Human action understanding (HAU) is a broad topic that involves specific tasks, such as action localisation, recognition, and assessment. However, most popular HAU datasets are bound to one task based on particular actions. Combining different but relevant HAU tasks to establish a unified action understanding system is challenging due to the disparate actions across datasets. A large-scale and comprehensive benchmark, namely SkatingVerse is constructed for action recognition, segmentation, proposal, and assessment. SkatingVerse focus on fine-grained sport action, hence figure skating is chosen as the task object, which eliminates the biases of the object, scene, and space that exist in most previous datasets. In addition, skating actions have inherent complexity and similarity, which is an enormous challenge for current algorithms. A total of 1687 official figure skating competition videos was collected with a total of 184.4 h, exceeding four times over other datasets with a similar topic. SkatingVerse enables to formulate a unified task to output fine-grained human action classification and assessment results from a raw figure skating competition video. In addition, SkatingVerse can facilitate the study of HAU foundation model due to its large scale and abundant categories. Moreover, image modality is incorporated for human pose estimation task into SkatingVerse. Extensive experimental results show that (1) SkatingVerse significantly helps the training and evaluation of HAU methods, (2) the performance of existing HAU methods has much room to improve, and SkatingVerse helps to reduce such gaps, and (3) unifying relevant tasks in HAU through a uniform dataset can facilitate more practical applications. SkatingVerse will be publicly available to facilitate further studies on relevant problems.
人类动作理解(HAU)是一个广泛的主题,涉及动作定位、识别和评估等具体任务。然而,大多数流行的 HAU 数据集都是基于特定动作的任务。由于数据集中的动作各不相同,因此结合不同但相关的 HAU 任务来建立统一的动作理解系统具有挑战性。我们构建了一个大规模的综合基准,即 SkatingVerse,用于动作识别、分割、建议和评估。SkatingVerse 专注于细粒度的运动动作,因此选择了花样滑冰作为任务对象,从而消除了之前大多数数据集中存在的对象、场景和空间的偏差。此外,花滑动作本身具有复杂性和相似性,这对当前的算法是一个巨大的挑战。我们共收集了 1687 个官方花样滑冰比赛视频,总时长达到 184.4 小时,是其他类似主题数据集的四倍之多。SkatingVerse 能够制定统一的任务,从原始花样滑冰比赛视频中输出精细的人体动作分类和评估结果。此外,SkatingVerse 的规模大、类别多,有助于 HAU 基础模型的研究。此外,SkatingVerse 还采用了图像模式来完成人体姿势估计任务。广泛的实验结果表明:(1)SkatingVerse 对 HAU 方法的训练和评估有很大帮助;(2)现有 HAU 方法的性能还有很大提升空间,SkatingVerse 有助于缩小这些差距;(3)通过统一的数据集统一 HAU 中的相关任务可以促进更多的实际应用。SkatingVerse 将向公众开放,以促进对相关问题的进一步研究。
{"title":"SkatingVerse: A large-scale benchmark for comprehensive evaluation on human action understanding","authors":"Ziliang Gan, Lei Jin, Yi Cheng, Yu Cheng, Yinglei Teng, Zun Li, Yawen Li, Wenhan Yang, Zheng Zhu, Junliang Xing, Jian Zhao","doi":"10.1049/cvi2.12287","DOIUrl":"https://doi.org/10.1049/cvi2.12287","url":null,"abstract":"<p>Human action understanding (HAU) is a broad topic that involves specific tasks, such as action localisation, recognition, and assessment. However, most popular HAU datasets are bound to one task based on particular actions. Combining different but relevant HAU tasks to establish a unified action understanding system is challenging due to the disparate actions across datasets. A large-scale and comprehensive benchmark, namely <b>SkatingVerse</b> is constructed for action recognition, segmentation, proposal, and assessment. SkatingVerse focus on fine-grained sport action, hence figure skating is chosen as the task object, which eliminates the biases of the object, scene, and space that exist in most previous datasets. In addition, skating actions have inherent complexity and similarity, which is an enormous challenge for current algorithms. A total of 1687 official figure skating competition videos was collected with a total of 184.4 h, exceeding four times over other datasets with a similar topic. SkatingVerse enables to formulate a unified task to output fine-grained human action classification and assessment results from a raw figure skating competition video. In addition, <i>SkatingVerse</i> can facilitate the study of HAU foundation model due to its large scale and abundant categories. Moreover, image modality is incorporated for human pose estimation task into <i>SkatingVerse</i>. Extensive experimental results show that (1) SkatingVerse significantly helps the training and evaluation of HAU methods, (2) the performance of existing HAU methods has much room to improve, and SkatingVerse helps to reduce such gaps, and (3) unifying relevant tasks in HAU through a uniform dataset can facilitate more practical applications. SkatingVerse will be publicly available to facilitate further studies on relevant problems.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"18 7","pages":"888-906"},"PeriodicalIF":1.5,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12287","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142563030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hengyu Mu, Jian Guo, Xingli Liu, Chong Han, Lijuan Sun
Recently, the application of finger vein recognition has become popular. Studies have shown finger vein presentation attacks increasingly threaten these recognition devices. As a result, research on finger vein presentation attack detection (fvPAD) methods has received much attention. However, the current fvPAD methods have two limitations. (1) Most terminal devices cannot train fvPAD models independently due to a lack of data. (2) Several research institutes can train fvPAD models; however, these models perform poorly when applied to terminal devices due to inadequate generalisation. Consequently, it is difficult for threatened terminal devices to obtain an effective fvPAD model. To address this problem, the method of federated finger vein presentation attack detection for various clients is proposed, which is the first study that introduces federated learning (FL) to fvPAD. In the proposed method, the differences in data volume and computing power between clients are considered. Traditional FL clients are expanded into two categories: institutional and terminal clients. For institutional clients, an improved triplet training mode with FL is designed to enhance model generalisation. For terminal clients, their inability is solved to obtain effective fvPAD models. Finally, extensive experiments are conducted on three datasets, which demonstrate the superiority of our method.
