首页 > 最新文献

Biocell最新文献

英文 中文
Reversal of maternal obesity attenuates hypoxia and improves placental development in the preeclamptic-like BPH/5 mouse model. 在先兆子痫样BPH/5小鼠模型中,逆转母体肥胖可减轻缺氧并改善胎盘发育。
IF 1.2 4区 生物学 Q4 BIOLOGY Pub Date : 2023-09-28 DOI: 10.32604/biocell.2023.029644
Daniella M Adams, Kalie F Beckers, Juliet P Flanagan, Viviane C L Gomes, Chin-Chi Liu, Jenny L Sones

Background: Women with obesity have higher risk of adverse pregnancy outcomes, including preeclampsia (PE). Late-gestational hypertension, aberrant fetoplacental development, and fetal growth restriction (FGR), hallmarks of PE, are observed spontaneously in BPH/5 mice. Similar to obese preeclamptic women, BPH/5 mice have higher visceral white adipose tissue (WAT) and circulating leptin. We hypothesized that attenuation of maternal obesity and serum leptin in pregnant BPH/5 mice will improve fetoplacental development by decreasing hypoxia markers and leptin expression at the maternal-fetal interface.

Methods: To test this hypothesis, BPH/5 mice were fed ad libitum (lib) and pair-fed (PF) to C57 ad lib controls beginning at embryonic day (e) 0.5. Hypoxia-related genes, hypoxia inducible factor (Hif) 1α, stem cell factor (Scf), heme oxygenase-1 (Ho-1), leptin (Lep), and leptin receptor (LepR) were assessed in e7.5 implantation sites.

Results: BPH/5 ad lib had 1.5 to 2-fold increase in Hif1α, Scf, and Ho-1 mRNA and a greater than 3-fold increase in leptin mRNA vs. C57 that was attenuated with PF. Exogenous leptin promoted Hif1α and Ho-1 mRNA expression in e7.5 decidua in vitro. While hypoxic conditions in vitro did not change decidual leptin mRNA. Furthermore, BPH/5 PF mice demonstrated improved fetal and placental outcomes later in gestation, with greater placental vascular area by e18.5 and attenuation of FGR.

Conclusion: In conclusion, pair-feeding BPH/5 mice beginning at conception may improve placental vasculature formation via decreased leptin and hypoxia-associated markers in this model. Future investigations are needed to better determine the effect of hypoxia and leptin on pregnancy outcomes in obese pregnant women.

背景:肥胖女性有更高的不良妊娠结局风险,包括先兆子痫(PE)。妊娠晚期高血压、异常胎儿胎盘发育和胎儿生长受限(FGR)是PE的标志,在BPH/5小鼠中自发观察到。与肥胖的先兆子痫女性相似,BPH/5小鼠的内脏白色脂肪组织(WAT)和循环瘦素含量较高。我们假设,在妊娠期BPH/5小鼠中,母体肥胖和血清瘦素的减少将通过降低缺氧标志物和母体-胎儿界面瘦素的表达来改善胎儿胎盘的发育。方法:为了验证这一假设,从胚胎第(e)0.5天开始,将BPH/5小鼠随意喂食(lib)和成对喂食(PF)给C57随意喂食对照。在e7.5植入位点评估缺氧相关基因、缺氧诱导因子(Hif)1α、干细胞因子(Scf)、血红素加氧酶-1(Ho-1)、瘦素(Lep)和瘦素受体(LepR)。结果:与PF减弱的C57相比,BPH/5 ad-lib的Hif1α、Scf和Ho-1mRNA增加了1.5至2倍,瘦素mRNA增加了3倍以上。外源性瘦素促进了体外e7.5蜕膜中Hif1α和Ho-1mrna的表达。缺氧条件下蜕膜瘦素mRNA表达无明显变化。此外,BPH/5 PF小鼠在妊娠后期表现出改善的胎儿和胎盘结果,e18.5增加了胎盘血管面积,FGR减弱。结论:总之,在该模型中,从受孕开始成对喂养BPH/5小鼠可以通过降低瘦素和缺氧相关标志物来改善胎盘血管系统的形成。未来的研究需要更好地确定缺氧和瘦素对肥胖孕妇妊娠结局的影响。
{"title":"Reversal of maternal obesity attenuates hypoxia and improves placental development in the preeclamptic-like BPH/5 mouse model.","authors":"Daniella M Adams, Kalie F Beckers, Juliet P Flanagan, Viviane C L Gomes, Chin-Chi Liu, Jenny L Sones","doi":"10.32604/biocell.2023.029644","DOIUrl":"10.32604/biocell.2023.029644","url":null,"abstract":"<p><strong>Background: </strong>Women with obesity have higher risk of adverse pregnancy outcomes, including preeclampsia (PE). Late-gestational hypertension, aberrant fetoplacental development, and fetal growth restriction (FGR), hallmarks of PE, are observed spontaneously in BPH/5 mice. Similar to obese preeclamptic women, BPH/5 mice have higher visceral white adipose tissue (WAT) and circulating leptin. We hypothesized that attenuation of maternal obesity and serum leptin in pregnant BPH/5 mice will improve fetoplacental development by decreasing hypoxia markers and leptin expression at the maternal-fetal interface.</p><p><strong>Methods: </strong>To test this hypothesis, BPH/5 mice were fed <i>ad libitum</i> (lib) and pair-fed (PF) to C57 ad lib controls beginning at embryonic day (e) 0.5. Hypoxia-related genes, hypoxia inducible factor (Hif) 1α, stem cell factor (Scf), heme oxygenase-1 (Ho-1), leptin (Lep), and leptin receptor (LepR) were assessed in e7.5 implantation sites.</p><p><strong>Results: </strong>BPH/5 ad lib had 1.5 to 2-fold increase in <i>Hif1α</i>, <i>Scf</i>, and <i>Ho-1</i> mRNA and a greater than 3-fold increase in leptin mRNA <i>vs</i>. C57 that was attenuated with PF. Exogenous leptin promoted Hif1α and Ho-1 mRNA expression in e7.5 decidua <i>in vitro</i>. While hypoxic conditions <i>in vitro</i> did not change decidual leptin mRNA. Furthermore, BPH/5 PF mice demonstrated improved fetal and placental outcomes later in gestation, with greater placental vascular area by e18.5 and attenuation of FGR.</p><p><strong>Conclusion: </strong>In conclusion, pair-feeding BPH/5 mice beginning at conception may improve placental vasculature formation via decreased leptin and hypoxia-associated markers in this model. Future investigations are needed to better determine the effect of hypoxia and leptin on pregnancy outcomes in obese pregnant women.</p>","PeriodicalId":55384,"journal":{"name":"Biocell","volume":"47 9","pages":"2051-2058"},"PeriodicalIF":1.2,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10569287/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41220811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anti-proliferative effect of Annona extracts on breast cancer cells. 番红花提取物对乳腺癌症细胞的抗增殖作用。
IF 0.8 4区 生物学 Q4 BIOLOGY Pub Date : 2023-08-28
Maria-Luisa Veisaga, Mariam Ahumada, Stacy Soriano, Leonardo Acuna, Wei Zhang, Ivy Leung, Robert Barnum, Manuel A Barbieri

Backgorund: Fruits and seed extracts of Annona montana have significant cytotoxic potential in several cancer cells. This study evaluates the effect of A. montana leaves hexane extract on several signaling cascades and gene expression in metastatic breast cancer cells upon insulin-like growth factor-1 (IGF-1) stimulation.

