock compressibility, relative permeability curve behavior at different temperatures, formation sensitivity to injection fluids, DRX analysis and residual saturation of crude oil for steam injection. The aforementioned results are documented in this paper.","PeriodicalId":55200,"journal":{"name":"Ct&f-Ciencia Tecnologia Y Futuro","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90695432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
For the first time we show geological evidence of unambiguosly documented footwall shortcuts adjacent to the trace of inverted master nomal faults, in the Eastern Cordillera of Colombia. The Eastern Cordillera is an orogen whose width and location are traced by a Mesozoic graben. However, few structures related with the graben have been documented up to the date. In this study we propose the Ariari-Guatiquía region as a type location for a unique observation of footwall shortcuts. The master normal faults in the Ariari-Guatiquia region, and documented in this manuscript, were active during the Lower Cretaceous, partially inverted during the Andean orogenesis (since the Oligocene at least) and active still nowadays. In the hangingwall basins of those master normal faults, like the Servitá fault, all the Cretaceous syn-rift sequence has been deposited and maximum paleo temperatures in the lowermost Cretaceous rocks are higher than those for the Zircon FT partial annealing zone (~250°C; 23,15 K). In contraction, the inverted master normal faults are high angle basement involved features that generated the main topographic contrast and exposing Lower Cretaceous units or older. In contrast, in the adjacent footwall shortcuts only part of the syn-rift Lower Cretaceous sequence was deposited or more commonly was not deposited at all. Maximum paletemperatures reached by the basal Cretaceous units exposed in the hanging wall blocks of the footwall shortcuts are always less than those of the Zircon FT partial annealing zone (~250°C; 23,15 K). Finally we use AFT data to document that the footwall shortcuts originated during the Late Miocene and later as shallowly dipping faults generating low elevation hanging wall areas. All the described features are present in the Ariari-Guatiquia region. However, northwards and along strike in the Eastern foothills there is a lot of partially analogue scenarios with respect to those described in the Ariari-Guatiquia region. Therefore we deduce that a similar structural segmentation should be present along the entire Eastern foothills of the Colombian Eastern Cordillera. Based on that we propose plausible candidates for master inverted normal faults and footwall shorcuts in other areas of the Eastern foothills.
{"title":"THE STRUCTURAL STYLE OF FOOTWALL SHORTCUTS ALONG THE EASTERN FOOTHILLS OF THE COLOMBIAN EASTERN CORDILLERA. DIFFERENCES WITH OTHER INVERSION RELATED STRUCTURES","authors":"A. Mora, M. Parra","doi":"10.29047/01225383.460","DOIUrl":"https://doi.org/10.29047/01225383.460","url":null,"abstract":"For the first time we show geological evidence of unambiguosly documented footwall shortcuts adjacent to the trace of inverted master nomal faults, in the Eastern Cordillera of Colombia. The Eastern Cordillera is an orogen whose width and location are traced by a Mesozoic graben. However, few structures related with the graben have been documented up to the date. In this study we propose the Ariari-Guatiquía region as a type location for a unique observation of footwall shortcuts. The master normal faults in the Ariari-Guatiquia region, and documented in this manuscript, were active during the Lower Cretaceous, partially inverted during the Andean orogenesis (since the Oligocene at least) and active still nowadays. In the hangingwall basins of those master normal faults, like the Servitá fault, all the Cretaceous syn-rift sequence has been deposited and maximum paleo temperatures in the lowermost Cretaceous rocks are higher than those for the Zircon FT partial annealing zone (~250°C; 23,15 K). In contraction, the inverted master normal faults are high angle basement involved features that generated the main topographic contrast and exposing Lower Cretaceous units or older. In contrast, in the adjacent footwall shortcuts only part of the syn-rift Lower Cretaceous sequence was deposited or more commonly was not deposited at all. Maximum paletemperatures reached by the basal Cretaceous units exposed in the hanging wall blocks of the footwall shortcuts are always less than those of the Zircon FT partial annealing zone (~250°C; 23,15 K). Finally we use AFT data to document that the footwall shortcuts originated during the Late Miocene and later as shallowly dipping faults generating low elevation hanging wall areas. All the described features are present in the Ariari-Guatiquia region. However, northwards and along strike in the Eastern foothills there is a lot of partially analogue scenarios with respect to those described in the Ariari-Guatiquia region. Therefore we deduce that a similar structural segmentation should be present along the entire Eastern foothills of the Colombian Eastern Cordillera. Based on that we propose plausible candidates for master inverted normal faults and footwall shorcuts in other areas of the Eastern foothills.","PeriodicalId":55200,"journal":{"name":"Ct&f-Ciencia Tecnologia Y Futuro","volume":"47 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89848012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Knowledge of critical properties and the acentric factor is required in phase-equilibrium studies in different extraction processes conducted in the petroleum industry, particularly in the solvent deasphalting process. Correlations to estimate critical temperature, critical pressure and acentric factor values of SARA (Saturated, Aromatic, Resin, and Asphaltene) fractions of vacuum residue from the Barrancabermeja Refinery were determined from their physical properties such as density (molar volume) and molecular weight. New correlations for critical property prediction were evaluated using model molecules and the Avaullee and Satou's group contribution methods, respectively.
