K. T. Mpofu, S. Ombinda-Lemboumba, P. Mthunzi-Kufa
Surface plasmon resonance is an optical phenomenon first discovered in 1902. The phenomenon has since had many applications, particularly in biosensing. In this paper, we review surface plasmon resonance-based biosensing, look at recent progress made in integrating quantum resources to develop surface plasmon resonance-based biosensors into a class of surface plasmon resonance biosensors commonly referred to as quantum surface plasmon resonance biosensors, and examine the advantages which quantum biosensors bring. We will review recent experimental and theoretical work showing that making use of quantum states of light offers a great enhancement in the precision of our biosensor, as they can go below the shot-noise limit (standard quantum limit) of precision in intensity noise detection. An overview of the surface plasmon resonance mechanism, its applications, and some limitations, as well as a report on recent research to address certain limitations and quantum-based surface plasmon resonance sensing, are provided.
{"title":"Classical and Quantum Surface Plasmon Resonance Biosensing","authors":"K. T. Mpofu, S. Ombinda-Lemboumba, P. Mthunzi-Kufa","doi":"10.1155/2023/5538161","DOIUrl":"https://doi.org/10.1155/2023/5538161","url":null,"abstract":"Surface plasmon resonance is an optical phenomenon first discovered in 1902. The phenomenon has since had many applications, particularly in biosensing. In this paper, we review surface plasmon resonance-based biosensing, look at recent progress made in integrating quantum resources to develop surface plasmon resonance-based biosensors into a class of surface plasmon resonance biosensors commonly referred to as quantum surface plasmon resonance biosensors, and examine the advantages which quantum biosensors bring. We will review recent experimental and theoretical work showing that making use of quantum states of light offers a great enhancement in the precision of our biosensor, as they can go below the shot-noise limit (standard quantum limit) of precision in intensity noise detection. An overview of the surface plasmon resonance mechanism, its applications, and some limitations, as well as a report on recent research to address certain limitations and quantum-based surface plasmon resonance sensing, are provided.","PeriodicalId":55995,"journal":{"name":"International Journal of Optics","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135825344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
To solve the problems of holes, noise, and texture information missing in the traditional incremental reconstruction of complex surface objects, a 3D reconstruction method of depth image fusion surface dense point clouds is proposed, and texture feature creation is combined to obtain a 3D reconstruction model that takes into account the main body and details of the reconstructed object. First, the mechanism of surface dense reconstruction based on the patch-based multiview stereo (PMVS) algorithm is analyzed. Combined with the principle of view angle selection of stereo images, surface point cloud density reconstruction is performed. Then, the depth value is optimized by the region growing method, and the optimization model is established. The depth image is fused into a dense surface, and the reconstructed part is supplemented by the depth information. Finally, the Markov random field (MRF) is introduced to describe the richness of image details, and combined with the calculating method of the area coordinate, the texture coordinates are accurately calculated to reproduce the texture details of the 3D reconstruction model. 3D reconstruction experiments are performed on multiple indoor and outdoor model surfaces, and the experimental results show that the proposed method can achieve complete and accurate reconstruction of complex surface objects. Our method provides technical support for complex surface topography detection and has industrial practical significance.