Methods: MTT assay was performed to determine the proliferation of cancer cells. Propidium iodide staining and flow cytometry analysis of Annexin V binding was utilized to measure the progression of the cell cycle and the induction of apoptosis. Protein expression and phosphorylation were determined by western blotting analysis to examine the underlying cellular mechanism triggered upon treatment with A. montana leaves hexane extract.

Results: A. montana leaves hexane (sub-fraction V) blocked the constitutive stimulation of the PI3K/mTOR signaling pathways. This inhibitory effect was associated with apoptosis induction as evidenced by the positivity with Annexin V and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNNEL) staining, activation of caspase-3, and cleavage of PPAR. It also limited the expression of various downstream genes that regulate proliferation, survival, metastasis, and angiogenesis (i.e., cyclin D1, survivin, COX-2, and VEGF). It increased the expression of p53 and p21. Interestingly, we also observed that this extract blocked the activation of AKT and ERK without affecting the phosphorylation of the IGF-1 receptor and activation of Ras upon IGF-1 stimulation.

Conclusion: Our study indicates that A. montana leaves (sub-fraction V) extract exhibits a selective anti-proliferative and proapoptotic effect on the metastatic MDA-MB-231 breast cancer cells through the involvement of PI3K/AKT/mTOR/S6K1 pathways.

背景:山番子的果实和种子提取物对几种癌症细胞具有显著的细胞毒性潜力。本研究评估了A.montana叶己烷提取物对胰岛素样生长因子-1(IGF-1)刺激下转移性乳腺癌症细胞的几种信号级联和基因表达的影响。方法:采用MTT法检测癌症细胞增殖情况。碘化丙啶染色和膜联蛋白V结合的流式细胞术分析用于测量细胞周期的进展和细胞凋亡的诱导。蛋白质表达和磷酸化通过蛋白质印迹分析来测定,以检测用A.montana叶己烷提取物处理后触发的潜在细胞机制。结果:A.montana叶片己烷(亚组分V)阻断了PI3K/mTOR信号通路的组成型刺激。这种抑制作用与细胞凋亡诱导有关,如膜联蛋白V和末端脱氧核苷酸转移酶dUTP缺口末端标记(TUNNEL)染色的阳性、胱天蛋白酶-3的激活和PPAR的切割所证明的。它还限制了调节增殖、存活、转移和血管生成的各种下游基因(即细胞周期蛋白D1、生存素、COX-2和VEGF)的表达。它增加了p53和p21的表达。有趣的是,我们还观察到,这种提取物阻断了AKT和ERK的激活,而不影响IGF-1受体的磷酸化和IGF-1刺激时Ras的激活。结论:A.montana叶(亚组分V)提取物通过PI3K/AKT/mTOR/S6K1途径对转移性MDA-MB-231乳腺癌症细胞具有选择性的抗增殖和促凋亡作用。
{"title":"Anti-proliferative effect of <i>Annona</i> extracts on breast cancer cells.","authors":"Maria-Luisa Veisaga, Mariam Ahumada, Stacy Soriano, Leonardo Acuna, Wei Zhang, Ivy Leung, Robert Barnum, Manuel A Barbieri","doi":"","DOIUrl":"","url":null,"abstract":"<p><strong>Backgorund: </strong>Fruits and seed extracts of Annona montana have significant cytotoxic potential in several cancer cells. This study evaluates the effect of A. montana leaves hexane extract on several signaling cascades and gene expression in metastatic breast cancer cells upon insulin-like growth factor-1 (IGF-1) stimulation.</p><p><strong>Methods: </strong>MTT assay was performed to determine the proliferation of cancer cells. Propidium iodide staining and flow cytometry analysis of Annexin V binding was utilized to measure the progression of the cell cycle and the induction of apoptosis. Protein expression and phosphorylation were determined by western blotting analysis to examine the underlying cellular mechanism triggered upon treatment with A. <i>montana</i> leaves hexane extract.</p><p><strong>Results: </strong>A. <i>montana</i> leaves hexane (sub-fraction V) blocked the constitutive stimulation of the PI3K/mTOR signaling pathways. This inhibitory effect was associated with apoptosis induction as evidenced by the positivity with Annexin V and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNNEL) staining, activation of caspase-3, and cleavage of PPAR. It also limited the expression of various downstream genes that regulate proliferation, survival, metastasis, and angiogenesis (i.e., cyclin D1, survivin, COX-2, and VEGF). It increased the expression of p53 and p21. Interestingly, we also observed that this extract blocked the activation of AKT and ERK without affecting the phosphorylation of the IGF-1 receptor and activation of Ras upon IGF-1 stimulation.</p><p><strong>Conclusion: </strong>Our study indicates that A. <i>montana</i> leaves (sub-fraction V) extract exhibits a selective anti-proliferative and proapoptotic effect on the metastatic MDA-MB-231 breast cancer cells through the involvement of PI3K/AKT/mTOR/S6K1 pathways.</p>","PeriodicalId":55384,"journal":{"name":"Biocell","volume":"47 8","pages":"1835-1852"},"PeriodicalIF":0.8,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10538365/pdf/nihms-1927735.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41152106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of non-enzymatic glycation on collagen nanoscale mechanisms in diabetic and age-related bone fragility. 非酶糖基化对糖尿病和年龄相关骨脆性中胶原纳米级机制的影响。