{"title":"ESTIMATION OF CRITICAL PROPERTIES OF TYPICALLY COLOMBIAN VACUUM RESIDUE SARA FRACTIONS","authors":"A. León, M. Parra, J. Grosso","doi":"10.29047/01225383.467","DOIUrl":"https://doi.org/10.29047/01225383.467","url":null,"abstract":"Knowledge of critical properties and the acentric factor is required in phase-equilibrium studies in different extraction processes conducted in the petroleum industry, particularly in the solvent deasphalting process. Correlations to estimate critical temperature, critical pressure and acentric factor values of SARA (Saturated, Aromatic, Resin, and Asphaltene) fractions of vacuum residue from the Barrancabermeja Refinery were determined from their physical properties such as density (molar volume) and molecular weight. New correlations for critical property prediction were evaluated using model molecules and the Avaullee and Satou's group contribution methods, respectively.","PeriodicalId":55200,"journal":{"name":"Ct&f-Ciencia Tecnologia Y Futuro","volume":"58 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91000401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. E. Forero, Olga-Patricia Ortiz, Fredy-Abelardo Nariño, J. Díaz, H. Peña
This paper introduces a new tank design for dehydrating and desalting large volumes of crude oils previously degasified, crude oil dehydration efficiency is reduced by gas presence in the emulsion interphase. The design presented in this paper is versatile (it is adaptable to any classical dehydration process), highly efficient in terms of separation (values usually greater than 90% and/or treated crude oil BSW less than 0,5% are ensured), low installation and operation costs, less consumption of additives. These are some of the advantages found in pilot tests plants and proven in industrial systems at the Ecopetrol S.A. production fields with treatment capacities from 14 to 50 KBD. Although this process also can be applied to other ranks of flow, maintaining the design critical conditions of each case in particular. This system does not exhibit the typical limitations shown by treatment tradicional systems (FWKO, Gun Barrel, thermal and electrostatic separators, etc.) (Al-Ghamdi, 2007) since it can be easily adapted to system treatments for light, intermediate, and heavy crude oils and to treatments with BSW content ranging from a very low levels of < 1% to very high levels > 95%, values that are not unusual in production fields nowadays, especially where accelerated production methods are used.
{"title":"DESIGN AND DEVELOPMENT OF A HIGH EFFICIENCY TANK FOR CRUDE OIL DEHYDRATION (I)","authors":"J. E. Forero, Olga-Patricia Ortiz, Fredy-Abelardo Nariño, J. Díaz, H. Peña","doi":"10.29047/01225383.472","DOIUrl":"https://doi.org/10.29047/01225383.472","url":null,"abstract":"This paper introduces a new tank design for dehydrating and desalting large volumes of crude oils previously degasified, crude oil dehydration efficiency is reduced by gas presence in the emulsion interphase. The design presented in this paper is versatile (it is adaptable to any classical dehydration process), highly efficient in terms of separation (values usually greater than 90% and/or treated crude oil BSW less than 0,5% are ensured), low installation and operation costs, less consumption of additives. These are some of the advantages found in pilot tests plants and proven in industrial systems at the Ecopetrol S.A. production fields with treatment capacities from 14 to 50 KBD. Although this process also can be applied to other ranks of flow, maintaining the design critical conditions of each case in particular. This system does not exhibit the typical limitations shown by treatment tradicional systems (FWKO, Gun Barrel, thermal and electrostatic separators, etc.) (Al-Ghamdi, 2007) since it can be easily adapted to system treatments for light, intermediate, and heavy crude oils and to treatments with BSW content ranging from a very low levels of < 1% to very high levels > 95%, values that are not unusual in production fields nowadays, especially where accelerated production methods are used.","PeriodicalId":55200,"journal":{"name":"Ct&f-Ciencia Tecnologia Y Futuro","volume":"59 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91049205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemometric analysis by Partial Least Squares (PLS) has been applied in this work to correlate the ultraviolet spectrum of combined Fluid Catalytic Cracking (FCC) feedstocks with their physicochemical properties. The prediction errors obtained in the validation process using refinery samples demonstrate the accuracy of the predicted properties. This new analytical methodology allows obtaining in one analysis detailed information about the most important physicochemical properties of FCC feedstocks and could be used as a valuable tool for operational analysis.
