首页 > 最新文献

Fibers and Polymers最新文献

英文 中文
Effect of Multiple Sheath Rovings on Cotton Core-Spun Yarn Structure: a Comparative Analysis of Roving Distances
IF 2.2 4区 工程技术 Q1 MATERIALS SCIENCE, TEXTILES Pub Date : 2025-03-11 DOI: 10.1007/s12221-025-00904-5
Murat Demir

This study investigates the impact of varying roving distances in multi-sheath core-spun yarn production by feeding three individual staple rovings into the drafting zone. Specifically, the distance between the sheath rovings was kept constant for the symmetric core-spun yarn (SYCS) and varied for the asymmetric core-spun yarns (ASYCS). Filaments were fed along with the staple in the middle. In addition, siro core-spun yarns were produced (SCS). A comprehensive analysis of the physical, structural, and mechanical properties of the yarns was conducted, including measurements of yarn packing density and the core/sheath ratio. The experimental results revealed that roving distances influence the positioning of fibers within the yarn structure, with SYCS yarns exhibiting a higher packing density than ASYCS yarns. Furthermore, increasing roving space for ASYCS yarns reduced hairiness by 23.1% (for S3) and decreased yarn strength by 5%. No statistically significant differences were observed for the unevenness values. These findings highlight the effect of roving positioning on yarn properties for multi-sheath yarn production, offering valuable insights for optimizing composite yarn properties in technical and high-performance textile applications, such as those used in automotive, aerospace, and lightweight composites.

{"title":"Effect of Multiple Sheath Rovings on Cotton Core-Spun Yarn Structure: a Comparative Analysis of Roving Distances","authors":"Murat Demir","doi":"10.1007/s12221-025-00904-5","DOIUrl":"10.1007/s12221-025-00904-5","url":null,"abstract":"<div><p>This study investigates the impact of varying roving distances in multi-sheath core-spun yarn production by feeding three individual staple rovings into the drafting zone. Specifically, the distance between the sheath rovings was kept constant for the symmetric core-spun yarn (SYCS) and varied for the asymmetric core-spun yarns (ASYCS). Filaments were fed along with the staple in the middle. In addition, siro core-spun yarns were produced (SCS). A comprehensive analysis of the physical, structural, and mechanical properties of the yarns was conducted, including measurements of yarn packing density and the core/sheath ratio. The experimental results revealed that roving distances influence the positioning of fibers within the yarn structure, with SYCS yarns exhibiting a higher packing density than ASYCS yarns. Furthermore, increasing roving space for ASYCS yarns reduced hairiness by 23.1% (for S3) and decreased yarn strength by 5%. No statistically significant differences were observed for the unevenness values. These findings highlight the effect of roving positioning on yarn properties for multi-sheath yarn production, offering valuable insights for optimizing composite yarn properties in technical and high-performance textile applications, such as those used in automotive, aerospace, and lightweight composites.</p></div>","PeriodicalId":557,"journal":{"name":"Fibers and Polymers","volume":"26 4","pages":"1783 - 1792"},"PeriodicalIF":2.2,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12221-025-00904-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143786527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comprehensive Characterization of Novel Jute Fabrics with Musa Paradisiaca Leaf Agro-Waste Based Micro Cellulosic Fillers Reinforced Epoxy Composites For Lightweight Applications
IF 2.2 4区 工程技术 Q1 MATERIALS SCIENCE, TEXTILES Pub Date : 2025-03-07 DOI: 10.1007/s12221-025-00886-4
M. Indra Reddy, Prabhu Sethuramalingam, Ranjeet Kumar Sahu