{"title":"3D Reconstruction and Measurement Analysis of a Dense Point Cloud Fused with a Depth Image","authors":"Yujing Qiao, Ning Lv, Siyuan Zhang","doi":"10.1155/2023/6826981","DOIUrl":"https://doi.org/10.1155/2023/6826981","url":null,"abstract":"To solve the problems of holes, noise, and texture information missing in the traditional incremental reconstruction of complex surface objects, a 3D reconstruction method of depth image fusion surface dense point clouds is proposed, and texture feature creation is combined to obtain a 3D reconstruction model that takes into account the main body and details of the reconstructed object. First, the mechanism of surface dense reconstruction based on the patch-based multiview stereo (PMVS) algorithm is analyzed. Combined with the principle of view angle selection of stereo images, surface point cloud density reconstruction is performed. Then, the depth value is optimized by the region growing method, and the optimization model is established. The depth image is fused into a dense surface, and the reconstructed part is supplemented by the depth information. Finally, the Markov random field (MRF) is introduced to describe the richness of image details, and combined with the calculating method of the area coordinate, the texture coordinates are accurately calculated to reproduce the texture details of the 3D reconstruction model. 3D reconstruction experiments are performed on multiple indoor and outdoor model surfaces, and the experimental results show that the proposed method can achieve complete and accurate reconstruction of complex surface objects. Our method provides technical support for complex surface topography detection and has industrial practical significance.","PeriodicalId":55995,"journal":{"name":"International Journal of Optics","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46450932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shijie Li, Xiaojing Zhang, Kai Zhao, Zihuai Li, Xiong Li, Lumin Zhao, Jin Zhang, Changlong Cai
To achieve low wavefront error and high throughput with vignetting-free target simulators, a concave-convex-concaveoff-axis spherical system is designed in this paper, which effectively eliminates astigmatism and coma of the system by fields of view (FOVs) and aperture offset and provides theoretical basis for the realization of 100% matching between the exit pupil of the field lens and entrance pupil of the three-mirror anastigmat (TMA) system. Only spherical mirror element is used in this target simulator, which not only reduces the difficulty of manufacturing and cost but also greatly reduces the difficulty of assembling and adjusting. It provides an effective scheme for the design of target simulator and has strong engineering application value.
{"title":"Design and Analysis of Target Simulator Using All Spherical System with High Matching Rate","authors":"Shijie Li, Xiaojing Zhang, Kai Zhao, Zihuai Li, Xiong Li, Lumin Zhao, Jin Zhang, Changlong Cai","doi":"10.1155/2023/4053258","DOIUrl":"https://doi.org/10.1155/2023/4053258","url":null,"abstract":"To achieve low wavefront error and high throughput with vignetting-free target simulators, a concave-convex-concaveoff-axis spherical system is designed in this paper, which effectively eliminates astigmatism and coma of the system by fields of view (FOVs) and aperture offset and provides theoretical basis for the realization of 100% matching between the exit pupil of the field lens and entrance pupil of the three-mirror anastigmat (TMA) system. Only spherical mirror element is used in this target simulator, which not only reduces the difficulty of manufacturing and cost but also greatly reduces the difficulty of assembling and adjusting. It provides an effective scheme for the design of target simulator and has strong engineering application value.","PeriodicalId":55995,"journal":{"name":"International Journal of Optics","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48433721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rapid and accurate analysis of element concentrations in aluminum alloys is crucial due to their widespread use in modern industry. This paper proposes a one-point and multiline calibration fiber-optic laser-ablation spark-induced breakdown spectroscopy (OP-MLC FO-LA-SIBS) for the quantitative analysis of elements in aluminum alloys. The experimental system utilizes a compact fiber laser as the laser-ablation source and spark discharge to enhance the atomic emission. A portable multichannel fiber spectrometer is used to quickly collect spectra in the nongated mode. The concentrations of four elements (Mg, Cr, Cu, and Mn) in four aluminum alloy samples were calculated using the simple and efficient OP-MLC method, which involves taking another sample with a similar matrix as the standard sample. The average relative errors (AREs) for Mg, Cr, Cu, and Mn were 6.38%, 28.09%, 21.92%, and 18.97%, respectively. When the certified concentrations are greater than 0.02 wt.%, the ARE is only 13.04%. The OP-MLC FO-LA-SIBS system is compact, features simple spectra processing, and offers effective measurement, providing a convenient method for rapid and efficient quantitative analysis of elements in aluminum alloys in industrial production.