IF 1.2 4区 生物学 Q4 BIOLOGY Pub Date : 2023-06-21 DOI: 10.32604/biocell.2023.028014
James L Rosenberg, William Woolley, Ihsan Elnunu, Julia Kamml, David S Kammer, Claire Acevedo

Age and diabetes have long been known to induce an oxidative reaction between glucose and collagen, leading to the accumulation of advanced glycation end-products (AGEs) cross-links in collagenous tissues. More recently, AGEs content has been related to loss of bone quality, independent of bone mass, and increased fracture risk with aging and diabetes. Loss of bone quality is mostly attributed to changes in material properties, structural organization, or cellular remodeling. Though all these factors play a role in bone fragility disease, some common recurring patterns can be found between diabetic and age-related bone fragility. The main pattern we will discuss in this viewpoint is the increase of fibrillar collagen stiffness and loss of collagen-induced plasticity with AGE accumulation. This study focused on recent related experimental studies and discusses the correlation between fluorescent AGEs content at the molecular and fibrillar scales, collagen deformation mechanisms at the nanoscale, and resistance to bone fracture at the macroscale.

人们早就知道,年龄和糖尿病会诱导葡萄糖和胶原蛋白之间的氧化反应,导致胶原组织中晚期糖基化终产物(AGEs)交联的积累。最近,AGEs的含量与骨质量的丧失有关,与骨量无关,与衰老和糖尿病患者骨折风险增加有关。骨质量的丧失主要归因于材料性质、结构组织或细胞重塑的变化。虽然所有这些因素都在骨质疏松症中发挥作用,但在糖尿病和年龄相关的骨质疏松症之间可以发现一些共同的反复出现的模式。我们将在这一观点中讨论的主要模式是随着AGE的积累,原纤维胶原硬度的增加和胶原诱导的可塑性的丧失。本研究结合近年来的相关实验研究,探讨了荧光AGEs在分子和纤维尺度上的含量,在纳米尺度上的胶原变形机制,以及在宏观尺度上的抗骨折性之间的相关性。
{"title":"Effect of non-enzymatic glycation on collagen nanoscale mechanisms in diabetic and age-related bone fragility.","authors":"James L Rosenberg,&nbsp;William Woolley,&nbsp;Ihsan Elnunu,&nbsp;Julia Kamml,&nbsp;David S Kammer,&nbsp;Claire Acevedo","doi":"10.32604/biocell.2023.028014","DOIUrl":"https://doi.org/10.32604/biocell.2023.028014","url":null,"abstract":"<p><p>Age and diabetes have long been known to induce an oxidative reaction between glucose and collagen, leading to the accumulation of advanced glycation end-products (AGEs) cross-links in collagenous tissues. More recently, AGEs content has been related to loss of bone quality, independent of bone mass, and increased fracture risk with aging and diabetes. Loss of bone quality is mostly attributed to changes in material properties, structural organization, or cellular remodeling. Though all these factors play a role in bone fragility disease, some common recurring patterns can be found between diabetic and age-related bone fragility. The main pattern we will discuss in this viewpoint is the increase of fibrillar collagen stiffness and loss of collagen-induced plasticity with AGE accumulation. This study focused on recent related experimental studies and discusses the correlation between fluorescent AGEs content at the molecular and fibrillar scales, collagen deformation mechanisms at the nanoscale, and resistance to bone fracture at the macroscale.</p>","PeriodicalId":55384,"journal":{"name":"Biocell","volume":"47 7","pages":"1651-1659"},"PeriodicalIF":1.2,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10486207/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10293963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The antioxidant trolox inhibits aging and enhances prostaglandin E-2 secretion in mesenchymal stem cells 抗氧化剂trolox抑制衰老,促进间充质干细胞分泌前列腺素E-2
IF 1.2 4区 生物学 Q4 BIOLOGY Pub Date : 2023-01-01 DOI: 10.32604/biocell.2023.025203
Xiaoxu Zhang, Lin Zhang, Lin Du, Huiyan Sun, Xia Zhao, Yang Sun, Wen Wang, Lisheng Wang
: Mesenchymal stem cells (MSCs) have been widely used in regenerative medicine and clinical therapy due to their capabilities of proliferation, differentiation, and immune regulation. However, during in vitro expansion, MSCs are prone to aging, which largely limits their application. Prostaglandin E-2 (PGE-2) is a key effector secreted by MSCs to exert immunomodulatory effects. By screening the compound library for PGE-2 secretion, the antioxidant trolox was veri fi ed as a stimulator of MSCs to secrete PGE-2. The effect of antioxidant trolox on biological characteristics of MSCS, including aging, proliferation, and gene expression, was examined. The results demonstrated that trolox can resist aging, promote proliferation, and enhance PGE-2 secretion of MSCs without affecting their surface marker expression. Furthermore, trolox treatment up-regulates miR-17-92 clusters in MSCs and may contribute to its anti-aging effects. Thus, trolox addition might be bene fi cial for MSCs expansion and their application.