For lightweight, sustainable, high-strength products, hybrid bio-epoxy composites materials were the most excellent choice for the production industry. The investigation proceeds in developing a four-stacked sequence jute-woven mats reinforced with epoxy composite and added with micro-cellulose fillers. The extraction of micro cellulose from Musa paradisiaca plant leaf (MPPL) was carried out through a series of processes, including alkali treatment, acid hydrolysis, bleaching, and slow pyrolysis. The composite was fabricated using the conventional hand lay-up method and compression molding. The microcellulose was added to the stacked composite at varying weight percentages (0, 2.5, 5, 7.5, and 10%). Thermo-mechanical and water intake characterization were investigated using ASTM. The findings revealed that incorporating 5% MPPL cellulose into the jute-stacked layer sequence resulted in improved hardness (95 HRRW), tensile modulus (3407.69 MPa), tensile strength (79.74 MPa), flexural modulus (2195.752 MPa), flexural strength (56.87 MPa), and crystallinity index (72.7%). However, a reduction in impact strength (23.27 kJ/m2) was noted compared to the unfilled composite. The higher thermal degradation (480 °C) behavior of the filler-reinforced composite makes them a suitable material for applications in high-temperature environments. Fractographical morphology was also investigated to reveal the bonding behavior, voids formations, agglomeration of fillers, and fracture behavior. Thus, this distinguishable composite characterization will aid the manufacturing industries in producing high-strength biodegradable materials.

{"title":"Comprehensive Characterization of Novel Jute Fabrics with Musa Paradisiaca Leaf Agro-Waste Based Micro Cellulosic Fillers Reinforced Epoxy Composites For Lightweight Applications","authors":"M. Indra Reddy,&nbsp;Prabhu Sethuramalingam,&nbsp;Ranjeet Kumar Sahu","doi":"10.1007/s12221-025-00886-4","DOIUrl":"10.1007/s12221-025-00886-4","url":null,"abstract":"<div><p>For lightweight, sustainable, high-strength products, hybrid bio-epoxy composites materials were the most excellent choice for the production industry. The investigation proceeds in developing a four-stacked sequence jute-woven mats reinforced with epoxy composite and added with micro-cellulose fillers. The extraction of micro cellulose from Musa paradisiaca plant leaf (MPPL) was carried out through a series of processes, including alkali treatment, acid hydrolysis, bleaching, and slow pyrolysis. The composite was fabricated using the conventional hand lay-up method and compression molding. The microcellulose was added to the stacked composite at varying weight percentages (0, 2.5, 5, 7.5, and 10%). Thermo-mechanical and water intake characterization were investigated using ASTM. The findings revealed that incorporating 5% MPPL cellulose into the jute-stacked layer sequence resulted in improved hardness (95 HRRW), tensile modulus (3407.69 MPa), tensile strength (79.74 MPa), flexural modulus (2195.752 MPa), flexural strength (56.87 MPa), and crystallinity index (72.7%). However, a reduction in impact strength (23.27 kJ/m<sup>2</sup>) was noted compared to the unfilled composite. The higher thermal degradation (480 °C) behavior of the filler-reinforced composite makes them a suitable material for applications in high-temperature environments. Fractographical morphology was also investigated to reveal the bonding behavior, voids formations, agglomeration of fillers, and fracture behavior. Thus, this distinguishable composite characterization will aid the manufacturing industries in producing high-strength biodegradable materials.</p></div>","PeriodicalId":557,"journal":{"name":"Fibers and Polymers","volume":"26 4","pages":"1691 - 1703"},"PeriodicalIF":2.2,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143786480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diatomaceous Earth/Polyvinylidene Fluoride Piezoelectric Composite Foam for Enhancing Sound Absorption Performance
IF 2.2 4区 工程技术 Q1 MATERIALS SCIENCE, TEXTILES Pub Date : 2025-03-06 DOI: 10.1007/s12221-025-00894-4
Shanshan Jiang, Zhijun Yu, Haixin Zhu, Yuewen Huang, Bin Wang

Noise has become a major potential problem in modern society, with a profound impact on human health. There is an urgent need to develop more effective sound-absorbing materials to control noise. In this study, composite foams were prepared by the sacrificial template method combined with non-solvent-induced phase separation using polyvinylidene fluoride (PVDF) as matrix and diatomaceous earth (DE) as filler. The result shows the addition of DE can act as a crystallization site to induce the formation of β phase in the PVDF matrix, thus enhancing the piezoelectricity of the foam. Due to the local piezoelectric effect of PVDF promoted by DE and the high porosity of DE itself, the sound absorption performance of DE/PVDF composite foam was better than that of pure PVDF foam. When the DE was 5 wt%, the noise reduction coefficient of DE/PVDF-2 composite foam was 50% higher than that of pure PVDF foam, and the average sound absorption coefficient (500–6400 Hz) was 38.5% higher. This work successfully prepared a moistureproof, flame-retardant, compression-resistant, and lightweight PVDF composite sound-absorbing foam, which is expected to be a commercial sound-absorbing material.