{"title":"PREDICTION OF PHYSICOCHEMICAL PROPERTIES OF FCC FEEDSTOCK BY CHEMOMETRIC ANALYSIS OF THEIR ULTRAVIOLET SPECTRUM","authors":"Carlos A. Baldrich Ferrer","doi":"10.29047/01225383.468","DOIUrl":"https://doi.org/10.29047/01225383.468","url":null,"abstract":"Chemometric analysis by Partial Least Squares (PLS) has been applied in this work to correlate the ultraviolet spectrum of combined Fluid Catalytic Cracking (FCC) feedstocks with their physicochemical properties. The prediction errors obtained in the validation process using refinery samples demonstrate the accuracy of the predicted properties. This new analytical methodology allows obtaining in one analysis detailed information about the most important physicochemical properties of FCC feedstocks and could be used as a valuable tool for operational analysis.","PeriodicalId":55200,"journal":{"name":"Ct&f-Ciencia Tecnologia Y Futuro","volume":"63 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72533992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Although, the radial difussivitity equation has been solved for a single-fluid phase flow, in some cases more than one phase flows from the reservoir to the well; therefore, the single-phase solution has been previously extended to multiphase flow without losing a significant degree of accuracy. Practically, there exist two ways of dealing with multiphase flow: The Perrine method, Perrine (1956) which basically replaces the single-phase compressibility by the multiphase compressibility so that each fluid is analyzed separately using the concept of mobility. The other one is the use of pseudofunctions which have been found to be the best option. The TDS technique has been widely applied to a variety of scenarios. It has been even tested to successfully work on condensate systems with the use of pseudofunctions, Jokhio, Tiab and Escobar (2002). However, equations for estimation of phase permeability, skin factor and drainage area has not neither presented nor tested. In this article, we present new versions of a set of equations of the TDS technique to be applied to multiphase flow following the Perrine method along with a previously presented way of estimation of the absolute relative permeability. We successfully applied the proposed equations to synthetic and field examples.
{"title":"APPLICATION OF TDS TECHNIQUE TO MULTIPHASE FLOW","authors":"F. Escobar, Matilde Montealegre-M.","doi":"10.29047/01225383.465","DOIUrl":"https://doi.org/10.29047/01225383.465","url":null,"abstract":"Although, the radial difussivitity equation has been solved for a single-fluid phase flow, in some cases more than one phase flows from the reservoir to the well; therefore, the single-phase solution has been previously extended to multiphase flow without losing a significant degree of accuracy. Practically, there exist two ways of dealing with multiphase flow: The Perrine method, Perrine (1956) which basically replaces the single-phase compressibility by the multiphase compressibility so that each fluid is analyzed separately using the concept of mobility. The other one is the use of pseudofunctions which have been found to be the best option. The TDS technique has been widely applied to a variety of scenarios. It has been even tested to successfully work on condensate systems with the use of pseudofunctions, Jokhio, Tiab and Escobar (2002). However, equations for estimation of phase permeability, skin factor and drainage area has not neither presented nor tested. In this article, we present new versions of a set of equations of the TDS technique to be applied to multiphase flow following the Perrine method along with a previously presented way of estimation of the absolute relative permeability. We successfully applied the proposed equations to synthetic and field examples.","PeriodicalId":55200,"journal":{"name":"Ct&f-Ciencia Tecnologia Y Futuro","volume":"34 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87290817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this study pressure test analysis in wells flowing under constant wellbore flowing pressure for homogeneous and naturally fractured gas reservoir using the TDS technique is introduced. Although, constant rate production is assumed in the development of the conventional well test analysis methods, constant pressure production conditions are sometimes used in the oil and gas industry. The constant pressure technique or rate transient analysis is more popular reckoned as "decline curve analysis" under which rate is allows to decline instead of wellbore pressure. The TDS technique, everyday more used even in the most recognized software packages although without using its trade brand name, uses the log-log plot to analyze pressure and pressure derivative test data to identify unique features from which exact analytical expression are derived to easily estimate reservoir and well parameters. For this case, the "fingerprint" characteristics from the log-log plot of the reciprocal rate and reciprocal rate derivative were employed to obtain the analytical expressions used for the interpretation analysis. Many simulation experiments demonstrate the accuracy of the new method. Synthetic examples are shown to verify the effectiveness of the proposed methodology.