间充质干细胞(Mesenchymal stem cells, MSCs)因其具有增殖、分化和免疫调节等功能而广泛应用于再生医学和临床治疗。然而,在体外培养过程中,MSCs容易老化,这在很大程度上限制了其应用。前列腺素E-2 (Prostaglandin E-2, PGE-2)是间充质干细胞分泌的发挥免疫调节作用的关键效应因子。通过筛选PGE-2分泌的化合物文库,证实了抗氧化剂trolox是MSCs分泌PGE-2的刺激物。研究了抗氧化剂trolox对MSCS老化、增殖和基因表达等生物学特性的影响。结果表明,trolox在不影响MSCs表面标记物表达的情况下,具有抗衰老、促进增殖、促进PGE-2分泌的作用。此外,trolox处理上调MSCs中的miR-17-92簇,并可能有助于其抗衰老作用。因此,加入trolox可能有利于MSCs的扩增和应用。
{"title":"The antioxidant trolox inhibits aging and enhances prostaglandin E-2 secretion in mesenchymal stem cells","authors":"Xiaoxu Zhang, Lin Zhang, Lin Du, Huiyan Sun, Xia Zhao, Yang Sun, Wen Wang, Lisheng Wang","doi":"10.32604/biocell.2023.025203","DOIUrl":"https://doi.org/10.32604/biocell.2023.025203","url":null,"abstract":": Mesenchymal stem cells (MSCs) have been widely used in regenerative medicine and clinical therapy due to their capabilities of proliferation, differentiation, and immune regulation. However, during in vitro expansion, MSCs are prone to aging, which largely limits their application. Prostaglandin E-2 (PGE-2) is a key effector secreted by MSCs to exert immunomodulatory effects. By screening the compound library for PGE-2 secretion, the antioxidant trolox was veri fi ed as a stimulator of MSCs to secrete PGE-2. The effect of antioxidant trolox on biological characteristics of MSCS, including aging, proliferation, and gene expression, was examined. The results demonstrated that trolox can resist aging, promote proliferation, and enhance PGE-2 secretion of MSCs without affecting their surface marker expression. Furthermore, trolox treatment up-regulates miR-17-92 clusters in MSCs and may contribute to its anti-aging effects. Thus, trolox addition might be bene fi cial for MSCs expansion and their application.","PeriodicalId":55384,"journal":{"name":"Biocell","volume":"72 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90402015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cancer-associated fibroblasts of colorectal cancer: Translational prospects in liquid biopsy and targeted therapy 结直肠癌的癌症相关成纤维细胞:液体活检和靶向治疗的转化前景
4区 生物学 Q4 BIOLOGY Pub Date : 2023-01-01 DOI: 10.32604/biocell.2023.030541
ELYN AMIELA SALLEH, YEONG YEH LEE, ANDEE DZULKARNAEN ZAKARIA, NUR ASYILLA CHE JALIL, MARAHAINI MUSA
Colorectal cancer (CRC) is a major global health concern. Accumulation of cancer-associated fibroblasts (CAFs) in CRC is associated with poor prognosis and disease recurrence. CAFs are the main cellular component of the tumor microenvironment. CAF-tumor cell interplay, which is facilitated by various secretomes, drives colorectal carcinogenesis. The complexity of CAF populations contributes to the heterogeneity of CRC and influences patient survival and treatment response. Due to their significant roles in colorectal carcinogenesis, different clinical applications utilizing or targeting CAFs have been suggested. Circulating CAFs (cCAFs) which can be detected in blood samples, have been proposed to help in determining patient prognosis and enables the detection of cancer through liquid biopsy. Liquid biopsy is gaining traction as it is non-invasive, allows frequent and easy sampling, and shows concordance to tissue biopsy analysis. In addition, CAF-targeted therapy is currently being studied extensively to be used as one of the treatment avenues for CRC. Various mechanisms of CAF-targeted therapy have been reported, including blocking the signaling pathways involving CAFs and cancer cells, thus abolishing the CAF-tumor cell crosstalk and subsequently hindering tumorigenesis. These translational applications of cCAFs and utilization of CAFs as key targets for CRC therapy, although still in the early phases of development, will potentially improve CRC patient management in the future.
