首页 > 最新文献

Biocell最新文献

英文 中文
Role of necroptosis in spinal cord injury and its therapeutic implications 坏死性上睑下垂在脊髓损伤中的作用及其治疗意义
IF 1.2 4区 生物学 Q4 BIOLOGY Pub Date : 2023-01-01 DOI: 10.32604/biocell.2023.026881
Jiawei Fu, Chunshuai Wu, Guanhua Xu, Jinlong Zhang, Yiqiu Li, Chunyan Ji, Zhiming Cui
{"title":"Role of necroptosis in spinal cord injury and its therapeutic implications","authors":"Jiawei Fu, Chunshuai Wu, Guanhua Xu, Jinlong Zhang, Yiqiu Li, Chunyan Ji, Zhiming Cui","doi":"10.32604/biocell.2023.026881","DOIUrl":"https://doi.org/10.32604/biocell.2023.026881","url":null,"abstract":"","PeriodicalId":55384,"journal":{"name":"Biocell","volume":"34 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76924095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of tumor-draining vein secretome: A direct access to tumor-derived extracellular vesicles in surgical lung cancer patients 肿瘤引流静脉分泌组分析:肺癌手术患者肿瘤源性细胞外囊泡的直接通路
IF 1.2 4区 生物学 Q4 BIOLOGY Pub Date : 2023-01-01 DOI: 10.32604/biocell.2023.027718
{"title":"Analysis of tumor-draining vein secretome: A direct access to tumor-derived extracellular vesicles in surgical lung cancer patients","authors":"","doi":"10.32604/biocell.2023.027718","DOIUrl":"https://doi.org/10.32604/biocell.2023.027718","url":null,"abstract":"","PeriodicalId":55384,"journal":{"name":"Biocell","volume":"15 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78181883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Abstracts from XXIV Annual Meeting of the Argentinean Society of Biology (SAB) 阿根廷生物学会(SAB)第24届年会摘要
IF 1.2 4区 生物学 Q4 BIOLOGY Pub Date : 2023-01-01 DOI: 10.32604/biocell.2023.s0124
{"title":"Abstracts from XXIV Annual Meeting of the Argentinean Society of Biology (SAB)","authors":"","doi":"10.32604/biocell.2023.s0124","DOIUrl":"https://doi.org/10.32604/biocell.2023.s0124","url":null,"abstract":"","PeriodicalId":55384,"journal":{"name":"Biocell","volume":"24 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83052457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Columbianetin acetate inhibits the occurrence and development of pancreatic cancer cells by down-regulating the expression of Meiotic nuclear divisions 1 乙酸柱莲素通过下调减数分裂核分裂的表达抑制胰腺癌细胞的发生和发展
IF 1.2 4区 生物学 Q4 BIOLOGY Pub Date : 2023-01-01 DOI: 10.32604/biocell.2023.023553
K. Sun, Dongqin Wang, Zhiqiang Zhang, Yinlong Huang, Xiaofu Lian, Jia Hua, Jing Zhang, Chaoqun Lian
Columbianetin acetate (CE) is one of the effective components of Angelica pubescens. So far, the specific role and molecular mechanism of CE in pancreatic cancer are not clear. Thus, this study aimed to explore the specific mechanism of CE on pancreatic cancer. The target genes combined with CE were predicted through the PharmMapper database and the 3D molecular structure of CE. Then, the Cancer Genome Atlas (TCGA) and Cistrome data browser (DB) databases were used to screen Meiotic nuclear divisions 1 (MND1)-related genes, transcription factors, and transcription factor data sets, and the intersection of the above data sets. The “limma” package in the R and gene expression profiling interactive analysis (GEPIA) databases were used to analyze the correlation and survival difference between the target genes and MND1 to predict the degree of association between CE and MND1. Western blotting and RT-PCR experiments revealed the regulatory relationship among CE, E2F1, and MND1 at the cellular level. The specific effects of CE on pancreatic cancer cells were explored through CCK8, wound healing, migration, and flow cycle experiments. E2F1, also the predictive transcription factor of MND1, was also the predictive target protein of CE. At the same time, E2F1 and MND1 were closely related in pancreatic tissue. In the cell function experiment, CE and interference with E2F1 expression could reduce the gene and protein expression of MND1, which was closely associated with cell proliferation, migration, and cycle development. Similarly, interfering with the expression of mnd1 can also inhibit the further development of tumor cells. CE may inhibit the development of pancreatic cancer cells by reducing the expression of MND1. This implies that CE may be a potential novel agent for the treatment of pancreatic cancer.