{"title":"RATE TRANSIENT ANALYSIS FOR HOMOGENEOUS AND HETEROGENEOUS GAS RESERVOIRS USING THE TDS TECHNIQUE","authors":"F. Escobar, J. A. Sánchez, José-Humberto Cantillo","doi":"10.29047/01225383.462","DOIUrl":"https://doi.org/10.29047/01225383.462","url":null,"abstract":"In this study pressure test analysis in wells flowing under constant wellbore flowing pressure for homogeneous and naturally fractured gas reservoir using the TDS technique is introduced. Although, constant rate production is assumed in the development of the conventional well test analysis methods, constant pressure production conditions are sometimes used in the oil and gas industry. The constant pressure technique or rate transient analysis is more popular reckoned as \"decline curve analysis\" under which rate is allows to decline instead of wellbore pressure. The TDS technique, everyday more used even in the most recognized software packages although without using its trade brand name, uses the log-log plot to analyze pressure and pressure derivative test data to identify unique features from which exact analytical expression are derived to easily estimate reservoir and well parameters. For this case, the \"fingerprint\" characteristics from the log-log plot of the reciprocal rate and reciprocal rate derivative were employed to obtain the analytical expressions used for the interpretation analysis. Many simulation experiments demonstrate the accuracy of the new method. Synthetic examples are shown to verify the effectiveness of the proposed methodology.","PeriodicalId":55200,"journal":{"name":"Ct&f-Ciencia Tecnologia Y Futuro","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85025097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. García, N. Saavedra, Zuly Calderón-Carrillo, D. Mateus
Unconfined Compressive Strength (UCS) is one of the rock mechanical properties that is important take into account during drilling operations in order to avoid wellbore instability. During drilling operations, UCS variability influences wellbore stability more than other factors such as azimuth, slope, exposure time, and mud weight (Jaramillo, 2004). In last years, the indentation technique has been demonstrated to be an appropriate method for determining rock strength in real time during oil well drilling. This technique implements correlation that allow UCS evaluation from indentation parameters such as Indentation Module (IM) and Critical Transition Force (CTF), that can be measured on small rock fragments obtained during drilling. Shale formations in well drilling have demonstrated to be a hindrance since they represent the most important problem in reservoir stability (Abass, H., A. et al. 2006). Therefore, the main objective of this article is to find experimental correlations that allow the modeling of rock strength by applying the indentation technique to reservoir plug. The importance of this technique is the possibility to get rock strength properties in real time during drilling operations, although, those reservoir sections which do not have neither direct UCS records nor indirect measurements. Eight Unconfined Compression Tests (UCS) on rock cylinders (plugs) extracted from the Paja formation upwelling were conducted in order to develop the corresponding experimental correlations. Two hundred indentation tests were also simultaneously conducted on shale fragments extracted from each plug surroundings in order to simulate the cavings obtained from reservoir drilled. Results of both tests were correlated using the Minimum Square technique, seeking the best correlation that shall represent result behavior, thus obtaining two 2nd-degree polynomial correlations. Correlation coefficients of 0,6513 were determined for the (IM) - (UCS) correlation and 0,8111 for the (CTF) - (UCS) correlation. This demonstrates that the highest correlation between indentation parameters and (UCS) is obtained with the Critical Transition Force (CTF).
