Pub Date : 2024-03-23DOI: 10.1007/s10694-024-01568-y
Weiyong Wang, Siqi Li, Tian Ran
Exploring fire resistance of high strength steel end-plate connections is one of the key technical bases for fire resistance design and fire safety assessment of high strength steel structures. Numerical simulation and parameter analyses of high strength Q690 steel flush end-plates will contribute to a reasonable design of high strength flush end-plate connections. In this paper, a finite element model of high strength steel flush end-plate connection considering thermal creep effect was established and validated by experimental results. The thermal creep finite element model can simulate accurately heat performance, failure modes and deformations of high strength flush end-plate connections at elevated temperatures. The increase of axial compression ratio has little effect on rotation, deflection, failure time, critical temperature, and critical rotation with elevated temperatures. The increase of bending moment ratio has little effect on the development trend of rotation and deflection. Proper increase of thickness of the end-plate can improve failure time and critical rotation, and the increase range is within 7% and 36% respectively. Proper increase of diameter of bolt can improve failure time, critical temperature, and critical rotation to a certain extent, and the increase range is within 10%, 6% and 27% respectively. Proper increases of thickness of the end-plate and diameter of bolt will improve the fire resistance of flush end-plate connection.
{"title":"Numerical Study on High Strength Q690 Steel Flush End-Plate Connections at Elevated Temperatures","authors":"Weiyong Wang, Siqi Li, Tian Ran","doi":"10.1007/s10694-024-01568-y","DOIUrl":"10.1007/s10694-024-01568-y","url":null,"abstract":"<div><p>Exploring fire resistance of high strength steel end-plate connections is one of the key technical bases for fire resistance design and fire safety assessment of high strength steel structures. Numerical simulation and parameter analyses of high strength Q690 steel flush end-plates will contribute to a reasonable design of high strength flush end-plate connections. In this paper, a finite element model of high strength steel flush end-plate connection considering thermal creep effect was established and validated by experimental results. The thermal creep finite element model can simulate accurately heat performance, failure modes and deformations of high strength flush end-plate connections at elevated temperatures. The increase of axial compression ratio has little effect on rotation, deflection, failure time, critical temperature, and critical rotation with elevated temperatures. The increase of bending moment ratio has little effect on the development trend of rotation and deflection. Proper increase of thickness of the end-plate can improve failure time and critical rotation, and the increase range is within 7% and 36% respectively. Proper increase of diameter of bolt can improve failure time, critical temperature, and critical rotation to a certain extent, and the increase range is within 10%, 6% and 27% respectively. Proper increases of thickness of the end-plate and diameter of bolt will improve the fire resistance of flush end-plate connection.</p></div>","PeriodicalId":558,"journal":{"name":"Fire Technology","volume":"60 5","pages":"3269 - 3294"},"PeriodicalIF":2.3,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140201302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-23DOI: 10.1007/s10694-024-01569-x
Wei Cong, Xudong Cheng, Long Shi, Kun He
Model-scale experimental tests and numerical simulations were conducted to investigate the characteristics of the smoke overflow at the lateral carriage doors and the smoke temperature below the tunnel ceiling of a carriage fire in a longitudinally ventilated tunnel. Results indicates that the smoke overflows from the carriage into the tunnel through the lateral doors downstream of the fire source under the impact of longitudinal ventilation. Depending on the fire location, the amount of the overflow smoke exhibited either an inverted V-shaped variation or a monotonical increase with the door position. Multiple peaks in the smoke temperature below the tunnel ceiling is attributed to the uneven distribution of the overflow smoke. A dimensional analysis revealed a quantifiable relationship between the heat flow of the overflow smoke and the peak temperatures below the tunnel ceiling. Consequently, an empirical model was developed to predict the maximum smoke temperature below the tunnel ceiling under different heat release rates and longitudinal ventilation velocities. These findings are excepted to enhance the understanding of carriage fires and provide a theoretical guidance for future ventilation and safety designs in subway systems.