乙酸柱莲素是当归的有效成分之一。迄今为止,CE在胰腺癌中的具体作用和分子机制尚不清楚。因此,本研究旨在探讨CE治疗胰腺癌的具体机制。通过PharmMapper数据库和CE的三维分子结构预测与CE结合的靶基因。然后,利用Cancer Genome Atlas (TCGA)和Cistrome data browser (DB)数据库筛选MND1相关基因、转录因子、转录因子数据集以及上述数据集的交集。利用R和基因表达谱交互分析(GEPIA)数据库中的“limma”包分析靶基因与MND1的相关性和生存差异,预测CE与MND1的关联程度。Western blotting和RT-PCR实验揭示了CE、E2F1和MND1在细胞水平上的调控关系。通过CCK8、伤口愈合、迁移和血流循环实验探讨CE对胰腺癌细胞的特异性影响。E2F1也是MND1的预测转录因子,也是CE的预测靶蛋白。同时,E2F1与MND1在胰腺组织中密切相关。在细胞功能实验中,CE和干扰E2F1表达可降低与细胞增殖、迁移和周期发育密切相关的MND1基因和蛋白表达。同样,干扰mnd1的表达也可以抑制肿瘤细胞的进一步发展。CE可能通过降低MND1的表达来抑制胰腺癌细胞的发展。这表明CE可能是一种潜在的治疗胰腺癌的新型药物。
{"title":"Columbianetin acetate inhibits the occurrence and development of pancreatic cancer cells by down-regulating the expression of Meiotic nuclear divisions 1","authors":"K. Sun, Dongqin Wang, Zhiqiang Zhang, Yinlong Huang, Xiaofu Lian, Jia Hua, Jing Zhang, Chaoqun Lian","doi":"10.32604/biocell.2023.023553","DOIUrl":"https://doi.org/10.32604/biocell.2023.023553","url":null,"abstract":"Columbianetin acetate (CE) is one of the effective components of Angelica pubescens. So far, the specific role and molecular mechanism of CE in pancreatic cancer are not clear. Thus, this study aimed to explore the specific mechanism of CE on pancreatic cancer. The target genes combined with CE were predicted through the PharmMapper database and the 3D molecular structure of CE. Then, the Cancer Genome Atlas (TCGA) and Cistrome data browser (DB) databases were used to screen Meiotic nuclear divisions 1 (MND1)-related genes, transcription factors, and transcription factor data sets, and the intersection of the above data sets. The “limma” package in the R and gene expression profiling interactive analysis (GEPIA) databases were used to analyze the correlation and survival difference between the target genes and MND1 to predict the degree of association between CE and MND1. Western blotting and RT-PCR experiments revealed the regulatory relationship among CE, E2F1, and MND1 at the cellular level. The specific effects of CE on pancreatic cancer cells were explored through CCK8, wound healing, migration, and flow cycle experiments. E2F1, also the predictive transcription factor of MND1, was also the predictive target protein of CE. At the same time, E2F1 and MND1 were closely related in pancreatic tissue. In the cell function experiment, CE and interference with E2F1 expression could reduce the gene and protein expression of MND1, which was closely associated with cell proliferation, migration, and cycle development. Similarly, interfering with the expression of mnd1 can also inhibit the further development of tumor cells. CE may inhibit the development of pancreatic cancer cells by reducing the expression of MND1. This implies that CE may be a potential novel agent for the treatment of pancreatic cancer.","PeriodicalId":55384,"journal":{"name":"Biocell","volume":"100 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83348294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comprehensive bioinformatics analysis of CYB561 expression in breast cancer: Link between prognosis and immune infiltration 乳腺癌CYB561表达的综合生物信息学分析:预后与免疫浸润的关系