无侧限抗压强度(UCS)是岩石的力学特性之一,在钻井作业中,为了避免井筒失稳,必须加以考虑。在钻井作业中,与方位角、坡度、暴露时间和泥浆比重等因素相比,UCS变化对井筒稳定性的影响更大(Jaramillo, 2004)。近年来,压痕技术已被证明是一种适合于油井钻井过程中实时测定岩石强度的方法。该技术实现了相关性,允许通过压痕参数(如压痕模块(IM)和临界过渡力(CTF))对UCS进行评估,这些参数可以在钻井过程中获得的小岩石碎片上测量。页岩地层在钻井中被证明是一个障碍,因为它们代表了储层稳定性的最重要问题(Abass, H., a . et al. 2006)。因此,本文的主要目标是通过将压痕技术应用于储层堵头,找到能够模拟岩石强度的实验相关性。该技术的重要性在于可以在钻井作业中实时获得岩石强度特性,尽管对于那些既没有直接UCS记录也没有间接测量的油藏段。为了建立相应的实验相关性,对Paja地层上升流中提取的岩石柱(塞)进行了8次无侧限压缩试验(UCS)。同时对从每个堵头周围提取的页岩碎片进行了200次压痕试验,以模拟从钻探的储层中获得的崩落。利用最小二乘技术对两个试验的结果进行相关性分析,寻求代表结果行为的最佳相关性,从而得到两个二阶多项式相关性。(IM) - (UCS)的相关系数为0,6513,(CTF) - (UCS)的相关系数为0,8111。这表明,压痕参数和(UCS)之间的最高相关性与临界过渡力(CTF)有关。
{"title":"DEVELOPMENT OF EXPERIMENTAL CORRELATIONS BETWEEN INDENTATION PARAMETERS AND UNCONFINED COMPRESSIVE STRENGTH (UCS) VALUES IN SHALE SAMPLES","authors":"R. García, N. Saavedra, Zuly Calderón-Carrillo, D. Mateus","doi":"10.29047/01225383.463","DOIUrl":"https://doi.org/10.29047/01225383.463","url":null,"abstract":"Unconfined Compressive Strength (UCS) is one of the rock mechanical properties that is important take into account during drilling operations in order to avoid wellbore instability. During drilling operations, UCS variability influences wellbore stability more than other factors such as azimuth, slope, exposure time, and mud weight (Jaramillo, 2004). In last years, the indentation technique has been demonstrated to be an appropriate method for determining rock strength in real time during oil well drilling. This technique implements correlation that allow UCS evaluation from indentation parameters such as Indentation Module (IM) and Critical Transition Force (CTF), that can be measured on small rock fragments obtained during drilling. Shale formations in well drilling have demonstrated to be a hindrance since they represent the most important problem in reservoir stability (Abass, H., A. et al. 2006). Therefore, the main objective of this article is to find experimental correlations that allow the modeling of rock strength by applying the indentation technique to reservoir plug. The importance of this technique is the possibility to get rock strength properties in real time during drilling operations, although, those reservoir sections which do not have neither direct UCS records nor indirect measurements. Eight Unconfined Compression Tests (UCS) on rock cylinders (plugs) extracted from the Paja formation upwelling were conducted in order to develop the corresponding experimental correlations. Two hundred indentation tests were also simultaneously conducted on shale fragments extracted from each plug surroundings in order to simulate the cavings obtained from reservoir drilled. Results of both tests were correlated using the Minimum Square technique, seeking the best correlation that shall represent result behavior, thus obtaining two 2nd-degree polynomial correlations. Correlation coefficients of 0,6513 were determined for the (IM) - (UCS) correlation and 0,8111 for the (CTF) - (UCS) correlation. This demonstrates that the highest correlation between indentation parameters and (UCS) is obtained with the Critical Transition Force (CTF).","PeriodicalId":55200,"journal":{"name":"Ct&f-Ciencia Tecnologia Y Futuro","volume":"24 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78105407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The creation of new polymer compounds to be added to asphalt has drawn considerable attention because these substances have succeeded in modifying the asphalt rheologic characteristics and physical properties for the enhancement of its behavior during the time of use. This work explains the synthesis of a new graft copolymer based on an asphalt fraction called asphaltene, modified with maleic anhydride. Polystyrene functionalization is conducted in a parallel fashion in order to obtain polybenzylamine resin with an amine - NH2 free group, that reacts with the anhydride graft groups in the asphaltene, thus obtaining the new Polystyrene/Asphaltene graft copolymer.
