In the intestine, mucins function as a physical barrier separating the gut bacteria and the host. MUC2 mucin is a highly O-glycosylated glycoprotein, and its glycans are an essential post-translational modification for MUC2 function. In recent years, it has been discovered that specific structural units of the complex MUC2 glycans play distinct physiological functions. In particular, the sulfation of GlcNAc and Galactose in MUC2 glycans is essential for intestinal barrier function. Furthermore, gut bacteria utilize mucin sugar chains as a nutrient source by employing specific sulfatase enzymes, allowing them to colonize in the intestine. On the other hand, gut bacteria regulate host glycosylation through the induction of glycosyltransferase expression. In the light of recent studies on the structure and function of MUC2 glycans, mucins are not only functioning as a physical barrier but also as molecules that mediate complex interactions with gut microbiota. In this article, we discuss the function of MUC2 mucin and its glycosylation, with a particular focus on sulfated glycans.
{"title":"Significance of Sulfated Glycans on Mucins in the Gut","authors":"Hirohito Abo, Hiroto Kawashima","doi":"10.4052/tigg.2219.1e","DOIUrl":"https://doi.org/10.4052/tigg.2219.1e","url":null,"abstract":"In the intestine, mucins function as a physical barrier separating the gut bacteria and the host. MUC2 mucin is a highly O-glycosylated glycoprotein, and its glycans are an essential post-translational modification for MUC2 function. In recent years, it has been discovered that specific structural units of the complex MUC2 glycans play distinct physiological functions. In particular, the sulfation of GlcNAc and Galactose in MUC2 glycans is essential for intestinal barrier function. Furthermore, gut bacteria utilize mucin sugar chains as a nutrient source by employing specific sulfatase enzymes, allowing them to colonize in the intestine. On the other hand, gut bacteria regulate host glycosylation through the induction of glycosyltransferase expression. In the light of recent studies on the structure and function of MUC2 glycans, mucins are not only functioning as a physical barrier but also as molecules that mediate complex interactions with gut microbiota. In this article, we discuss the function of MUC2 mucin and its glycosylation, with a particular focus on sulfated glycans.","PeriodicalId":55609,"journal":{"name":"Trends in Glycoscience and Glycotechnology","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135859490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of a glycoRNA Detection Tool and Biological Roles of glycoRNA","authors":"Haruhiko Fujihira","doi":"10.4052/tigg.2326.6j","DOIUrl":"https://doi.org/10.4052/tigg.2326.6j","url":null,"abstract":"","PeriodicalId":55609,"journal":{"name":"Trends in Glycoscience and Glycotechnology","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135859508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Galectins are carbohydrate-binding proteins that do not require metals, and are widely distributed in vertebrates. The basic specificity of galectins for β-galactosides is conserved in their carbohydrate recognition domains (CRDs). Although galectins have been implicated in important biological functions, there is limited evidence that galectin-galactoside binding is directly linked to such functions. Extensive functional analysis of galectins in a large number of species is necessary to understand the broad range of evolutionarily conserved functions. Therefore, we focused on Xenopus galectins and identified and analyzed 12 species of Xenopus laevis galectins. The only non-mammalian vertebrate that has been comprehensively analyzed for galectins is the Xenopus laevis, which we use as a model for galectin research. In this review, we introduce the types of galectins and the functions of Xenopus galectins available to date.
{"title":"<i>Xenopus</i> Galectin: Molecular Function and Evolution","authors":"Takashi Ogawa, Yasuhiro Nonaka, Takanori Nakamura","doi":"10.4052/tigg.2224.1e","DOIUrl":"https://doi.org/10.4052/tigg.2224.1e","url":null,"abstract":"Galectins are carbohydrate-binding proteins that do not require metals, and are widely distributed in vertebrates. The basic specificity of galectins for β-galactosides is conserved in their carbohydrate recognition domains (CRDs). Although galectins have been implicated in important biological functions, there is limited evidence that galectin-galactoside binding is directly linked to such functions. Extensive functional analysis of galectins in a large number of species is necessary to understand the broad range of evolutionarily conserved functions. Therefore, we focused on Xenopus galectins and identified and analyzed 12 species of Xenopus laevis galectins. The only non-mammalian vertebrate that has been comprehensively analyzed for galectins is the Xenopus laevis, which we use as a model for galectin research. In this review, we introduce the types of galectins and the functions of Xenopus galectins available to date.","PeriodicalId":55609,"journal":{"name":"Trends in Glycoscience and Glycotechnology","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135859653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"多能性幹細胞におけるグリコサミノグライカンの機能","authors":"Chika Ogura, Shoko Nishihara","doi":"10.4052/tigg.2206.1j","DOIUrl":"https://doi.org/10.4052/tigg.2206.1j","url":null,"abstract":"細胞表面や細胞外マトリックスに存在するグリコサミノグライカン(GAG)は、特徴的な二糖繰返し構造をもち、硫酸転移酵素により硫酸化修飾を受ける。この二糖繰返し構造と硫酸化パターンの組合せにより、GAGは特定のシグナルリガンドもしくは受容体と結合し、シグナル伝達の調節に寄与する。","PeriodicalId":55609,"journal":{"name":"Trends in Glycoscience and Glycotechnology","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135859797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Glycosaminoglycans (GAGs) on the cell surface and in the extra cellular matrix have multiple biological roles, including cell signaling. They have a characteristic repeating disaccharide structure and are sulfated by sulfotransferases, the resulting combination of which governs which signal ligands bind to them.