Graphical abstract

{"title":"Diatomaceous Earth/Polyvinylidene Fluoride Piezoelectric Composite Foam for Enhancing Sound Absorption Performance","authors":"Shanshan Jiang,&nbsp;Zhijun Yu,&nbsp;Haixin Zhu,&nbsp;Yuewen Huang,&nbsp;Bin Wang","doi":"10.1007/s12221-025-00894-4","DOIUrl":"10.1007/s12221-025-00894-4","url":null,"abstract":"<div><p>Noise has become a major potential problem in modern society, with a profound impact on human health. There is an urgent need to develop more effective sound-absorbing materials to control noise. In this study, composite foams were prepared by the sacrificial template method combined with non-solvent-induced phase separation using polyvinylidene fluoride (PVDF) as matrix and diatomaceous earth (DE) as filler. The result shows the addition of DE can act as a crystallization site to induce the formation of β phase in the PVDF matrix, thus enhancing the piezoelectricity of the foam. Due to the local piezoelectric effect of PVDF promoted by DE and the high porosity of DE itself, the sound absorption performance of DE/PVDF composite foam was better than that of pure PVDF foam. When the DE was 5 wt%, the noise reduction coefficient of DE/PVDF-2 composite foam was 50% higher than that of pure PVDF foam, and the average sound absorption coefficient (500–6400 Hz) was 38.5% higher. This work successfully prepared a moistureproof, flame-retardant, compression-resistant, and lightweight PVDF composite sound-absorbing foam, which is expected to be a commercial sound-absorbing material.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":557,"journal":{"name":"Fibers and Polymers","volume":"26 4","pages":"1677 - 1690"},"PeriodicalIF":2.2,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143786476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comprehensive Review of Textile Waste Recycling: From Origins to Innovations
IF 2.2 4区 工程技术 Q1 MATERIALS SCIENCE, TEXTILES Pub Date : 2025-03-05 DOI: 10.1007/s12221-025-00892-6
Eun Hyup Kim, Hoik Lee

The global textile market has been rapidly growing, leading to a significant increase in textile waste generation. Over 80% of textile waste is managed through unsustainable methods such as landfilling and incineration, with only about 10% being recycled. This review explores various recycling methods—mechanical, chemical, biological, and thermal—and addresses the challenges posed by mixed fiber compositions, quality degradation, limited policy support, and lack of consumer awareness. It also emphasizes the integration of advanced recycling technologies into a sustainability framework and highlights practical barriers to scalability, such as the economic feasibility of recycling processes and the limited market demand for recycled fibers. Furthermore, the review emphasizes the importance of systemic changes, including collaboration among industries, policymakers, and consumers, to establish a circular economy. By combining technological innovation with strategic systemic approaches, this review provides actionable insights for reducing environmental impacts and promoting sustainability across the textile life cycle.

{"title":"Comprehensive Review of Textile Waste Recycling: From Origins to Innovations","authors":"Eun Hyup Kim,&nbsp;Hoik Lee","doi":"10.1007/s12221-025-00892-6","DOIUrl":"10.1007/s12221-025-00892-6","url":null,"abstract":"<div><p>The global textile market has been rapidly growing, leading to a significant increase in textile waste generation. Over 80% of textile waste is managed through unsustainable methods such as landfilling and incineration, with only about 10% being recycled. This review explores various recycling methods—mechanical, chemical, biological, and thermal—and addresses the challenges posed by mixed fiber compositions, quality degradation, limited policy support, and lack of consumer awareness. It also emphasizes the integration of advanced recycling technologies into a sustainability framework and highlights practical barriers to scalability, such as the economic feasibility of recycling processes and the limited market demand for recycled fibers. Furthermore, the review emphasizes the importance of systemic changes, including collaboration among industries, policymakers, and consumers, to establish a circular economy. By combining technological innovation with strategic systemic approaches, this review provides actionable insights for reducing environmental impacts and promoting sustainability across the textile life cycle.</p></div>","PeriodicalId":557,"journal":{"name":"Fibers and Polymers","volume":"26 4","pages":"1449 - 1464"},"PeriodicalIF":2.2,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143786514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development and Characterization of Silica and PVA–TiO2-Coated Cotton Fabrics for Enhanced Hydrophobicity, Antibacterial Activity, and UV-Protective Properties
IF 2.2 4区 工程技术 Q1 MATERIALS SCIENCE, TEXTILES Pub Date : 2025-03-04 DOI: 10.1007/s12221-025-00893-5
M. Masae, P. Worachetwarawat, P. Pitsuwan, P. Kongsong, W. Sangchay, Hany M. Abd El-Lateef, Ibrahim M. A. Mohamed