{"title":"SYNTHESIS AND CHARACTERIZATION OF THE POLYSTYRENE - ASPHALTENE GRAFT COPOLYMER BY FT-IR SPECTROSCOPY","authors":"Adan-Yovani León-Bermúdez, R. Salazar","doi":"10.29047/01225383.469","DOIUrl":"https://doi.org/10.29047/01225383.469","url":null,"abstract":"The creation of new polymer compounds to be added to asphalt has drawn considerable attention because these substances have succeeded in modifying the asphalt rheologic characteristics and physical properties for the enhancement of its behavior during the time of use. This work explains the synthesis of a new graft copolymer based on an asphalt fraction called asphaltene, modified with maleic anhydride. Polystyrene functionalization is conducted in a parallel fashion in order to obtain polybenzylamine resin with an amine - NH2 free group, that reacts with the anhydride graft groups in the asphaltene, thus obtaining the new Polystyrene/Asphaltene graft copolymer.","PeriodicalId":55200,"journal":{"name":"Ct&f-Ciencia Tecnologia Y Futuro","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90753118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The analysis of injection tests under nonisothermic conditions is important for the accurate estimation of the reservoir permeability and the well's skin factor; since previously an isothermical system was assumed without taking into account a moving temperature front which expands with time plus the consequent changes in both viscosity and mobility between the cold and the hot zone of the reservoir which leads to unreliable estimation of the reservoir and well parameters. To construct the solution an analytical approach presented by Boughrara and Peres (2007) was used. That solution was initially introduced for the calculation of the injection pressure in an isothermic system. It was later modified by Boughrara and Reynolds (2007) to consider a system with variable temperature in vertical wells. In this work, the pressure response was obtained by numerical solution of the anisothermical model using the Gauss Quadrature method to solve the integrals, and assuming that both injection and reservoir temperatures were kept constant during the injection process and the water saturation is uniform throughout the reservoir. For interpretation purposes, a technique based upon the unique features of the pressure and pressure derivative curves were used without employing type-curve matching (TDS technique). The formulation was verified by its application to field and synthetic examples. As expected, increasing reservoir temperature causes a decrement in the mobility ratio, then estimation of reservoir permeability is some less accurate from the second radial flow, especially, as the mobility ratio increases.
{"title":"PRESSURE AND PRESSURE DERIVATIVE ANALYSIS FOR INJECTION TESTS WITH VARIABLE TEMPERATURE WITHOUT TYPE-CURVE MATCHING","authors":"F. Escobar, J. Martínez, Matilde Montealegre-M.","doi":"10.29047/01225383.464","DOIUrl":"https://doi.org/10.29047/01225383.464","url":null,"abstract":"The analysis of injection tests under nonisothermic conditions is important for the accurate estimation of the reservoir permeability and the well's skin factor; since previously an isothermical system was assumed without taking into account a moving temperature front which expands with time plus the consequent changes in both viscosity and mobility between the cold and the hot zone of the reservoir which leads to unreliable estimation of the reservoir and well parameters. To construct the solution an analytical approach presented by Boughrara and Peres (2007) was used. That solution was initially introduced for the calculation of the injection pressure in an isothermic system. It was later modified by Boughrara and Reynolds (2007) to consider a system with variable temperature in vertical wells. In this work, the pressure response was obtained by numerical solution of the anisothermical model using the Gauss Quadrature method to solve the integrals, and assuming that both injection and reservoir temperatures were kept constant during the injection process and the water saturation is uniform throughout the reservoir. For interpretation purposes, a technique based upon the unique features of the pressure and pressure derivative curves were used without employing type-curve matching (TDS technique). The formulation was verified by its application to field and synthetic examples. As expected, increasing reservoir temperature causes a decrement in the mobility ratio, then estimation of reservoir permeability is some less accurate from the second radial flow, especially, as the mobility ratio increases.","PeriodicalId":55200,"journal":{"name":"Ct&f-Ciencia Tecnologia Y Futuro","volume":"116 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74487242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}