{"title":"The Functions of Glycosaminoglycan in Pluripotent Stem Cells","authors":"Chika Ogura, Shoko Nishihara","doi":"10.4052/tigg.2206.1e","DOIUrl":"https://doi.org/10.4052/tigg.2206.1e","url":null,"abstract":"Glycosaminoglycans (GAGs) on the cell surface and in the extra cellular matrix have multiple biological roles, including cell signaling. They have a characteristic repeating disaccharide structure and are sulfated by sulfotransferases, the resulting combination of which governs which signal ligands bind to them.","PeriodicalId":55609,"journal":{"name":"Trends in Glycoscience and Glycotechnology","volume":"43 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135859804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
グリコシルホスファチジルイノシトール(g l y c osylphosphatidylinositol,GPI锚定蛋白(GPI- aps)是由细胞膜上的糖脂质(GPI)锚定的一组蛋白质,广泛存在于真核生物中。GPI部分以磷脂酰肌醇、葡萄糖胺、3个甘露糖和乙醇胺磷酸为基本结构,该基本结构和通过该基本结构锚定在蛋白质膜上的机制在生物间保存良好被做了。以发作性夜间血红蛋白尿症为首,GPI锚缺陷症陆续被发现。为了理解这些疾病,了解GPI锚的生物合成,即糖链和脂质的改造过程是非常重要的。为了观察改造过程,本文使用出芽酵母变异株,其中编码催化改造酶的基因被敲除,并使用GPI- aps模型分子,对GPI锚中的糖链结构进行液体黑本文介绍了利用总结-电子离子质谱(LC-ESI MS)进行分析和分析的方法。
{"title":"Structural Analysis of GPI-glycans from GPI-anchored Proteins by Mass Spectrometry","authors":"Miyako Nakano","doi":"10.4052/tigg.2209.1j","DOIUrl":"https://doi.org/10.4052/tigg.2209.1j","url":null,"abstract":"グリコシルホスファチジルイノシトール(Glycosylphosphatidylinositol, GPI)アンカー型タンパク質(GPI-APs)とは、細胞膜上の糖脂質(GPI)によりアンカーされている一群のタンパク質であり、真核生物において広く存在している。GPI部分は、ホスファチジルイノシトール、グルコサミン、3つのマンノース、そしてエタノールアミンリン酸を基本構造とし、この基本構造と、それを介したタンパク質の膜へのアンカーの仕組みは、生物間でよく保存されている。発作性夜間ヘモグロビン尿症を初め、GPIアンカー欠損症が次々と見いだされている。これらの疾患を理解するためにも、GPIアンカーの生合成、つまり、糖鎖と脂質のリモデリング過程を知ることは大変重要である。本稿では、リモデリング過程を観察するために、リモデリングを触媒する酵素をコードする遺伝子をノックアウトした出芽酵母の変異株と、GPI-APsのモデル分子を用いて、GPIアンカー中の糖鎖の構造を液体クロマトグラフィー-エレクトロスプレーイオン化質量分析(LC-ESI MS)により分析・解析する方法を紹介する。","PeriodicalId":55609,"journal":{"name":"Trends in Glycoscience and Glycotechnology","volume":"175 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135859813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"LYSET is a New Factor Critical for Lysosomal Enzyme Transport and Viral Infection","authors":"Yuko Tashima","doi":"10.4052/tigg.2317.6j","DOIUrl":"https://doi.org/10.4052/tigg.2317.6j","url":null,"abstract":"","PeriodicalId":55609,"journal":{"name":"Trends in Glycoscience and Glycotechnology","volume":"76 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135859660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"LYSET is a New Factor Critical for Lysosomal Enzyme Transport and Viral Infection","authors":"Yuko Tashima","doi":"10.4052/tigg.2317.6e","DOIUrl":"https://doi.org/10.4052/tigg.2317.6e","url":null,"abstract":"","PeriodicalId":55609,"journal":{"name":"Trends in Glycoscience and Glycotechnology","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135859504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Significance of Sulfated Glycans on Mucins in the Gut","authors":"Hirohito Abo, Hiroto Kawashima","doi":"10.4052/tigg.2219.1j","DOIUrl":"https://doi.org/10.4052/tigg.2219.1j","url":null,"abstract":"腸管において、ムチンは腸内細菌と宿主を隔てる物理的バリアとして機能する。MUC2ムチンは、高度にO結合型糖鎖修飾を受けた糖タンパク質で、付加する糖鎖はムチンの機能発現に必須の翻訳後修飾である。近年、複雑な構造をもつMUC2糖鎖の特定の構造単位が特有の生理機能を果たすことが見出されつつある。特に、ムチン糖鎖におけるN-アセチルガラクトサミンとガラクトースの硫酸化は、腸管バリア機能に必須の糖鎖構造であることが示された。また、腸内細菌は特定の硫酸基分解酵素を用いることで、ムチン糖鎖を栄養源として利用し、腸へと生着する。一方、腸内細菌は糖転移酵素の発現誘導を介して、宿主の糖鎖修飾を制御する。このように、昨今のムチン糖鎖の構造と機能に関する研究から、ムチンは単に物理的バリアとして機能するのではなく、腸内細菌との複雑な相互作用を制御する分子であることが明らかにされつつある。本稿では、 MUC2ムチンおよびその糖鎖修飾の機能に触れながら、特にムチン糖鎖の硫酸化修飾について解説したい。","PeriodicalId":55609,"journal":{"name":"Trends in Glycoscience and Glycotechnology","volume":"46 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135770967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}