This study focuses on developing multifunctional cotton fabrics coated with TiO2, silica, and polyvinyl alcohol (PVA) to deliver combined hydrophobicity, antibacterial activity, and UV protection. A comprehensive evaluation of the coated fabrics included water contact angle measurements, energy-dispersive spectroscopy (EDS) for elemental analysis, UV protection assessment, and antibacterial tests against Escherichia coli and Staphylococcus aureus. The fabrics exhibited self-cleaning properties due to high water contact angles ranging from 102.72° to 103.80°, allowing water droplets to roll off and removing contaminants effectively. EDS analysis confirmed the successful incorporation of SiO2–TiO2 into the cotton fibers, validating the coating's chemical integration. UV protection tests revealed significant shielding capability with ratings between 27 and 32, making the fabrics suitable for outdoor use. Antibacterial assessments demonstrated complete inhibition (100%) of E. coli and S. aureus after 24 h of exposure, indicating robust antimicrobial performance. These findings underscore the potential of this coating technology in producing self-cleaning, UV-protective, and antibacterial textiles, paving the way for advancements in high-performance fabric innovation for healthcare, protective wear, and outdoor applications.

{"title":"Development and Characterization of Silica and PVA–TiO2-Coated Cotton Fabrics for Enhanced Hydrophobicity, Antibacterial Activity, and UV-Protective Properties","authors":"M. Masae,&nbsp;P. Worachetwarawat,&nbsp;P. Pitsuwan,&nbsp;P. Kongsong,&nbsp;W. Sangchay,&nbsp;Hany M. Abd El-Lateef,&nbsp;Ibrahim M. A. Mohamed","doi":"10.1007/s12221-025-00893-5","DOIUrl":"10.1007/s12221-025-00893-5","url":null,"abstract":"<div><p>This study focuses on developing multifunctional cotton fabrics coated with TiO<sub>2</sub>, silica, and polyvinyl alcohol (PVA) to deliver combined hydrophobicity, antibacterial activity, and UV protection. A comprehensive evaluation of the coated fabrics included water contact angle measurements, energy-dispersive spectroscopy (EDS) for elemental analysis, UV protection assessment, and antibacterial tests against <i>Escherichia coli</i> and <i>Staphylococcus aureus</i>. The fabrics exhibited self-cleaning properties due to high water contact angles ranging from 102.72° to 103.80°, allowing water droplets to roll off and removing contaminants effectively. EDS analysis confirmed the successful incorporation of SiO<sub>2</sub>–TiO<sub>2</sub> into the cotton fibers, validating the coating's chemical integration. UV protection tests revealed significant shielding capability with ratings between 27 and 32, making the fabrics suitable for outdoor use. Antibacterial assessments demonstrated complete inhibition (100%) of <i>E. coli</i> and <i>S. aureus</i> after 24 h of exposure, indicating robust antimicrobial performance. These findings underscore the potential of this coating technology in producing self-cleaning, UV-protective, and antibacterial textiles, paving the way for advancements in high-performance fabric innovation for healthcare, protective wear, and outdoor applications.</p></div>","PeriodicalId":557,"journal":{"name":"Fibers and Polymers","volume":"26 4","pages":"1631 - 1642"},"PeriodicalIF":2.2,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143786455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrospun Composites of Bioactive Glass/Pomegranate Seed Oil/Poly(ε-caprolactone) for Bone Tissue Engineering
IF 2.2 4区 工程技术 Q1 MATERIALS SCIENCE, TEXTILES Pub Date : 2025-03-04 DOI: 10.1007/s12221-025-00895-3
Aysen Akturk