{"title":"One-Point and Multiline Calibration Fiber-Optic Laser-Ablation Spark-Induced Breakdown Spectroscopy for Quantitative Analysis of Elements in Aluminum Alloys","authors":"Yipeng Liao, Xiaoyong He, Xi Wu","doi":"10.1155/2023/2562588","DOIUrl":"https://doi.org/10.1155/2023/2562588","url":null,"abstract":"Rapid and accurate analysis of element concentrations in aluminum alloys is crucial due to their widespread use in modern industry. This paper proposes a one-point and multiline calibration fiber-optic laser-ablation spark-induced breakdown spectroscopy (OP-MLC FO-LA-SIBS) for the quantitative analysis of elements in aluminum alloys. The experimental system utilizes a compact fiber laser as the laser-ablation source and spark discharge to enhance the atomic emission. A portable multichannel fiber spectrometer is used to quickly collect spectra in the nongated mode. The concentrations of four elements (Mg, Cr, Cu, and Mn) in four aluminum alloy samples were calculated using the simple and efficient OP-MLC method, which involves taking another sample with a similar matrix as the standard sample. The average relative errors (AREs) for Mg, Cr, Cu, and Mn were 6.38%, 28.09%, 21.92%, and 18.97%, respectively. When the certified concentrations are greater than 0.02 wt.%, the ARE is only 13.04%. The OP-MLC FO-LA-SIBS system is compact, features simple spectra processing, and offers effective measurement, providing a convenient method for rapid and efficient quantitative analysis of elements in aluminum alloys in industrial production.","PeriodicalId":55995,"journal":{"name":"International Journal of Optics","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41534818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
I. Syniavskyi, Y. Oberemok, V. Danylevsky, Y. Ivanov, R. Osypenko, M. Sosonkin, G. Milinevsky
The Aerosol-UA space mission will study aerosol microphysical characteristics in the Earth’s atmosphere based on the multispectral scanning polarimeter (ScanPol) and imaging polarimeter (MSIP). Both polarimeters must be precisely calibrated on the ground and in orbit to provide correct measurements. This paper considers the results of developing an experimental device for the radiometric calibration of the ScanPol. We consider the calibration unit design and operation principle to form a luminous flux with unchanged or well-predicted characteristics in a specified direction. The construction of the radiometric calibration unit is based on a sun-illuminated reflective diffuser made from the white opal glass MS20. We evaluated the scattering and polarization characteristics of the diffuser in laboratory experiments at a wide range of wavelengths. The results suggest that the polarization properties of the diffuser are negligible. The diffuser scattering parameters are close to Lambertian for illuminance conditions, which is necessary for radiometric calibration. The calibration unit was manufactured and tested during field observations of solar radiation. The results will be used for its improvement, mainly to reduce the observed stray scattered radiation entering the telescopes of the ScanPol polarization state analyzer.
{"title":"Solar Light Radiometry Calibration Unit for a ScanPol Polarimeter of the Aerosol-UA Space Mission","authors":"I. Syniavskyi, Y. Oberemok, V. Danylevsky, Y. Ivanov, R. Osypenko, M. Sosonkin, G. Milinevsky","doi":"10.1155/2023/9387645","DOIUrl":"https://doi.org/10.1155/2023/9387645","url":null,"abstract":"The Aerosol-UA space mission will study aerosol microphysical characteristics in the Earth’s atmosphere based on the multispectral scanning polarimeter (ScanPol) and imaging polarimeter (MSIP). Both polarimeters must be precisely calibrated on the ground and in orbit to provide correct measurements. This paper considers the results of developing an experimental device for the radiometric calibration of the ScanPol. We consider the calibration unit design and operation principle to form a luminous flux with unchanged or well-predicted characteristics in a specified direction. The construction of the radiometric calibration unit is based on a sun-illuminated reflective diffuser made from the white opal glass MS20. We evaluated the scattering and polarization characteristics of the diffuser in laboratory experiments at a wide range of wavelengths. The results suggest that the polarization properties of the diffuser