IF 1.2 4区 生物学 Q4 BIOLOGY Pub Date : 2023-01-01 DOI: 10.32604/biocell.2023.027103
Xi Yang, Huixian Wu, Chao-Liang Xiong, Bo Zhao, Meilian Liu, J. Qin, Meihai Deng
{"title":"Comprehensive bioinformatics analysis of CYB561 expression in breast cancer: Link between prognosis and immune infiltration","authors":"Xi Yang, Huixian Wu, Chao-Liang Xiong, Bo Zhao, Meilian Liu, J. Qin, Meihai Deng","doi":"10.32604/biocell.2023.027103","DOIUrl":"https://doi.org/10.32604/biocell.2023.027103","url":null,"abstract":"","PeriodicalId":55384,"journal":{"name":"Biocell","volume":"1 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90194699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hyperglycemia-induced myocardial fibrosis may be associated with pyroptosis and apoptosis of cardiomyoctes in diabetic mice 高血糖诱导的心肌纤维化可能与糖尿病小鼠心肌细胞的焦亡和凋亡有关
IF 1.2 4区 生物学 Q4 BIOLOGY Pub Date : 2023-01-01 DOI: 10.32604/biocell.2023.024944
Yao Lu, Qiuyue Wang, Caihui Zhang
Myocardial fibrosis is an important manifestation of diabetic cardiomyopathy. This study investigated the potential mechanism of diabetic myocardial fibrosis. Male C57BL/6J and db/db mice aged 8 weeks were randomly divided into the diabetic (DB) and control groups. At 20 weeks, the mouse heart was harvested and subjected to hematoxylin-eosin staining (HE) and Masson staining to investigate the degree of fibrosis. The expressions of transforming growth factor-beta 1 (TGF-β1), collagen-III, B-cell lymphoma-2 (Bcl2), Bcl2-associated X protein (Bax), cleaved gasdermin D (GSDMD), cysteinyl aspartate specific proteinase-1 (caspase-1), apoptosis-associated speck-like protein containing a CARD (ASC), and nucleotide-binding oligomerization domain (NOD)-like receptor 3 (NLRP3) were measured by western blotting. Immunohistochemistry and TdT-mediated dUTP nick end labeling (TUNEL) staining were performed to analyze the development of apoptosis and pyroptosis. A significant increase in body weight and blood glucose in the DB group was observed. Myocardial pathological injury, fibrosis, apoptosis, and pyroptosis were more obvious and serious in the DB group. The expression of anti-apoptotic Bcl2 significantly decreased, while the expression levels of pro-apoptotic Bax, caspase-3, and pyroptosis-related proteins, such as cleaved GSDMD, and caspase-1 in the DB group were significantly increased. Pyroptosis and apoptosis were probably the main mechanisms that caused myocardial fibrosis in mice with diabetes.