结直肠癌(CRC)是一个主要的全球健康问题。结直肠癌中癌症相关成纤维细胞(CAFs)的积累与不良预后和疾病复发有关。CAFs是肿瘤微环境的主要细胞成分。在各种分泌体的促进下,caf -肿瘤细胞相互作用驱动结直肠癌的发生。CAF群体的复杂性导致了结直肠癌的异质性,并影响了患者的生存和治疗反应。由于它们在结直肠癌发生中的重要作用,人们提出了利用或靶向caf的不同临床应用。循环CAFs (cCAFs)可以在血液样本中检测到,已被提议用于帮助确定患者预后,并通过液体活检检测癌症。液体活检因其非侵入性,允许频繁和容易的取样,并显示与组织活检分析的一致性而受到关注。此外,目前正在广泛研究caft靶向治疗作为结直肠癌的治疗途径之一。已经报道了多种CAFs靶向治疗的机制,包括阻断涉及CAFs和癌细胞的信号通路,从而消除CAFs -肿瘤细胞串扰,从而阻碍肿瘤发生。cCAFs的这些转化应用和作为CRC治疗的关键靶点的利用,虽然仍处于发展的早期阶段,但在未来可能会改善CRC患者的管理。
{"title":"Cancer-associated fibroblasts of colorectal cancer: Translational prospects in liquid biopsy and targeted therapy","authors":"ELYN AMIELA SALLEH, YEONG YEH LEE, ANDEE DZULKARNAEN ZAKARIA, NUR ASYILLA CHE JALIL, MARAHAINI MUSA","doi":"10.32604/biocell.2023.030541","DOIUrl":"https://doi.org/10.32604/biocell.2023.030541","url":null,"abstract":"Colorectal cancer (CRC) is a major global health concern. Accumulation of cancer-associated fibroblasts (CAFs) in CRC is associated with poor prognosis and disease recurrence. CAFs are the main cellular component of the tumor microenvironment. CAF-tumor cell interplay, which is facilitated by various secretomes, drives colorectal carcinogenesis. The complexity of CAF populations contributes to the heterogeneity of CRC and influences patient survival and treatment response. Due to their significant roles in colorectal carcinogenesis, different clinical applications utilizing or targeting CAFs have been suggested. Circulating CAFs (cCAFs) which can be detected in blood samples, have been proposed to help in determining patient prognosis and enables the detection of cancer through liquid biopsy. Liquid biopsy is gaining traction as it is non-invasive, allows frequent and easy sampling, and shows concordance to tissue biopsy analysis. In addition, CAF-targeted therapy is currently being studied extensively to be used as one of the treatment avenues for CRC. Various mechanisms of CAF-targeted therapy have been reported, including blocking the signaling pathways involving CAFs and cancer cells, thus abolishing the CAF-tumor cell crosstalk and subsequently hindering tumorigenesis. These translational applications of cCAFs and utilization of CAFs as key targets for CRC therapy, although still in the early phases of development, will potentially improve CRC patient management in the future.","PeriodicalId":55384,"journal":{"name":"Biocell","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135506333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MELLT3 protects against cerebral ischemia-reperfusion (I/R) injury through up-regulation of m6A modification MELLT3通过上调m6A修饰对脑缺血再灌注(I/R)损伤具有保护作用
IF 1.2 4区 生物学 Q4 BIOLOGY Pub Date : 2023-01-01 DOI: 10.32604/biocell.2023.026016
Jing Jin, Xinghua Wang, Xiao-xiao Zheng, Jiahua Lan, Li Zheng, Yingjian Cai, Huixian Chen, Hongwei Wang, Lifang Zheng
{"title":"MELLT3 protects against cerebral ischemia-reperfusion (I/R) injury through up-regulation of m6A modification","authors":"Jing Jin, Xinghua Wang, Xiao-xiao Zheng, Jiahua Lan, Li Zheng, Yingjian Cai, Huixian Chen, Hongwei Wang, Lifang Zheng","doi":"10.32604/biocell.2023.026016","DOIUrl":"https://doi.org/10.32604/biocell.2023.026016","url":null,"abstract":"","PeriodicalId":55384,"journal":{"name":"Biocell","volume":"59 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89075045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploration of the oxidative-inflammatory potential targets of Coicis Semen in osteoarthritis: Data mining and systematic pharmacology 探索薏苡米在骨关节炎中的氧化炎性潜在靶点:数据挖掘和系统药理学
IF 1.2 4区 生物学 Q4 BIOLOGY Pub Date : 2023-01-01 DOI: 10.32604/biocell.2023.028331
Qiao-mei Zhou, Jian Liu, L. Xin, Yanyan Fang, L. Wan, D. Huang, J. Wen
{"title":"Exploration of the oxidative-inflammatory potential targets of Coicis Semen in osteoarthritis: Data mining and systematic pharmacology","authors":"Qiao-mei Zhou, Jian Liu, L. Xin, Yanyan Fang, L. Wan, D. Huang, J. Wen","doi":"10.32604/biocell.2023.028331","DOIUrl":"https://doi.org/10.32604/biocell.2023.028331","url":null,"abstract":"","PeriodicalId":55384,"journal":{"name":"Biocell","volume":"191 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86823146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fang-Xia-Dihuang decoction inhibits breast cancer progression induced by psychological stress via down-regulation of PI3K/AKT and JAK2/STAT3 pathways: An in vivo and a network pharmacology assessment 方霞地黄汤通过下调PI3K/AKT和JAK2/STAT3通路抑制心理应激诱导的乳腺癌进展:体内和网络药理学评估
4区 生物学 Q4 BIOLOGY Pub Date : 2023-01-01 DOI: 10.32604/biocell.2023.030742
LINGYAN LV, JING ZHAO, XUAN WANG, LIUYAN XU, YINGYI FAN, CHUNHUI WANG, HONGQIAO FAN, XIAOHUA PEI
Background: The development and prognosis of breast cancer are intricately linked to psychological stress. In addition, depression is the most common psychological comorbidity among breast cancer survivors, and reportedly, Fang-Xia-Dihuang decoction (FXDH) can effectively manage depression in such patients. However, its pharmacological and molecular mechanisms remain obscure. Methods: Public databases were used for obtaining active components and related targets. Main active components were further verified by ultra-high-performance liquid chromatography-high-resolution mass spectrometry (UPLC-HRMS). Protein–protein interaction and enrichment analyses were taken to predict potential hub targets and related pathways. Molecule docking was used to understand the interactions between main compounds and hub targets. In addition, an animal model of breast cancer combined with depression was established to evaluate the intervention effect of FXDH and verify the pathways screened by network pharmacology. Results: 174 active components of FXDH and 163 intersection targets of FXDH, breast cancer, and depression were identified. Quercetin, methyl ferulate, luteolin, ferulaldehyde, wogonin, and diincarvilone were identified as the principal active components of FXDH. Protein–protein interaction and KEGG enrichment analyses revealed that the phosphoinositide-3-kinase–protein kinase B (PI3K/AKT) and Janus kinase/signal transducer and activator of transcription (JAK2/STAT3) signaling pathways played a crucial role in mediating the efficacy of FXDH for inhibiting breast cancer progression induced by depression. In addition, in vivo experiments revealed that FXDH ameliorated depression-like behavior in mice and inhibited excessive tumor growth in mice with breast cancer and depression. FXDH treatment downregulated the expression of epinephrine, PI3K, AKT, STAT3, and JAK2 compared with the control treatment (p < 0.05). Molecular docking verified the relationship between the six primary components of FXDH and the three most important targets, including phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), AKT, and STAT3. Conclusion: This study provides a scientific basis to support the clinical application of FXDH for improving depression-like behavior and inhibiting breast cancer progression promoted by chronic stress. The therapeutic effects FXDH may be closely related to the PI3K/AKT and JAK2/STAT3 pathways. This finding helps better understand the regulatory mechanisms underlying the efficacy of FXDH.