The increasing demand for bone tissue implants due to population growth and the need to replace damaged bone has led to the development of novel scaffold systems in bone tissue applications. In this study, poly(ε-caprolactone) (PCL) electrospun nanofiber scaffolds were fabricated using the electrospinning method, incorporating 45S5 bioactive glass (BG) particles—synthesized by the melt quenching method—and pomegranate seed oil (PSO), a natural component known to enhance bone regeneration. For this purpose, the effect of different concentrations of PSO (5, 10, and 15% w/w relative to PCL) was investigated, while the BG content was kept constant at 15% w/w. The scaffolds were further analyzed by scanning electron microscopy (SEM) with energy- dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) analysis, thermogravimetric analysis (TGA), and water contact angle tests, which showed that nanofibers were formed and that PSO was successfully incorporated into the nanofibers. Bioactivity assays were carried out in simulated body fluid for 28 days, and the nanofiber structures were examined using SEM, EDS, and XRD. The nanofiber loaded with BG and PSO at the concentration of 15% w/w showed a higher formation of the hydroxyapatite-like layer compared to the scaffolds containing PSO at concentrations of 5 and 10% w/w. Furthermore, the MTT assay using L929 fibroblast cells demonstrated the cytocompatibility of the developed membranes. These results suggest that the combination of BG and PSO in PCL nanofibers may be useful for improving bone tissue regeneration strategies.

{"title":"Electrospun Composites of Bioactive Glass/Pomegranate Seed Oil/Poly(ε-caprolactone) for Bone Tissue Engineering","authors":"Aysen Akturk","doi":"10.1007/s12221-025-00895-3","DOIUrl":"10.1007/s12221-025-00895-3","url":null,"abstract":"<div><p>The increasing demand for bone tissue implants due to population growth and the need to replace damaged bone has led to the development of novel scaffold systems in bone tissue applications. In this study, poly(ε-caprolactone) (PCL) electrospun nanofiber scaffolds were fabricated using the electrospinning method, incorporating 45S5 bioactive glass (BG) particles—synthesized by the melt quenching method—and pomegranate seed oil (PSO), a natural component known to enhance bone regeneration. For this purpose, the effect of different concentrations of PSO (5, 10, and 15% w/w relative to PCL) was investigated, while the BG content was kept constant at 15% w/w. The scaffolds were further analyzed by scanning electron microscopy (SEM) with energy- dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) analysis, thermogravimetric analysis (TGA), and water contact angle tests, which showed that nanofibers were formed and that PSO was successfully incorporated into the nanofibers. Bioactivity assays were carried out in simulated body fluid for 28 days, and the nanofiber structures were examined using SEM, EDS, and XRD. The nanofiber loaded with BG and PSO at the concentration of 15% w/w showed a higher formation of the hydroxyapatite-like layer compared to the scaffolds containing PSO at concentrations of 5 and 10% w/w. Furthermore, the MTT assay using L929 fibroblast cells demonstrated the cytocompatibility of the developed membranes. These results suggest that the combination of BG and PSO in PCL nanofibers may be useful for improving bone tissue regeneration strategies.</p></div>","PeriodicalId":557,"journal":{"name":"Fibers and Polymers","volume":"26 4","pages":"1507 - 1517"},"PeriodicalIF":2.2,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12221-025-00895-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143786506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on the Melt Electrospinning Method with Internal Electrode and Fiber Refinement
IF 2.2 4区 工程技术 Q1 MATERIALS SCIENCE, TEXTILES Pub Date : 2025-03-04 DOI: 10.1007/s12221-025-00897-1
Qi Xia, Chunming Wang, Bowen Yang, Minghang Li, Wenwen Han, Hongbo Chen

Melt electrospinning technology, as a green and efficient fiber manufacturing method, has shown great potential in various fields. However, the viscosity characteristics of the melt make fiber refinement challenging, which has become a major bottleneck for melt electrospinning technology. To further reduce fiber diameter and improve fiber efficiency, this study thoroughly analyzes the effects of melt temperature, auxiliary airflow, and nozzle structure on fiber properties. Additionally, a new melt differential electrospinning technology with an internal electrode structure is proposed. By introducing point electrodes, the electric field strength is enhanced, thus achieving both efficiency improvement and fiber refinement. Experimental results show that appropriately increasing the melt temperature can enhance both efficiency and fiber refinement. The fiber diameter significantly decreases with the increase of auxiliary airflow, although this method does not improve fiber efficiency. The internal electrode structure can increase the amount of fiber while refining the fiber diameter. The internal/external conical nozzle structures are suitable for efficiency improvement and fiber refinement, respectively.