通过模型试验和数值模拟,研究了纵向通风隧道中车厢起火时,车厢侧门处烟气溢出的特征以及隧道顶棚以下的烟气温度。结果表明,在纵向通风的影响下,烟雾从车厢通过火源下游的侧门溢出到隧道中。根据起火位置的不同,溢出的烟雾量随门的位置呈倒 V 形变化或单调增加。隧道顶棚下方烟温的多个峰值是由于溢出烟雾分布不均造成的。尺寸分析表明,溢出烟气的热流与隧道顶棚下方的峰值温度之间存在可量化的关系。因此,我们建立了一个经验模型,用于预测不同热释放率和纵向通风速度下隧道顶棚下方的最高烟雾温度。这些研究结果有望加深人们对车厢火灾的理解,并为未来地铁系统的通风和安全设计提供理论指导。
{"title":"Study on Smoke Propagation Characteristics of a Carriage Fire in Longitudinally Ventilated Tunnel","authors":"Wei Cong, Xudong Cheng, Long Shi, Kun He","doi":"10.1007/s10694-024-01569-x","DOIUrl":"10.1007/s10694-024-01569-x","url":null,"abstract":"<div><p>Model-scale experimental tests and numerical simulations were conducted to investigate the characteristics of the smoke overflow at the lateral carriage doors and the smoke temperature below the tunnel ceiling of a carriage fire in a longitudinally ventilated tunnel. Results indicates that the smoke overflows from the carriage into the tunnel through the lateral doors downstream of the fire source under the impact of longitudinal ventilation. Depending on the fire location, the amount of the overflow smoke exhibited either an inverted V-shaped variation or a monotonical increase with the door position. Multiple peaks in the smoke temperature below the tunnel ceiling is attributed to the uneven distribution of the overflow smoke. A dimensional analysis revealed a quantifiable relationship between the heat flow of the overflow smoke and the peak temperatures below the tunnel ceiling. Consequently, an empirical model was developed to predict the maximum smoke temperature below the tunnel ceiling under different heat release rates and longitudinal ventilation velocities. These findings are excepted to enhance the understanding of carriage fires and provide a theoretical guidance for future ventilation and safety designs in subway systems.</p></div>","PeriodicalId":558,"journal":{"name":"Fire Technology","volume":"60 3","pages":"2231 - 2247"},"PeriodicalIF":2.3,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140201347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-22DOI: 10.1007/s10694-024-01575-z
Jinlong Zhao, Zhenqi Hu, Xinjiang Li, Jie Ji, Rui Yang, Jianping Zhang, Yunfei Zhong
This paper is aimed at studying the down-reaching flame behaviors of tank fires with large ullage heights. Experiments were first conducted using a gas burner in a transparent quartz glass cylinder to simulate the large ullage and the experimental data was used to validate the computational fluid dynamics (CFD) model. Subsequently the effects of ullage height, fuel velocity and burner diameter on the flame behaviors were examined systematically. Both experimental and numerical results showed that, for lower fuel velocities, the down-reaching flame height (hdown) is restricted by the ullage height. As the fuel velocity continues to increase exceeding a critical value, independent of the ullage height, hdown starts to decrease. For a given fuel velocity, hdown increases with an increase of the burner diameter owing to enhanced air entrainment. A detailed analysis of the flow field and oxygen concentration inside the tank at the steady burning stage was also carried out. Based on the numerical results and dimensionless analysis, a piecewise function was proposed to predict the down-reaching flame height and validated against the experimental data.