背景:乳腺癌的发展和预后与心理应激有着复杂的关系。此外,抑郁症是乳腺癌幸存者中最常见的心理合并症,据报道,方霞地黄汤(FXDH)可以有效地治疗这类患者的抑郁症。然而,其药理和分子机制尚不清楚。方法:利用公共数据库获取有效成分及相关靶点。通过超高效液相色谱-高分辨率质谱(UPLC-HRMS)进一步验证了主要有效成分。蛋白质相互作用和富集分析用于预测潜在的枢纽靶点和相关途径。分子对接用于了解主要化合物与枢纽靶点之间的相互作用。此外,建立乳腺癌合并抑郁症动物模型,评估FXDH的干预效果,验证网络药理学筛选的通路。结果:共鉴定出174种FXDH有效成分和163种FXDH与乳腺癌、抑郁症的交叉靶点。槲皮素、阿魏酸甲酯、木犀草素、阿魏醛、木犀草素和双威草酮是FXDH的主要活性成分。蛋白-蛋白相互作用和KEGG富集分析表明,磷酸肌醇-3-激酶-蛋白激酶B (PI3K/AKT)和Janus激酶/信号转导和转录激活因子(JAK2/STAT3)信号通路在FXDH抑制抑郁症诱导的乳腺癌进展的作用中发挥了重要作用。此外,体内实验显示,FXDH可以改善小鼠的抑郁样行为,抑制乳腺癌和抑郁症小鼠的过度肿瘤生长。与对照组相比,FXDH处理可下调肾上腺素、PI3K、AKT、STAT3、JAK2的表达(p < 0.05)。分子对接验证了FXDH的6个主要成分与磷脂酰肌醇-4,5-二磷酸3-激酶催化亚基α (PIK3CA)、AKT和STAT3这3个最重要的靶标之间的关系。结论:本研究为FXDH改善抑郁样行为、抑制慢性应激促进乳腺癌进展的临床应用提供了科学依据。FXDH的治疗作用可能与PI3K/AKT和JAK2/STAT3通路密切相关。这一发现有助于更好地理解FXDH功效背后的调控机制。
{"title":"Fang-Xia-Dihuang decoction inhibits breast cancer progression induced by psychological stress via down-regulation of PI3K/AKT and JAK2/STAT3 pathways: An in vivo and a network pharmacology assessment","authors":"LINGYAN LV, JING ZHAO, XUAN WANG, LIUYAN XU, YINGYI FAN, CHUNHUI WANG, HONGQIAO FAN, XIAOHUA PEI","doi":"10.32604/biocell.2023.030742","DOIUrl":"https://doi.org/10.32604/biocell.2023.030742","url":null,"abstract":"<b>Background:</b> The development and prognosis of breast cancer are intricately linked to psychological stress. In addition, depression is the most common psychological comorbidity among breast cancer survivors, and reportedly, Fang-Xia-Dihuang decoction (FXDH) can effectively manage depression in such patients. However, its pharmacological and molecular mechanisms remain obscure. <b>Methods:</b> Public databases were used for obtaining active components and related targets. Main active components were further verified by ultra-high-performance liquid chromatography-high-resolution mass spectrometry (UPLC-HRMS). Protein–protein interaction and enrichment analyses were taken to predict potential hub targets and related pathways. Molecule docking was used to understand the interactions between main compounds and hub targets. In addition, an animal model of breast cancer combined with depression was established to evaluate the intervention effect of FXDH and verify the pathways screened by network pharmacology. <b>Results:</b> 174 active components of FXDH and 163 intersection targets of FXDH, breast cancer, and depression were identified. Quercetin, methyl ferulate, luteolin, ferulaldehyde, wogonin, and diincarvilone were identified as the principal active components of FXDH. Protein–protein interaction and KEGG enrichment analyses revealed that the phosphoinositide-3-kinase–protein kinase B (PI3K/AKT) and Janus kinase/signal transducer and activator of transcription (JAK2/STAT3) signaling pathways played a crucial role in mediating the efficacy of FXDH for inhibiting breast cancer progression induced by depression. In addition, <i>in vivo</i> experiments revealed that FXDH ameliorated depression-like behavior in mice and inhibited excessive tumor growth in mice with breast cancer and depression. FXDH treatment downregulated the expression of epinephrine, PI3K, AKT, STAT3, and JAK2 compared with the control treatment (<i>p</i> < 0.05). Molecular docking verified the relationship between the six primary components of FXDH and the three most important targets, including phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), AKT, and STAT3. <b>Conclusion:</b> This study provides a scientific basis to support the clinical application of FXDH for improving depression-like behavior and inhibiting breast cancer progression promoted by chronic stress. The therapeutic effects FXDH may be closely related to the PI3K/AKT and JAK2/STAT3 pathways. This finding helps better understand the regulatory mechanisms underlying the efficacy of FXDH.","PeriodicalId":55384,"journal":{"name":"Biocell","volume":"88 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135753664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The therapeutic mechanism of dexamethasone in lung injury induced by hydrogen sulfide 地塞米松治疗硫化氢所致肺损伤的机制
4区 生物学 Q4 BIOLOGY Pub Date : 2023-01-01 DOI: 10.32604/biocell.2023.029277
CHUNYANG XU, CAIYUN YANG, JINSONG ZHANG, XIAOHUA PAN, JUN WANG, LEI JIANG, HONGWEI YE, BO CHEN
Background: The lung is one of the primary target organs of hydrogen sulfide (H2S), as exposure to H2S can cause acute lung injury (ALI) and pulmonary edema. Dexamethasone (Dex) exerts a protective effect on ALI caused by exposure to toxic gases and is commonly used in the clinic; however, the underlying mechanisms remain elusive, and the dose is unclear. Methods: In vivo experiments: divided C57BL6 mice into 6 groups at random, 12 in each group. The mice were exposed to H2S for 3 h and 5 or 50 mg/kg Dex pretreated before exposure, sacrificed 12 h later. The morphological changes of HE staining and the ultrastructural changes of lungs under transmission electron microscopy were evaluated. The wet/dry ratio of lung tissue was measured. Bronchial alveolar lavage fluid (BALF) protein content and lung permeability index were detected. The expression of AQP5 protein was measured by immunohistochemistry and Western Blot (WB). In vitro experiments: divided human lung adenocarcinoma cell line A549 into 4 groups. 1 μmol/L dexamethasone was added to pre-incubation. The WB analyzed the protein of p-ERK1/2, p-JNK, and p-p38 in MAPK pathway after 1 h of NaHS exposure; six hours after NaHS exposure, the AQP5 protein was measured by WB. Results: Dex treatment could significantly attenuate the H2S-induced destruction to the alveolar wall, increase the wet-to-dry weight ratio and decrease pulmonary permeability index, with high-dose dexamethasone seemingly functioning better. Additionally, our previous studies showed that aquaporin 5 (AQP 5), a critical protein that regulates water flux, decreased both in a mouse and cell model following the exposure to H2S. This study indicates that tThe decrease in AQP 5 can be alleviated by Dex treatment. Additionally, the mitogen activated protein kinase (MAPK) pathway may be involved in the protective effects of Dex in ALI caused by exposure to H2S since H2S-induced MAPK activation could be inhibited by Dex. Conclusion: The present results indicate that AQP 5 may be considered a therapeutic target for Dex in H2S or other hazardous gases-induced ALI.