are negligible. The diffuser scattering parameters are close to Lambertian for illuminance conditions, which is necessary for radiometric calibration. The calibration unit was manufactured and tested during field observations of solar radiation. The results will be used for its improvement, mainly to reduce the observed stray scattered radiation entering the telescopes of the ScanPol polarization state analyzer.","PeriodicalId":55995,"journal":{"name":"International Journal of Optics","volume":"1 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41523383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The technology of free-space optical communication (FSOC) systems has some distinctive merits compared to other technologies. Its use is extremely beneficial to meet the exigencies of optical telecommunications and wireless networks (OTWNs). However, since the OTWNs transport a lot of data, the choice of a reliable modulation scheme is highly crucial. To this end, the focus of this paper is an in-depth study of a Point-to-Point Optical Link (P2P-OL) system under a FSOC-Multiple-Input Multiple-Output (MIMO) channel using an optimal modulation scheme. Furthermore, atmospheric turbulence (AT) effects over the FSOC-MIMO channel are incorporated in the proposed system to obtain substantial results. The performance analysis test of the proposed high-rate P2P-OL system is validated under the case that the channel decreases significantly when the AT gets strong regimes. Finally, the proposed system uses an optimal Non-Return to Zero Pulse Generator-Mach-Zehnder Modulator ((NRZPG-MZM)) scheme, which displays acceptable performance levels in a dust-fog meteorological environment under a LNF FSOC-9 × 9 channel with the attenuation value of 59.66 dB/km (i.e., max OSNR = 24.9 dB, min BER = 1e − 09, and max Q-factor = 6), whereas with the same environment under a G-G FSOC-9 × 9 channel, the attenuation value is 58.55 dB/km (i.e., max OSNR = 24.67 dB, min BER = 1e − 09, and max Q-factor = 6).
自由空间光通信(FSOC)系统技术与其他技术相比具有一些独特的优点。它的使用对满足光通信和无线网络(OTWNs)的需求极为有利。然而,由于otwn传输大量数据,因此选择可靠的调制方案至关重要。为此,本文的重点是在fsoc -多输入多输出(MIMO)信道下使用最优调制方案的点对点光链路(P2P-OL)系统进行深入研究。此外,该系统还考虑了FSOC-MIMO信道上的大气湍流(AT)效应,以获得实质性的结果。通过对高速率P2P-OL系统的性能分析测试,验证了该系统在强信道条件下信道显著减小的性能。最后,该系统采用最优不归零脉冲Generator-Mach-Zehnder调制器((NRZPG-MZM))计划,显示可接受的性能水平尘雾气象环境下LNF FSOC-9×9通道的衰减值59.66 dB /公里(即最大OSNR = 24.9 dB,最小数量= 1 e−09年和最大品质因数= 6),而相同的环境下G-G FSOC-9×9频道,衰减值是58.55 dB /公里(即,马克斯OSNR = 24.67分贝,最小BER = 1e−09,最大q因子= 6)。
{"title":"A MIMO-Enabled Free Space Optical Link under Log-Normal Fading/Gamma-Gamma Channel: Exploring an Optimal Modulation Scheme","authors":"H. E. Adardour, S. Kameche, Mehtab Singh","doi":"10.1155/2023/8020925","DOIUrl":"https://doi.org/10.1155/2023/8020925","url":null,"abstract":"The technology of free-space optical communication (FSOC) systems has some distinctive merits compared to other technologies. Its use is extremely beneficial to meet the exigencies of optical telecommunications and wireless networks (OTWNs). However, since the OTWNs transport a lot of data, the choice of a reliable modulation scheme is highly crucial. To this end, the focus of this paper is an in-depth study of a Point-to-Point Optical Link (P2P-OL) system under a FSOC-Multiple-Input Multiple-Output (MIMO) channel using an optimal modulation scheme. Furthermore, atmospheric turbulence (AT) effects over the FSOC-MIMO channel are incorporated in the proposed system to obtain substantial results. The performance analysis test of the proposed high-rate P2P-OL system is validated under the case that the channel decreases significantly when the AT gets strong regimes. Finally, the proposed system uses an optimal Non-Return to Zero Pulse Generator-Mach-Zehnder Modulator ((NRZPG-MZM)) scheme, which displays acceptable performance levels in a dust-fog meteorological environment under a LNF FSOC-9 × 9 channel with the attenuation value of 59.66 dB/km (i.e., max OSNR = 24.9 dB, min BER = 1e − 09, and max Q-factor = 6), whereas with the same environment under a G-G FSOC-9 × 9 channel, the attenuation value is 58.55 dB/km (i.e., max OSNR = 24.67 dB, min BER = 1e − 09, and max Q-factor = 6).","PeriodicalId":55995,"journal":{"name":"International Journal of Optics","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42045871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Peter Osei-Wusu Adueming, Jerry Opoku-Ansah, Andrew Atiogbe Huzortey, Charles Lloyd Yeboah Amuah, Kwasi Nyandey, Moses Jojo Eghan, Benjamin Anderson, Samuel Sonko Sackey