{"title":"Experimental Study and CFD Modelling of Down-Reaching Flame Behaviors of Tank Fires with Large Ullage Heights","authors":"Jinlong Zhao, Zhenqi Hu, Xinjiang Li, Jie Ji, Rui Yang, Jianping Zhang, Yunfei Zhong","doi":"10.1007/s10694-024-01575-z","DOIUrl":"10.1007/s10694-024-01575-z","url":null,"abstract":"<div><p>This paper is aimed at studying the down-reaching flame behaviors of tank fires with large ullage heights. Experiments were first conducted using a gas burner in a transparent quartz glass cylinder to simulate the large ullage and the experimental data was used to validate the computational fluid dynamics (CFD) model. Subsequently the effects of ullage height, fuel velocity and burner diameter on the flame behaviors were examined systematically. Both experimental and numerical results showed that, for lower fuel velocities, the down-reaching flame height (<i>h</i><sub><i>down</i></sub>) is restricted by the ullage height. As the fuel velocity continues to increase exceeding a critical value, independent of the ullage height, <i>h</i><sub><i>down</i></sub> starts to decrease. For a given fuel velocity, <i>h</i><sub><i>down</i></sub> increases with an increase of the burner diameter owing to enhanced air entrainment. A detailed analysis of the flow field and oxygen concentration inside the tank at the steady burning stage was also carried out. Based on the numerical results and dimensionless analysis, a piecewise function was proposed to predict the down-reaching flame height and validated against the experimental data.</p></div>","PeriodicalId":558,"journal":{"name":"Fire Technology","volume":"60 5","pages":"3243 - 3268"},"PeriodicalIF":2.3,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10694-024-01575-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140205546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The post-fire assessment of concrete structures is a complex task that requires the integration of multiple measurements from different techniques. The current approach to integrate information from different sources relies mainly on expert judgement, meaning that no explicit consideration is given to the precision of different techniques. This paper presents a Bayesian updating methodology that integrates information from different sources about the maximum temperature the concrete experienced during fire exposure at a certain depth, such as discoloration and rebound hammer measurements, by considering the uncertainties and errors associated with measurements. The data is then used to update the prior information on the uncertain parameters of interest, here the fire load density and opening factor. These updated distributions provide a better estimate of the fire exposure, thermal and damage gradient and the residual condition of the structure. The proof-of-concept and effectiveness of the proposed methodology are demonstrated through a case study. The results show that the proposed methodology is able to effectively incorporate the uncertainties and errors associated with the assessment techniques, producing more reliable estimates of the fire severity. This method has the potential to improve the post-fire assessment process and provide more accurate information for the rehabilitation of concrete structures.
{"title":"Bayesian Updating Methodology for the Post-fire Evaluation of the Maximum Temperature Profile Inside Concrete Elements","authors":"Balša Jovanović, Robby Caspeele, Edwin Reynders, Geert Lombaert, Ruben Van Coile","doi":"10.1007/s10694-024-01564-2","DOIUrl":"10.1007/s10694-024-01564-2","url":null,"abstract":"<div><p>The post-fire assessment of concrete structures is a complex task that requires the integration of multiple measurements from different techniques. The current approach to integrate information from different sources relies mainly on expert judgement, meaning that no explicit consideration is given to the precision of different techniques. This paper presents a Bayesian updating methodology that integrates information from different sources about the maximum temperature the concrete experienced during fire exposure at a certain depth, such as discoloration and rebound hammer measurements, by considering the uncertainties and errors associated with measurements. The data is then used to update the prior information on the uncertain parameters of interest, here the fire load density and opening factor. These updated distributions provide a better estimate of the fire exposure, thermal and damage gradient and the residual condition of the structure. The proof-of-concept and effectiveness of the proposed methodology are demonstrated through a case study. The results show that the proposed methodology is able to effectively incorporate the uncertainties and errors associated with the assessment techniques, producing more reliable estimates of the fire severity. This method has the potential to improve the post-fire assessment process and provide more accurate information for the rehabilitation of concrete structures.</p></div>","PeriodicalId":558,"journal":{"name":"Fire Technology","volume":"60 3","pages":"2155 - 2175"},"PeriodicalIF":2.3,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140205578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
With the rapid urbanization and development of metropolises, urban road tunnels have been constructed at an increasing rate, significantly alleviating urban traffic pressure, and improving urban resilience. Fire hazards have become a major threat to modern road tunnels due to the growing popularity of electric vehicles and high-density transportation of goods, particularly flammable materials. Asphalt pavements, as an essential component of road tunnels, may release harmful effluences and smoke under high temperatures, exacerbating the fire and adding risk to life safety. It is hence critical to investigate fire-retarding asphalt materials and their potential use in urban road tunnels pavements. This paper provides a comprehensive review of fire-retarding asphalt pavements for urban road tunnel pavements. The review covers tunnel fire generation mechanisms, evaluation methods, flame retardants for asphalt pavements, and recent developments in flame retardant technologies. By investigating these aspects, this paper aims to better understand the flammability of asphalt mixtures and asphalt pavements in urban road tunnels, promote the research of flame-retardant technology, and ultimately reduce the damage and loss caused by asphalt road tunnel fire accidents. Additionally, this study identifies the limitations of current research and provides an outlook for future research to contribute to the resilience of urban road tunnel structures and the longer service life of asphalt pavement in semi-closed road tunnels.