背景:肺是硫化氢(H2S)的主要靶器官之一,暴露于硫化氢可引起急性肺损伤(ALI)和肺水肿。地塞米松(Dexamethasone, Dex)对暴露于有毒气体引起的ALI有保护作用,在临床上常用;然而,潜在的机制仍然难以捉摸,剂量也不清楚。方法:体内实验:将C57BL6小鼠随机分为6组,每组12只。小鼠暴露于H2S 3 h,暴露前预处理5或50 mg/kg Dex, 12 h后处死。观察肺HE染色形态学变化及透射电镜下肺超微结构变化。测定肺组织干湿比。检测支气管肺泡灌洗液(BALF)蛋白含量及肺通透性指数。免疫组织化学和Western Blot检测AQP5蛋白的表达。体外实验:将人肺腺癌细胞A549分为4组。前孵育加1 μmol/L地塞米松。WB检测NaHS暴露1 h后MAPK通路p-ERK1/2、p-JNK、p-p38蛋白;NaHS暴露6 h后,WB测定AQP5蛋白。结果:地塞米松能显著减轻h2s对肺泡壁的破坏,提高肺干湿比,降低肺透性指数,且大剂量地塞米松效果更好。此外,我们之前的研究表明,在暴露于H2S后,小鼠和细胞模型中调节水通量的关键蛋白水通道蛋白5 (AQP 5)都减少了。本研究表明,右美托咪定治疗可缓解aqp5的下降。此外,丝裂原活化蛋白激酶(MAPK)通路可能参与了右美托咪唑对H2S引起的ALI的保护作用,因为H2S诱导的MAPK活化可以被右美托咪唑抑制。结论:aqp5可能是Dex在H2S或其他有害气体诱导的ALI中的治疗靶点。
{"title":"The therapeutic mechanism of dexamethasone in lung injury induced by hydrogen sulfide","authors":"CHUNYANG XU, CAIYUN YANG, JINSONG ZHANG, XIAOHUA PAN, JUN WANG, LEI JIANG, HONGWEI YE, BO CHEN","doi":"10.32604/biocell.2023.029277","DOIUrl":"https://doi.org/10.32604/biocell.2023.029277","url":null,"abstract":"<b>Background:</b> The lung is one of the primary target organs of hydrogen sulfide (H<sub>2</sub>S), as exposure to H<sub>2</sub>S can cause acute lung injury (ALI) and pulmonary edema. Dexamethasone (Dex) exerts a protective effect on ALI caused by exposure to toxic gases and is commonly used in the clinic; however, the underlying mechanisms remain elusive, and the dose is unclear. <b>Methods:</b> <i>In vivo</i> experiments: divided C57BL6 mice into 6 groups at random, 12 in each group. The mice were exposed to H<sub>2</sub>S for 3 h and 5 or 50 mg/kg Dex pretreated before exposure, sacrificed 12 h later. The morphological changes of HE staining and the ultrastructural changes of lungs under transmission electron microscopy were evaluated. The wet/dry ratio of lung tissue was measured. Bronchial alveolar lavage fluid (BALF) protein content and lung permeability index were detected. The expression of AQP5 protein was measured by immunohistochemistry and Western Blot (WB). <i>In vitro</i> experiments: divided human lung adenocarcinoma cell line A549 into 4 groups. 1 μmol/L dexamethasone was added to pre-incubation. The WB analyzed the protein of p-ERK1/2, p-JNK, and p-p38 in MAPK pathway after 1 h of NaHS exposure; six hours after NaHS exposure, the AQP5 protein was measured by WB. <b>Results:</b> Dex treatment could significantly attenuate the H<sub>2</sub>S-induced destruction to the alveolar wall, increase the wet-to-dry weight ratio and decrease pulmonary permeability index, with high-dose dexamethasone seemingly functioning better. Additionally, our previous studies showed that aquaporin 5 (AQP 5), a critical protein that regulates water flux, decreased both in a mouse and cell model following the exposure to H<sub>2</sub>S. This study indicates that tThe decrease in AQP 5 can be alleviated by Dex treatment. Additionally, the mitogen activated protein kinase (MAPK) pathway may be involved in the protective effects of Dex in ALI caused by exposure to H<sub>2</sub>S since H<sub>2</sub>S-induced MAPK activation could be inhibited by Dex. <b>Conclusion:</b> The present results indicate that AQP 5 may be considered a therapeutic target for Dex in H<sub>2</sub>S or other hazardous gases-induced ALI.","PeriodicalId":55384,"journal":{"name":"Biocell","volume":"281 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135755121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Designing a risk prognosis model based on natural killer cell-linked genes to accurately evaluate the prognosis of gastric cancer 设计基于自然杀伤细胞相关基因的风险预后模型,准确评估胃癌预后
4区 生物学 Q4 BIOLOGY Pub Date : 2023-01-01 DOI: 10.32604/biocell.2023.029986
GAOZHONG LI, FUXIN LI, NING WEI, QING JIA
Background: This study was aimed at identifying natural killer (NK) cell-related genes to design a risk prognosis model for the accurate evaluation of gastric cancer (GC) prognosis. Methods: We obtained NK cell-related genes from various databases, followed by Cox regression analysis and molecular typing to identify prognostic genes. Various immune algorithms and enrichment analyses were used to investigate the mutations, immune status, and pathway variations among different genotypes. The key prognostic genes were assessed using the least absolute shrinkage and selection operator (Lasso) regression analysis and univariate Cox regression analysis. Thereafter, the risk score (RS) prognosis model was constructed