心肌纤维化是糖尿病性心肌病的重要表现。本研究探讨糖尿病心肌纤维化的潜在机制。8周龄雄性C57BL/6J和db/db小鼠随机分为糖尿病(db)组和对照组。20周时,采集小鼠心脏,进行苏木精-伊红染色(HE)和Masson染色,观察纤维化程度。western blotting检测转化生长因子-β1 (TGF-β1)、胶原- iii、b细胞淋巴瘤-2 (Bcl2)、Bcl2相关X蛋白(Bax)、裂解气皮蛋白D (GSDMD)、半胱氨酸天冬氨酸特异性蛋白酶-1 (caspase-1)、凋亡相关含CARD斑点样蛋白(ASC)、核苷酸结合寡聚结构域(NOD)样受体3 (NLRP3)的表达。采用免疫组织化学和tdt介导的dUTP缺口末端标记(TUNEL)染色分析细胞凋亡和焦亡的发生。观察到DB组体重和血糖显著增加。DB组心肌病理损伤、纤维化、凋亡、焦亡更为明显和严重。DB组抗凋亡Bcl2表达显著降低,促凋亡Bax、caspase-3及裂解型GSDMD、caspase-1等凋亡相关蛋白表达水平显著升高。焦亡和细胞凋亡可能是引起糖尿病小鼠心肌纤维化的主要机制。
{"title":"Hyperglycemia-induced myocardial fibrosis may be associated with pyroptosis and apoptosis of cardiomyoctes in diabetic mice","authors":"Yao Lu, Qiuyue Wang, Caihui Zhang","doi":"10.32604/biocell.2023.024944","DOIUrl":"https://doi.org/10.32604/biocell.2023.024944","url":null,"abstract":"Myocardial fibrosis is an important manifestation of diabetic cardiomyopathy. This study investigated the potential mechanism of diabetic myocardial fibrosis. Male C57BL/6J and db/db mice aged 8 weeks were randomly divided into the diabetic (DB) and control groups. At 20 weeks, the mouse heart was harvested and subjected to hematoxylin-eosin staining (HE) and Masson staining to investigate the degree of fibrosis. The expressions of transforming growth factor-beta 1 (TGF-β1), collagen-III, B-cell lymphoma-2 (Bcl2), Bcl2-associated X protein (Bax), cleaved gasdermin D (GSDMD), cysteinyl aspartate specific proteinase-1 (caspase-1), apoptosis-associated speck-like protein containing a CARD (ASC), and nucleotide-binding oligomerization domain (NOD)-like receptor 3 (NLRP3) were measured by western blotting. Immunohistochemistry and TdT-mediated dUTP nick end labeling (TUNEL) staining were performed to analyze the development of apoptosis and pyroptosis. A significant increase in body weight and blood glucose in the DB group was observed. Myocardial pathological injury, fibrosis, apoptosis, and pyroptosis were more obvious and serious in the DB group. The expression of anti-apoptotic Bcl2 significantly decreased, while the expression levels of pro-apoptotic Bax, caspase-3, and pyroptosis-related proteins, such as cleaved GSDMD, and caspase-1 in the DB group were significantly increased. Pyroptosis and apoptosis were probably the main mechanisms that caused myocardial fibrosis in mice with diabetes.","PeriodicalId":55384,"journal":{"name":"Biocell","volume":"1 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90242144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of FZR1 in tumorigenesis: Focus on cell-cycle control FZR1在肿瘤发生中的作用:关注细胞周期控制
4区 生物学 Q4 BIOLOGY Pub Date : 2023-01-01 DOI: 10.32604/biocell.2023.029373
HUI LI, CHENGFANG ZHOU, MEI KUANG, YUN LIU, JIEPING CHEN
Fizzy-related protein homolog 1 (FZR1) mainly functions as a specific activator of the anaphase-promoting complex/cyclosome (APC/C) in the cell cycle and controls the G0 and G1 phases of the cell cycle. We highlight recent work that has studied the role of FZR1 in tumorigenesis, growth, differentiation, and genome stability through cell-cycle control. We summarize the current state of knowledge regarding FZR1 structure, function, and the distinct ways of APC/C dysregulation in solid tumors and hematologic malignancies. We also discuss novel approaches for targeting the FZR1 as a cancer therapy and research area for future work.