{"title":"Fire-Retarding Asphalt Pavement for Urban Road Tunnels: A State-of-the-Art Review and Beyond","authors":"Xi Jiang, Hehua Zhu, Zhiguo Yan, Fengshou Zhang, Xinyan Huang, Zhen Leng, Chuanqi Yan, Nan Hua, Dong Lu, Xuehui Zhang, Rui Xiao","doi":"10.1007/s10694-024-01556-2","DOIUrl":"https://doi.org/10.1007/s10694-024-01556-2","url":null,"abstract":"<p>With the rapid urbanization and development of metropolises, urban road tunnels have been constructed at an increasing rate, significantly alleviating urban traffic pressure, and improving urban resilience. Fire hazards have become a major threat to modern road tunnels due to the growing popularity of electric vehicles and high-density transportation of goods, particularly flammable materials. Asphalt pavements, as an essential component of road tunnels, may release harmful effluences and smoke under high temperatures, exacerbating the fire and adding risk to life safety. It is hence critical to investigate fire-retarding asphalt materials and their potential use in urban road tunnels pavements. This paper provides a comprehensive review of fire-retarding asphalt pavements for urban road tunnel pavements. The review covers tunnel fire generation mechanisms, evaluation methods, flame retardants for asphalt pavements, and recent developments in flame retardant technologies. By investigating these aspects, this paper aims to better understand the flammability of asphalt mixtures and asphalt pavements in urban road tunnels, promote the research of flame-retardant technology, and ultimately reduce the damage and loss caused by asphalt road tunnel fire accidents. Additionally, this study identifies the limitations of current research and provides an outlook for future research to contribute to the resilience of urban road tunnel structures and the longer service life of asphalt pavement in semi-closed road tunnels.</p>","PeriodicalId":558,"journal":{"name":"Fire Technology","volume":"140 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140167059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-13DOI: 10.1007/s10694-024-01557-1
Paul O. Awoyera, Ayomide Akin-Adeniyi, Fadi Althoey, Mohammed Awad Abuhussain, Kayode Jolayemi, Lenin M. Bendezu Romero
One environment that hinders the performance of reinforced concrete is fire. In most cases, this results in the affected part or the entire structure being rendered useless or completely collapsing. When fire mishaps happen in structures, this is the case. This study reviews green structural retrofitting materials for reinforced concrete buildings in an effort to repair damaged structures in an environmentally friendly manner. The information gathered from earlier laboratory test results is assembled to comprehend the impact of room temperature strength properties and varied concrete mix material composition on the residual mechanical properties of concrete. The performance of various fibers, synthetic and natural, as laminate materials for concrete were evaluated, and the study showed that to a significant extent, distressed structural elements could be repaired with retrofits. However, provision of appropriate guidelines for using natural fibre laminates for retrofitting has not been overly explored. This review has highlighted areas that require further study in order to fully understand the residual strength characteristics of concrete exposed to high temperatures, particularly damaged concrete that have been retrofitted with fibers. Overall, the review's findings will be helpful to academics, professionals in the field of civil engineering, and those engaged in construction.