{"title":"Study on the Melt Electrospinning Method with Internal Electrode and Fiber Refinement","authors":"Qi Xia,&nbsp;Chunming Wang,&nbsp;Bowen Yang,&nbsp;Minghang Li,&nbsp;Wenwen Han,&nbsp;Hongbo Chen","doi":"10.1007/s12221-025-00897-1","DOIUrl":"10.1007/s12221-025-00897-1","url":null,"abstract":"<div><p>Melt electrospinning technology, as a green and efficient fiber manufacturing method, has shown great potential in various fields. However, the viscosity characteristics of the melt make fiber refinement challenging, which has become a major bottleneck for melt electrospinning technology. To further reduce fiber diameter and improve fiber efficiency, this study thoroughly analyzes the effects of melt temperature, auxiliary airflow, and nozzle structure on fiber properties. Additionally, a new melt differential electrospinning technology with an internal electrode structure is proposed. By introducing point electrodes, the electric field strength is enhanced, thus achieving both efficiency improvement and fiber refinement. Experimental results show that appropriately increasing the melt temperature can enhance both efficiency and fiber refinement. The fiber diameter significantly decreases with the increase of auxiliary airflow, although this method does not improve fiber efficiency. The internal electrode structure can increase the amount of fiber while refining the fiber diameter. The internal/external conical nozzle structures are suitable for efficiency improvement and fiber refinement, respectively.</p></div>","PeriodicalId":557,"journal":{"name":"Fibers and Polymers","volume":"26 4","pages":"1519 - 1528"},"PeriodicalIF":2.2,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143786505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of the Addition of Hydroxypropyl Methylcellulose and Hydroxyethyl Cellulose on the Rheological Properties and Thermogravimetric Kinetics of Dried and Redispersed Microfibrillated Cellulose
IF 2.2 4区 工程技术 Q1 MATERIALS SCIENCE, TEXTILES Pub Date : 2025-03-04 DOI: 10.1007/s12221-025-00890-8
Egon Petersohn Junior, Cassiano Pires, Rilton Alves de Freitas, Washington Luiz Esteves Magalhaes

Hydroxypropyl Methylcellulose (HPMC) and Hydroxyethyl Cellulose (HEC) were added in variable amounts (5–30% w/w) to microfibrillated cellulose (MFC) and after homogenization the blends were dried by spray drying and redispersed by sonication. The dispersions were characterized through oscillatory rheometric measurements, where amplitude, frequency and viscosity sweeps were performed. For redispersed blend samples, when compared to redispersed MFC and never-dried blends, the addition of HPMC and HEC resulted in an increase in storage and loss moduli, an increase in apparent viscosity and thixotropy, as well as greater stability. The use of sonication also showed significant effects for never-dried MFC suspensions and their blends, with increased moduli and viscosity. Furthermore, the dry blends in a ratio of 70:30 were studied for thermal stability and thermogravimetric kinetics, where interactions between the polymers were confirmed. The results showed a decrease in thermal stability and activation energy of the blends, which is probably a result of the decrease in cellulose intrachain and interchain hydrogen bonds.