Shelf life of bottled natural fruit juice (BNFJ) provides relevant information on quality and authenticity for consumer protection. However, existing techniques for monitoring the shelf life of BNFJ are destructive and time-consuming. We report on using laser-induced autofluorescence (LIAF) spectroscopic technique in combination with multivariate analysis for shelf life monitoring of BNFJ. The LIAF spectra data were acquired for nine (9) continuous days on three batches of BNFJ samples purchased from a certified retailer. Deconvolution of the LIAF spectra revealed underlying peaks representing constituents of the BNFJ. Principal component analysis (PCA) was able to monitor the trend in the changes of the BNFJ as it aged. Partial least square regression (PLSR) predicted the exact day from the production of the BNFJ accurately at 96.6% and 98.8% in the training and testing sets, respectively. We, therefore, propose the LIAF combined with multivariate analysis as a potential tool for nondestructive, rapid, and relatively inexpensive monitoring of the shelf life of BNFJ.
{"title":"A Feasibility Study on Monitoring Shelf Life of Bottled Natural Fruit Juice Using Laser-Induced Autofluorescence","authors":"Peter Osei-Wusu Adueming, Jerry Opoku-Ansah, Andrew Atiogbe Huzortey, Charles Lloyd Yeboah Amuah, Kwasi Nyandey, Moses Jojo Eghan, Benjamin Anderson, Samuel Sonko Sackey","doi":"10.1155/2023/7458190","DOIUrl":"https://doi.org/10.1155/2023/7458190","url":null,"abstract":"Shelf life of bottled natural fruit juice (BNFJ) provides relevant information on quality and authenticity for consumer protection. However, existing techniques for monitoring the shelf life of BNFJ are destructive and time-consuming. We report on using laser-induced autofluorescence (LIAF) spectroscopic technique in combination with multivariate analysis for shelf life monitoring of BNFJ. The LIAF spectra data were acquired for nine (9) continuous days on three batches of BNFJ samples purchased from a certified retailer. Deconvolution of the LIAF spectra revealed underlying peaks representing constituents of the BNFJ. Principal component analysis (PCA) was able to monitor the trend in the changes of the BNFJ as it aged. Partial least square regression (PLSR) predicted the exact day from the production of the BNFJ accurately at 96.6% and 98.8% in the training and testing sets, respectively. We, therefore, propose the LIAF combined with multivariate analysis as a potential tool for nondestructive, rapid, and relatively inexpensive monitoring of the shelf life of BNFJ.","PeriodicalId":55995,"journal":{"name":"International Journal of Optics","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2023-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44427331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The traditional detection method of CO2 concentration in seed respiration has defects such as low detection accuracy, low detection efficiency, and inability to monitor in real time. In order to solve these problems, we report a seed respiration CO2 detection system based on wavelength modulation spectroscopy (WMS) techniques in tunable diode laser absorption spectroscopy (TDLAS). This system uses a 2004 nm distributed feedback (DFB) laser as the light source, and a double-layer seed respiration device (about 1.5 L) is designed based on Herriott cell with an effective optical path of about 21 meters. Then, the second harmonic (2f) signal is extracted by the wavelength modulation method for CO2 concentration inversion. When the ambient temperature and pressure changes greatly, the corrected 2f signal is used for CO2 concentration inversion to improve the accuracy. A series of verification and comparison experiments have proved that the seed respiration CO2 detection system has the advantages of strong stability, high sampling frequency, and high detection accuracy. Finally, we used the developed system to measure the respiration intensity and respiration rate of 1 g corn seeds. The respiration intensity curves and respiration rate change details show that the seed respiration CO2 detection system is more suitable for a small amount of seeds than nondispersive infrared (NDIR) CO2 sensor and gas chromatography in real-time monitoring of the breathing process.