{"title":"Green Structural Retrofitting Materials for Fire-Damaged Reinforced Concrete Buildings: Advances in Sustainable Repair of Distressed Buildings","authors":"Paul O. Awoyera, Ayomide Akin-Adeniyi, Fadi Althoey, Mohammed Awad Abuhussain, Kayode Jolayemi, Lenin M. Bendezu Romero","doi":"10.1007/s10694-024-01557-1","DOIUrl":"10.1007/s10694-024-01557-1","url":null,"abstract":"<div><p>One environment that hinders the performance of reinforced concrete is fire. In most cases, this results in the affected part or the entire structure being rendered useless or completely collapsing. When fire mishaps happen in structures, this is the case. This study reviews green structural retrofitting materials for reinforced concrete buildings in an effort to repair damaged structures in an environmentally friendly manner. The information gathered from earlier laboratory test results is assembled to comprehend the impact of room temperature strength properties and varied concrete mix material composition on the residual mechanical properties of concrete. The performance of various fibers, synthetic and natural, as laminate materials for concrete were evaluated, and the study showed that to a significant extent, distressed structural elements could be repaired with retrofits. However, provision of appropriate guidelines for using natural fibre laminates for retrofitting has not been overly explored. This review has highlighted areas that require further study in order to fully understand the residual strength characteristics of concrete exposed to high temperatures, particularly damaged concrete that have been retrofitted with fibers. Overall, the review's findings will be helpful to academics, professionals in the field of civil engineering, and those engaged in construction.</p></div>","PeriodicalId":558,"journal":{"name":"Fire Technology","volume":"60 3","pages":"1955 - 1991"},"PeriodicalIF":2.3,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140124643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-13DOI: 10.1007/s10694-024-01553-5
Charles Fleischmann, Daniel Madrzykowski, Nicholas Dow
For more than a century, smoke explosions have been documented in the fire research literature. Yet even with this long history, smoke explosions have received very little attention in the fire research community. The few review articles on unexplained explosions (overpressure events) have adopted the conventional names of smoke explosions, backdraft, smoke gas explosions or rapid fire progression. Anecdotal evidence from firefighters have shown a number of overpressure events that cannot be explained as a gas leak or flammable liquids ignition. In this study, experiments were conducted in a plywood lined compartment with a timber crib as a sustained fire source and the ignition source. The compartment had a single vent that was open for the entire time. After an extended period of burning, the flames detached from the crib, traveled around the compartment, and finally self-extinguished. Sometime after the flames self-extinguished, the compartment erupted in flames culminating in a large horizontal flame projecting more than 2 m from the vent opening. In this study, a consistent cycle that leads to an overpressure event has been identified. A total of 29 overpressure events were created in 13 experiments with many experiments experiencing multiple overpressure events. Gas species, compartment temperatures, vent velocities, and compartment pressure were all recorded during the experiments. Conditions in the compartment immediately prior to the overpressure event are reported. Having demonstrated that an overpressure event within a combustible compartment can be reproduced, future research is recommended to better quantify the conditions leading to an overpressure event.
{"title":"Exploring Overpressure Events in Compartment Fires","authors":"Charles Fleischmann, Daniel Madrzykowski, Nicholas Dow","doi":"10.1007/s10694-024-01553-5","DOIUrl":"10.1007/s10694-024-01553-5","url":null,"abstract":"<div><p>For more than a century, smoke explosions have been documented in the fire research literature. Yet even with this long history, smoke explosions have received very little attention in the fire research community. The few review articles on unexplained explosions (overpressure events) have adopted the conventional names of smoke explosions, backdraft, smoke gas explosions or rapid fire progression. Anecdotal evidence from firefighters have shown a number of overpressure events that cannot be explained as a gas leak or flammable liquids ignition. In this study, experiments were conducted in a plywood lined compartment with a timber crib as a sustained fire source and the ignition source. The compartment had a single vent that was open for the entire time. After an extended period of burning, the flames detached from the crib, traveled around the compartment, and finally self-extinguished. Sometime after the flames self-extinguished, the compartment erupted in flames culminating in a large horizontal flame projecting more than 2 m from the vent opening. In this study, a consistent cycle that leads to an overpressure event has been identified. A total of 29 overpressure events were created in 13 experiments with many experiments experiencing multiple overpressure events. Gas species, compartment temperatures, vent velocities, and compartment pressure were all recorded during the experiments. Conditions in the compartment immediately prior to the overpressure event are reported. Having demonstrated that an overpressure event within a combustible compartment can be reproduced, future research is recommended to better quantify the conditions leading to an overpressure event.</p></div>","PeriodicalId":558,"journal":{"name":"Fire Technology","volume":"60 3","pages":"1867 - 1889"},"PeriodicalIF":2.3,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10694-024-01553-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140124644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-11DOI: 10.1007/s10694-024-01543-7
Xiaoxiao Li, Kexi Liao, Guoxi He, Jianhua Zhao
The main objective of this paper is to use the residual strength theory to study the probability of a domino effect accident occurring following the explosion of a spherical tank. We build a novel domino effect accident probability model, using Monte Carlo methods to simulate the ejection of debris. At the same time, the velocity and velocity distribution of fragments ejecting from the upper and lower parts of the explosive spherical tank are obtained. Finally, the relationship between the volume of the exploding spherical tank and the target, the crater Angle (ψ0 and ϕ0) of debris impacting the target, the probability of target destruction and the risk of domino effect accidents are considered. The results show that the maximum speed of debris from the lower part of a spherical tank exceeds that from its upper part, and the hazard associated with the debris from the lower part cannot be ignored. With the same target volume and spacing, the probability of a domino effect accident caused by projectile debris from the upper half of an exploding spherical tank is higher than that from the lower half. As theψ0 value increases, the probability of target failure gradually decreases, and as the ϕ0 value decreases, the probability of target failure also gradually decreases. Moreover, with changes in ψ0 and ϕ0, the probabilities of destruction and the occurrence of a domino effect accident significantly change. The results of this paper can provide guidance for the risk assessment of oil and gas storage tanks.