{"title":"Effect of the Addition of Hydroxypropyl Methylcellulose and Hydroxyethyl Cellulose on the Rheological Properties and Thermogravimetric Kinetics of Dried and Redispersed Microfibrillated Cellulose","authors":"Egon Petersohn Junior,&nbsp;Cassiano Pires,&nbsp;Rilton Alves de Freitas,&nbsp;Washington Luiz Esteves Magalhaes","doi":"10.1007/s12221-025-00890-8","DOIUrl":"10.1007/s12221-025-00890-8","url":null,"abstract":"<div><p>Hydroxypropyl Methylcellulose (HPMC) and Hydroxyethyl Cellulose (HEC) were added in variable amounts (5–30% w/w) to microfibrillated cellulose (MFC) and after homogenization the blends were dried by spray drying and redispersed by sonication. The dispersions were characterized through oscillatory rheometric measurements, where amplitude, frequency and viscosity sweeps were performed. For redispersed blend samples, when compared to redispersed MFC and never-dried blends, the addition of HPMC and HEC resulted in an increase in storage and loss moduli, an increase in apparent viscosity and thixotropy, as well as greater stability. The use of sonication also showed significant effects for never-dried MFC suspensions and their blends, with increased moduli and viscosity. Furthermore, the dry blends in a ratio of 70:30 were studied for thermal stability and thermogravimetric kinetics, where interactions between the polymers were confirmed. The results showed a decrease in thermal stability and activation energy of the blends, which is probably a result of the decrease in cellulose intrachain and interchain hydrogen bonds.</p></div>","PeriodicalId":557,"journal":{"name":"Fibers and Polymers","volume":"26 4","pages":"1465 - 1478"},"PeriodicalIF":2.2,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143786507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative Performance of Flax Fibers and Ramie Fibers Reinforced Functionalized Polypropylene Composites
IF 2.2 4区 工程技术 Q1 MATERIALS SCIENCE, TEXTILES Pub Date : 2025-03-03 DOI: 10.1007/s12221-025-00891-7
Mridul Pant, Sanjay Palsule

Flax fiber (FLX) and ramie fiber (RMI) reinforced chemically functionalized polypropylene (CF-PP) composites (FLX/CF-PP and RMI/CF-PP) have been developed by extrusion followed by injection molding. Composites with 10, 20, and 30 wt.% fiber content were fabricated and characterized for both composite systems. FE-SEM and FTIR analysis confirmed good reinforcement-matrix adhesion in both systems, attributed to the formation of ester bonds and hydrogen bonds, formed between the reinforcements and the matrix by the Palsule process. The 30/70 FLX/CF-PP composition showed the best overall performance with approximately 49% higher tensile strength, 71% higher tensile modulus, 42% higher flexural strength, and 118% higher flexural modulus compared to the pristine CF-PP matrix. The same composition also demonstrated 57% higher impact strength than the matrix. All FLX/CF-PP composite compositions show higher mechanical properties compared to respective RMI/CF-PP composite compositions; despite, both, FLX and RMI having similar holo-cellulose contents. This superior performance is attributed to the higher aspect ratio of flax fibers. Water absorption increased with fiber content for both composites, with the 30/70 compositions of FLX/CF-PP and RMI/CF-PP showing maximum absorption of approx. 0.79% and 0.76% respectively after one week. Thermo-gravimetric analysis showed both composites exhibit thermal stability between the CF-PP (380 °C) matrix and reinforcing FLX or RMI (281–290 °C). 30/70 FLX/CF-PP offers the most promising performance and sustainability, amongst all the compositions.

{"title":"Comparative Performance of Flax Fibers and Ramie Fibers Reinforced Functionalized Polypropylene Composites","authors":"Mridul Pant,&nbsp;Sanjay Palsule","doi":"10.1007/s12221-025-00891-7","DOIUrl":"10.1007/s12221-025-00891-7","url":null,"abstract":"<div><p>Flax fiber (FLX) and ramie fiber (RMI) reinforced chemically functionalized polypropylene (CF-PP) composites (FLX/CF-PP and RMI/CF-PP) have been developed by extrusion followed by injection molding. Composites with 10, 20, and 30 wt.% fiber content were fabricated and characterized for both composite systems. FE-SEM and FTIR analysis confirmed good reinforcement-matrix adhesion in both systems, attributed to the formation of ester bonds and hydrogen bonds, formed between the reinforcements and the matrix by the Palsule process. The 30/70 FLX/CF-PP composition showed the best overall performance with approximately 49% higher tensile strength, 71% higher tensile modulus, 42% higher flexural strength, and 118% higher flexural modulus compared to the pristine CF-PP matrix. The same composition also demonstrated 57% higher impact strength than the matrix<i>.</i> All FLX/CF-PP composite compositions show higher mechanical properties compared to respective RMI/CF-PP composite compositions; despite, both, FLX and RMI having similar holo-cellulose contents. This superior performance is attributed to the higher aspect ratio of flax fibers. Water absorption increased with fiber content for both composites, with the 30/70 compositions of FLX/CF-PP and RMI/CF-PP showing maximum absorption of approx. 0.79% and 0.76% respectively after one week<i>.</i> Thermo-gravimetric analysis showed both composites exhibit thermal stability between the CF-PP (380 °C) matrix and reinforcing FLX or RMI (281–290 °C). 30/70 FLX/CF-PP offers the most promising performance and sustainability, amongst all the compositions.</p></div>","PeriodicalId":557,"journal":{"name":"Fibers and Polymers","volume":"26 4","pages":"1745 - 1763"},"PeriodicalIF":2.2,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143786450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel Sandwich-Structured Flexible ANF/PMIA/ANF Composite Paper with Enhanced Breakdown Strength
IF 2.2 4区 工程技术 Q1 MATERIALS SCIENCE, TEXTILES Pub Date : 2025-02-27 DOI: 10.1007/s12221-025-00889-1
Guangyu Duan, Fengying Hu, Yinghao Liang, Duo Lu, Wenxuan Shao, Ruopu Xu, Yabing Wang, Zuming Hu