{"title":"Research on the Seed Respiration CO2 Detection System Based on TDLAS Technology","authors":"Lu Gao, Ying Zang, Guangwu Zhao, Hengnian Qi, Qizhe Tang, Qingshan Liu, Liangquan Jia","doi":"10.1155/2023/8017726","DOIUrl":"https://doi.org/10.1155/2023/8017726","url":null,"abstract":"The traditional detection method of CO2 concentration in seed respiration has defects such as low detection accuracy, low detection efficiency, and inability to monitor in real time. In order to solve these problems, we report a seed respiration CO2 detection system based on wavelength modulation spectroscopy (WMS) techniques in tunable diode laser absorption spectroscopy (TDLAS). This system uses a 2004 nm distributed feedback (DFB) laser as the light source, and a double-layer seed respiration device (about 1.5 L) is designed based on Herriott cell with an effective optical path of about 21 meters. Then, the second harmonic (2f) signal is extracted by the wavelength modulation method for CO2 concentration inversion. When the ambient temperature and pressure changes greatly, the corrected 2f signal is used for CO2 concentration inversion to improve the accuracy. A series of verification and comparison experiments have proved that the seed respiration CO2 detection system has the advantages of strong stability, high sampling frequency, and high detection accuracy. Finally, we used the developed system to measure the respiration intensity and respiration rate of 1 g corn seeds. The respiration intensity curves and respiration rate change details show that the seed respiration CO2 detection system is more suitable for a small amount of seeds than nondispersive infrared (NDIR) CO2 sensor and gas chromatography in real-time monitoring of the breathing process.","PeriodicalId":55995,"journal":{"name":"International Journal of Optics","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48981256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
John Napari N-yorbe, E. Akowuah, Iddrisu Danlard, Alexander Kwasi Amoah
This paper presents a highly negative dispersion-compensating photonic crystal fiber (DC-PCF) with multiple zero dispersion wavelengths (ZDWs) within the telecommunication bands. The multiple ZDWs of the PCF may lead to high spectral densities than those of other PCFs with few ZDWs. The full-vectorial finite element method with a perfectly matched layer (PML) is used to investigate the optical properties of the PCFs. The numerical analysis shows that the proposed PCF, i.e., PCF (b), exhibits multiple ZDWS and also achieves a high negative chromatic dispersion of −15089.0 ps/nm·km at 1.55 μ m wavelength, with the multiple ZDWs occurring within the range from 0.8 to 2.0 μ m range. Other optical properties such as the confinement loss of 0.059 dB/km, the birefringence of 4.11 × 10 − 1 , the nonlinearity of 18.92 W − 1 k m − 1 , and a normalized frequency of 2.633 was also achieved at 1.55 μ m wavelength. These characteristics make the PCF suitable for high-speed, long-distance optical communication systems, optical sensing, soliton pulse transmission, and polarization-maintaining applications.