fizzy相关蛋白同源物1 (FZR1)在细胞周期中主要作为后期促进复合物/环体(APC/C)的特异性激活因子,控制细胞周期的G0和G1期。我们重点介绍了FZR1通过细胞周期控制在肿瘤发生、生长、分化和基因组稳定性中的作用。我们总结了目前关于FZR1结构、功能以及APC/C失调在实体瘤和血液恶性肿瘤中的不同途径的知识现状。我们还讨论了靶向FZR1作为癌症治疗和未来工作研究领域的新方法。
{"title":"The role of FZR1 in tumorigenesis: Focus on cell-cycle control","authors":"HUI LI, CHENGFANG ZHOU, MEI KUANG, YUN LIU, JIEPING CHEN","doi":"10.32604/biocell.2023.029373","DOIUrl":"https://doi.org/10.32604/biocell.2023.029373","url":null,"abstract":"Fizzy-related protein homolog 1 (FZR1) mainly functions as a specific activator of the anaphase-promoting complex/cyclosome (APC/C) in the cell cycle and controls the G0 and G1 phases of the cell cycle. We highlight recent work that has studied the role of FZR1 in tumorigenesis, growth, differentiation, and genome stability through cell-cycle control. We summarize the current state of knowledge regarding FZR1 structure, function, and the distinct ways of APC/C dysregulation in solid tumors and hematologic malignancies. We also discuss novel approaches for targeting the FZR1 as a cancer therapy and research area for future work.","PeriodicalId":55384,"journal":{"name":"Biocell","volume":"38 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135505236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microfluidic platform for circulating tumor cells isolation and detection 循环肿瘤细胞分离与检测的微流控平台
IF 1.2 4区 生物学 Q4 BIOLOGY Pub Date : 2023-01-01 DOI: 10.32604/biocell.2023.028628
Jiahao Zhang, J. Ren, Zirui Li, Yixing Gou
{"title":"Microfluidic platform for circulating tumor cells isolation and detection","authors":"Jiahao Zhang, J. Ren, Zirui Li, Yixing Gou","doi":"10.32604/biocell.2023.028628","DOIUrl":"https://doi.org/10.32604/biocell.2023.028628","url":null,"abstract":"","PeriodicalId":55384,"journal":{"name":"Biocell","volume":"4 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75587943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Effects of Tsukamurella tyrosinosolvens P9 on growth, physiology and antioxdant enzyme of peanut under drought stress and after re-watering 旱胁迫及复水处理对花生生长、生理及抗氧化酶的影响
IF 1.2 4区 生物学 Q4 BIOLOGY Pub Date : 2023-01-01 DOI: 10.32604/biocell.2023.027485
Changmei Long, Tingting Yang, Yujie Han, Lizhen Han
{"title":"Effects of Tsukamurella tyrosinosolvens P9 on growth, physiology and antioxdant enzyme of peanut under drought stress and after re-watering","authors":"Changmei Long, Tingting Yang, Yujie Han, Lizhen Han","doi":"10.32604/biocell.2023.027485","DOIUrl":"https://doi.org/10.32604/biocell.2023.027485","url":null,"abstract":"","PeriodicalId":55384,"journal":{"name":"Biocell","volume":"17 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88871101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of foliar spray of plant growth regulators in improving photosynthetic pigments and metabolites in Plantago ovata (Psyllium) under salt stress–A field appraisal 盐胁迫下植物生长调节剂叶面喷施对车前草光合色素和代谢产物的影响
IF 1.2 4区 生物学 Q4 BIOLOGY Pub Date : 2023-01-01 DOI: 10.32604/biocell.2023.023704
Abdul Samad, Kanval Shaukat, M. Ansari, Mereen Nizar, N. Zahra, Ambreen Naz, Hafiz MUHAMMAD WALEED IQBAL, A. Raza, Vladan Pesic, Ivica G. Djalović
{"title":"Role of foliar spray of plant growth regulators in improving photosynthetic pigments and metabolites in Plantago ovata (Psyllium) under salt stress–A field appraisal","authors":"Abdul Samad, Kanval Shaukat, M. Ansari, Mereen Nizar, N. Zahra, Ambreen Naz, Hafiz MUHAMMAD WALEED IQBAL, A. Raza, Vladan Pesic, Ivica G. Djalović","doi":"10.32604/biocell.2023.023704","DOIUrl":"https://doi.org/10.32604/biocell.2023.023704","url":null,"abstract":"","PeriodicalId":55384,"journal":{"name":"Biocell","volume":"3 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89460736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
期刊
Biocell
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1