With the rapid development of cutting-edge electrical equipment and electrical systems, it is of great significance to develop advanced polymeric insulating paper with high breakdown strength under a high-temperature environment. In this paper, aramid nanofibers (ANF) and original poly(m-phenylene isophthalamide) (PMIA) paper were utilized to construct ANF/PMIA/ANF composite papers with sandwich structure. On account of the reduced surface roughness of the original PMIA paper, the high breakdown strength of ANF layers and formed high-density electron traps, the breakdown strength of ANF/PMIA/ANF composite paper is significantly enhanced. The Weibull breakdown strength ANF/PMIA/ANF composite paper with 4 mg/mL of ANF are 82.7 MV/m at 25 °C and 61.7 MV/m at 100 °C, which are 165.1 and 137.4% of the A-P-A-0 at 25 and 100 °C, respectively. Additionally, the flame-retardant property of ANF/PMIA/ANF composite paper is also obviously improved with increasing concentration of ANF. Consequently, this work offers an opportunity for the development of novel polymeric insulating paper with enhanced breakdown strength in a wide temperature range.

{"title":"Novel Sandwich-Structured Flexible ANF/PMIA/ANF Composite Paper with Enhanced Breakdown Strength","authors":"Guangyu Duan,&nbsp;Fengying Hu,&nbsp;Yinghao Liang,&nbsp;Duo Lu,&nbsp;Wenxuan Shao,&nbsp;Ruopu Xu,&nbsp;Yabing Wang,&nbsp;Zuming Hu","doi":"10.1007/s12221-025-00889-1","DOIUrl":"10.1007/s12221-025-00889-1","url":null,"abstract":"<div><p>With the rapid development of cutting-edge electrical equipment and electrical systems, it is of great significance to develop advanced polymeric insulating paper with high breakdown strength under a high-temperature environment. In this paper, aramid nanofibers (ANF) and original poly(m-phenylene isophthalamide) (PMIA) paper were utilized to construct ANF/PMIA/ANF composite papers with sandwich structure. On account of the reduced surface roughness of the original PMIA paper, the high breakdown strength of ANF layers and formed high-density electron traps, the breakdown strength of ANF/PMIA/ANF composite paper is significantly enhanced. The Weibull breakdown strength ANF/PMIA/ANF composite paper with 4 mg/mL of ANF are 82.7 MV/m at 25 °C and 61.7 MV/m at 100 °C, which are 165.1 and 137.4% of the A-P-A-0 at 25 and 100 °C, respectively. Additionally, the flame-retardant property of ANF/PMIA/ANF composite paper is also obviously improved with increasing concentration of ANF. Consequently, this work offers an opportunity for the development of novel polymeric insulating paper with enhanced breakdown strength in a wide temperature range.</p></div>","PeriodicalId":557,"journal":{"name":"Fibers and Polymers","volume":"26 3","pages":"1381 - 1391"},"PeriodicalIF":2.2,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12221-025-00889-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143581207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Fibers and Polymers
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1