{"title":"Study on Domino Probability of Spherical Tank Based on New Failure Model","authors":"Xiaoxiao Li, Kexi Liao, Guoxi He, Jianhua Zhao","doi":"10.1007/s10694-024-01543-7","DOIUrl":"10.1007/s10694-024-01543-7","url":null,"abstract":"<div><p>The main objective of this paper is to use the residual strength theory to study the probability of a domino effect accident occurring following the explosion of a spherical tank. We build a novel domino effect accident probability model, using Monte Carlo methods to simulate the ejection of debris. At the same time, the velocity and velocity distribution of fragments ejecting from the upper and lower parts of the explosive spherical tank are obtained. Finally, the relationship between the volume of the exploding spherical tank and the target, the crater Angle (ψ<sub>0</sub> and ϕ<sub>0</sub>) of debris impacting the target, the probability of target destruction and the risk of domino effect accidents are considered. The results show that the maximum speed of debris from the lower part of a spherical tank exceeds that from its upper part, and the hazard associated with the debris from the lower part cannot be ignored. With the same target volume and spacing, the probability of a domino effect accident caused by projectile debris from the upper half of an exploding spherical tank is higher than that from the lower half. As theψ<sub>0</sub> value increases, the probability of target failure gradually decreases, and as the ϕ<sub>0</sub> value decreases, the probability of target failure also gradually decreases. Moreover, with changes in ψ<sub>0</sub> and ϕ<sub>0</sub>, the probabilities of destruction and the occurrence of a domino effect accident significantly change. The results of this paper can provide guidance for the risk assessment of oil and gas storage tanks.</p></div>","PeriodicalId":558,"journal":{"name":"Fire Technology","volume":"60 3","pages":"1687 - 1710"},"PeriodicalIF":2.3,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140124740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-11DOI: 10.1007/s10694-024-01562-4
Siva K. Bathina, Sudheer Siddapureddy
The knowledge of the fire safety distance of the multiple pool fires is essential to model, manage, and mitigate the fire hazardous scenarios to safeguard the surrounding people, buildings and equipment. In this work, experiments are performed on 0.1 m gasoline double pool fires to calculate the fire safety distances using an infrared imaging technique. The distance (S/D) between the two pool is varied from 0 to 1. The irradiance from the two pools is calculated using the two-dimensional temperature field obtained by an IR camera. The calculated irradiance along the flame axial direction and on the ground is presented in a contour format. The safety distances are also represented as a function of their respective flame lengths. Two threshold heat fluxes: (I) 1.4 kW/m2 and (II) 4.7 kW/m2 which are required for human safety are emphasised in the contour plots for all the configurations.