本文提出了一种在通信频带内具有多个零色散波长(ZDW)的高负色散补偿光子晶体光纤(DC-PCF)。与具有少量ZDW的其它PCF相比,PCF的多个ZDW可导致高光谱密度。采用具有完全匹配层的全矢量有限元方法(PML)研究了PCF的光学特性。数值分析表明,所提出的PCF,即PCF(b),表现出多个ZDWS,并且还实现了−15089.0的高负色散 1.55时的ps/nm·km μm波长,多个ZDW出现在0.8到2.0的范围内 μm范围。其他光学特性,如0.059的限制损耗 dB/km,双折射4.11×10−1,非线性18.92 W−1 k m−1,并且在1.55时也实现了2.633的归一化频率 μm波长。这些特性使PCF适用于高速、长距离光通信系统、光学传感、孤子脉冲传输和保偏应用。
{"title":"Design and Theoretical Analysis of Highly Negative Dispersion-Compensating Photonic Crystal Fibers with Multiple Zero-Dispersion Wavelengths","authors":"John Napari N-yorbe, E. Akowuah, Iddrisu Danlard, Alexander Kwasi Amoah","doi":"10.1155/2023/5612791","DOIUrl":"https://doi.org/10.1155/2023/5612791","url":null,"abstract":"This paper presents a highly negative dispersion-compensating photonic crystal fiber (DC-PCF) with multiple zero dispersion wavelengths (ZDWs) within the telecommunication bands. The multiple ZDWs of the PCF may lead to high spectral densities than those of other PCFs with few ZDWs. The full-vectorial finite element method with a perfectly matched layer (PML) is used to investigate the optical properties of the PCFs. The numerical analysis shows that the proposed PCF, i.e., PCF (b), exhibits multiple ZDWS and also achieves a high negative chromatic dispersion of −15089.0 ps/nm·km at 1.55 \u0000 \u0000 μ\u0000 m\u0000 \u0000 wavelength, with the multiple ZDWs occurring within the range from 0.8 to 2.0 \u0000 \u0000 μ\u0000 m\u0000 \u0000 range. Other optical properties such as the confinement loss of 0.059 dB/km, the birefringence of \u0000 \u0000 4.11\u0000 ×\u0000 \u0000 \u0000 10\u0000 \u0000 \u0000 −\u0000 1\u0000 \u0000 \u0000 \u0000 , the nonlinearity of 18.92 \u0000 \u0000 \u0000 \u0000 W\u0000 \u0000 \u0000 −\u0000 1\u0000 \u0000 \u0000 \u0000 \u0000 k\u0000 m\u0000 \u0000 \u0000 −\u0000 1\u0000 \u0000 \u0000 \u0000 , and a normalized frequency of 2.633 was also achieved at 1.55 \u0000 \u0000 μ\u0000 m\u0000 \u0000 wavelength. These characteristics make the PCF suitable for high-speed, long-distance optical communication systems, optical sensing, soliton pulse transmission, and polarization-maintaining applications.","PeriodicalId":55995,"journal":{"name":"International Journal of Optics","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47107936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper, a two-loop photoelectric oscillator based on chirped fiber Bragg grating (CFBG) is used to construct a swept source, which acts on the frequency scanning array antenna to realise multibeamforming. The simulation results of the designed beamforming system have shown that it can realise wide-range beam scanning and has ultralow phase noise.
{"title":"Frequency Scanning Multibeamforming Method Based on CFBG Photonic Microwave Oscillation","authors":"Ning Mu, Hongxia Guo, Wanrong Gao","doi":"10.1155/2023/8192632","DOIUrl":"https://doi.org/10.1155/2023/8192632","url":null,"abstract":"In this paper, a two-loop photoelectric oscillator based on chirped fiber Bragg grating (CFBG) is used to construct a swept source, which acts on the frequency scanning array antenna to realise multibeamforming. The simulation results of the designed beamforming system have shown that it can realise wide-range beam scanning and has ultralow phase noise.","PeriodicalId":55995,"journal":{"name":"International Journal of Optics","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47504652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}