based on the selected important prognostic genes. A Receiver Operating Characteristics (ROC) curve was plotted for analyzing the robustness of the model. Subsequently, the decision and calibration curves were used for assessing the reliability and prediction accuracy of the proposed model. The ‘pRRophetic’ R software package was utilized for predicting the half-maximal inhibitory concentration (IC50) of immunotherapy and chemotherapy drugs. Results: We screened 21 prognostic genes and three molecular subtypes and found that the C1 subtype had the worst prognosis. Further, the pathways promoting tumor proliferation, such as epithelial-mesenchymal transition were significantly up-regulated. The results also showed that the macrophages in the M2 stage were significantly infiltrated in the C1 subtype, and there was significant overexpression in the C1 subtype, accompanied by a severe inflammatory reaction. The C1 was highly sensitive to drugs like 5-fluorouracil and paclitaxel. The ROC, calibration curve, and decision curve showed that the risk model was robust and strongly reliable. Conclusion: Overall, our proposed NK cell-related RS model can be used as a more accurate prediction index for GC patients, providing a valuable contribution to personalized medicine.
背景:本研究旨在鉴定自然杀伤(NK)细胞相关基因,设计风险预后模型,准确评估胃癌(GC)预后。方法:从各数据库获取NK细胞相关基因,进行Cox回归分析和分子分型鉴定预后相关基因。利用各种免疫算法和富集分析来研究不同基因型之间的突变、免疫状态和途径变化。使用最小绝对收缩和选择算子(Lasso)回归分析和单变量Cox回归分析评估关键预后基因。然后,根据筛选出的重要预后基因构建风险评分(RS)预后模型。绘制受试者工作特征(ROC)曲线,分析模型的稳健性。随后,利用决策曲线和校准曲线对模型的可靠性和预测精度进行了评估。采用“prophytic”R软件包预测免疫治疗药物和化疗药物的半最大抑制浓度(IC50)。结果:我们筛选了21个预后基因和3个分子亚型,发现C1亚型预后最差。此外,促进肿瘤增殖的途径,如上皮-间质转化显著上调。结果还显示M2期巨噬细胞在C1亚型明显浸润,C1亚型明显过表达,并伴有严重的炎症反应。C1对5-氟尿嘧啶和紫杉醇等药物高度敏感。ROC曲线、校正曲线和决策曲线显示风险模型具有较强的稳健性和可靠性。结论:总的来说,我们提出的NK细胞相关RS模型可以作为GC患者更准确的预测指标,为个性化医疗提供有价值的贡献。
{"title":"Designing a risk prognosis model based on natural killer cell-linked genes to accurately evaluate the prognosis of gastric cancer","authors":"GAOZHONG LI, FUXIN LI, NING WEI, QING JIA","doi":"10.32604/biocell.2023.029986","DOIUrl":"https://doi.org/10.32604/biocell.2023.029986","url":null,"abstract":"<b>Background:</b> This study was aimed at identifying natural killer (NK) cell-related genes to design a risk prognosis model for the accurate evaluation of gastric cancer (GC) prognosis. <b>Methods:</b> We obtained NK cell-related genes from various databases, followed by Cox regression analysis and molecular typing to identify prognostic genes. Various immune algorithms and enrichment analyses were used to investigate the mutations, immune status, and pathway variations among different genotypes. The key prognostic genes were assessed using the least absolute shrinkage and selection operator (Lasso) regression analysis and univariate Cox regression analysis. Thereafter, the risk score (RS) prognosis model was constructed based on the selected important prognostic genes. A Receiver Operating Characteristics (ROC) curve was plotted for analyzing the robustness of the model. Subsequently, the decision and calibration curves were used for assessing the reliability and prediction accuracy of the proposed model. The ‘pRRophetic’ R software package was utilized for predicting the half-maximal inhibitory concentration (IC50) of immunotherapy and chemotherapy drugs. <b>Results:</b> We screened 21 prognostic genes and three molecular subtypes and found that the C1 subtype had the worst prognosis. Further, the pathways promoting tumor proliferation, such as epithelial-mesenchymal transition were significantly up-regulated. The results also showed that the macrophages in the M2 stage were significantly infiltrated in the C1 subtype, and there was significant overexpression in the C1 subtype, accompanied by a severe inflammatory reaction. The C1 was highly sensitive to drugs like 5-fluorouracil and paclitaxel. The ROC, calibration curve, and decision curve showed that the risk model was robust and strongly reliable. <b>Conclusion:</b> Overall, our proposed NK cell-related RS model can be used as a more accurate prediction index for GC patients, providing a valuable contribution to personalized medicine.","PeriodicalId":55384,"journal":{"name":"Biocell","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135755386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Biocell
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1