{"title":"Fire Safety Distances of Double Pool Fires","authors":"Siva K. Bathina, Sudheer Siddapureddy","doi":"10.1007/s10694-024-01562-4","DOIUrl":"10.1007/s10694-024-01562-4","url":null,"abstract":"<div><p>The knowledge of the fire safety distance of the multiple pool fires is essential to model, manage, and mitigate the fire hazardous scenarios to safeguard the surrounding people, buildings and equipment. In this work, experiments are performed on 0.1 m gasoline double pool fires to calculate the fire safety distances using an infrared imaging technique. The distance (S/<i>D</i>) between the two pool is varied from 0 to 1. The irradiance from the two pools is calculated using the two-dimensional temperature field obtained by an IR camera. The calculated irradiance along the flame axial direction and on the ground is presented in a contour format. The safety distances are also represented as a function of their respective flame lengths. Two threshold heat fluxes: (I) 1.4 kW/m<sup>2</sup> and (II) 4.7 kW/m<sup>2</sup> which are required for human safety are emphasised in the contour plots for all the configurations.</p></div>","PeriodicalId":558,"journal":{"name":"Fire Technology","volume":"60 3","pages":"2101 - 2123"},"PeriodicalIF":2.3,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140124630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nowadays, significant research effort is being dedicated to explore environmentally friendly block materials with high strength and high-temperature resistance. Ground-granulated blast-furnace slag (GGBFS) is produced during the iron smelting waste process and can be activated to form the environment friendly alkali-activated slag cementitious material (AASCM) when mixed with alkaline activator. The aggregate consists of particles of different sizes, which are crushed and are screened using the paste of AASCM. In this study, the compressive strengths of 234 block specimens during and after high-temperature treatment were investigated. The test results showed that the compressive strength of the blocks gradually decreased slowly when the temperature was lower than 600°C, and decreased rapidly when the temperature was above 600°C. The reduction coefficient of compressive strength of the blocks during and after 900°C exposure were 14.2% ~ 28.1% and 15.3% ~ 28.7% of the ambient temperature strength, respectively. The steel fibre reduced the compressive strength loss of the blocks during and after the high-temperature exposure. With the increase of temperature, the steel fibre lost its effect gradually. Moreover, the compressive strength of the block after the high-temperature treatment was higher than that during the treatment when the strength level and temperature remained constant, the ratio was between 0.99 and 1.14. The high-temperature strength loss of the alkali-activated slag crushed aggregate concrete block was lower than that of the alkali-activated slag ceramsite concrete block. The fitted equations for calculating the compressive strength during and after the high-temperature treatment provided a basis for evaluating the fire resistance of this new type of block. The microstructure and composition of the block were analysed through scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results provide theoretical basis and data support for the application of AASCM in masonry blocks in high-temperature environments.
{"title":"Experimental Study of Alkali-Activated Slag Crushed Aggregate Blocks During and After Exposure to Elevated Temperatures","authors":"Wenxuan Huang, Ying Wang, Yaming Zhang, Wenzhong Zheng","doi":"10.1007/s10694-024-01558-0","DOIUrl":"10.1007/s10694-024-01558-0","url":null,"abstract":"<div><p>Nowadays, significant research effort is being dedicated to explore environmentally friendly block materials with high strength and high-temperature resistance. Ground-granulated blast-furnace slag (GGBFS) is produced during the iron smelting waste process and can be activated to form the environment friendly alkali-activated slag cementitious material (AASCM) when mixed with alkaline activator. The aggregate consists of particles of different sizes, which are crushed and are screened using the paste of AASCM. In this study, the compressive strengths of 234 block specimens during and after high-temperature treatment were investigated. The test results showed that the compressive strength of the blocks gradually decreased slowly when the temperature was lower than 600°C, and decreased rapidly when the temperature was above 600°C. The reduction coefficient of compressive strength of the blocks during and after 900°C exposure were 14.2% ~ 28.1% and 15.3% ~ 28.7% of the ambient temperature strength, respectively. The steel fibre reduced the compressive strength loss of the blocks during and after the high-temperature exposure. With the increase of temperature, the steel fibre lost its effect gradually. Moreover, the compressive strength of the block after the high-temperature treatment was higher than that during the treatment when the strength level and temperature remained constant, the ratio was between 0.99 and 1.14. The high-temperature strength loss of the alkali-activated slag crushed aggregate concrete block was lower than that of the alkali-activated slag ceramsite concrete block. The fitted equations for calculating the compressive strength during and after the high-temperature treatment provided a basis for evaluating the fire resistance of this new type of block. The microstructure and composition of the block were analysed through scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results provide theoretical basis and data support for the application of AASCM in masonry blocks in high-temperature environments.</p></div>","PeriodicalId":558,"journal":{"name":"Fire Technology","volume":"60 3","pages":"1993 - 2018"},"PeriodicalIF":2.3,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140099304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}