{"title":"Federated finger vein presentation attack detection for various clients","authors":"Hengyu Mu, Jian Guo, Xingli Liu, Chong Han, Lijuan Sun","doi":"10.1049/cvi2.12292","DOIUrl":"https://doi.org/10.1049/cvi2.12292","url":null,"abstract":"<p>Recently, the application of finger vein recognition has become popular. Studies have shown finger vein presentation attacks increasingly threaten these recognition devices. As a result, research on finger vein presentation attack detection (fvPAD) methods has received much attention. However, the current fvPAD methods have two limitations. (1) Most terminal devices cannot train fvPAD models independently due to a lack of data. (2) Several research institutes can train fvPAD models; however, these models perform poorly when applied to terminal devices due to inadequate generalisation. Consequently, it is difficult for threatened terminal devices to obtain an effective fvPAD model. To address this problem, the method of federated finger vein presentation attack detection for various clients is proposed, which is the first study that introduces federated learning (FL) to fvPAD. In the proposed method, the differences in data volume and computing power between clients are considered. Traditional FL clients are expanded into two categories: institutional and terminal clients. For institutional clients, an improved triplet training mode with FL is designed to enhance model generalisation. For terminal clients, their inability is solved to obtain effective fvPAD models. Finally, extensive experiments are conducted on three datasets, which demonstrate the superiority of our method.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"18 7","pages":"935-949"},"PeriodicalIF":1.5,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12292","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142563029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaohu Huang, Minghui Jia, Xianghua Tai, Wei Wang, Qi Hu, Dongping Liu, Peiheng Guo, Shengxiang Tian, Dequan Yan, Haishan Han
Insulator defect detection is crucial for the stable operation of power systems. It has become a mainstream research direction to realise insulator defect detection based on the combination of line images captured by UAVs and deep learning techniques. However, the existing high-quality insulator defect detection models still face problems such as relying on massive-labelled data and huge model parameters. Especially on resource-constrained devices, it becomes a challenge to strike a balance between model lightweighting and performance. Although the knowledge distillation technique provides a solution for model lightweighting, the loss of information in the distillation process leads to the performance degradation of small models, which in turn creates a paradox between lightweighting and performance. Hence, an insulator defect detection method based on federated knowledge distillation is proposed. The method not only realises the lightweighting of the model, but also effectively improves the model performance by collaboratively training the model through the federated learning approach. Moreover, the asynchronous aggregation approach and model freshness mechanism designed in the method further enhance the training efficiency and collaborative effect. The experimental results show that the detection accuracy and efficiency of this paper's method on public datasets are significantly better than the benchmark algorithm.
{"title":"Federated knowledge distillation for enhanced insulator defect detection in resource-constrained environments","authors":"Xiaohu Huang, Minghui Jia, Xianghua Tai, Wei Wang, Qi Hu, Dongping Liu, Peiheng Guo, Shengxiang Tian, Dequan Yan, Haishan Han","doi":"10.1049/cvi2.12290","DOIUrl":"https://doi.org/10.1049/cvi2.12290","url":null,"abstract":"<p>Insulator defect detection is crucial for the stable operation of power systems. It has become a mainstream research direction to realise insulator defect detection based on the combination of line images captured by UAVs and deep learning techniques. However, the existing high-quality insulator defect detection models still face problems such as relying on massive-labelled data and huge model parameters. Especially on resource-constrained devices, it becomes a challenge to strike a balance between model lightweighting and performance. Although the knowledge distillation technique provides a solution for model lightweighting, the loss of information in the distillation process leads to the performance degradation of small models, which in turn creates a paradox between lightweighting and performance. Hence, an insulator defect detection method based on federated knowledge distillation is proposed. The method not only realises the lightweighting of the model, but also effectively improves the model performance by collaboratively training the model through the federated learning approach. Moreover, the asynchronous aggregation approach and model freshness mechanism designed in the method further enhance the training efficiency and collaborative effect. The experimental results show that the detection accuracy and efficiency of this paper's method on public datasets are significantly better than the benchmark algorithm.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"18 8","pages":"1072-1086"},"PeriodicalIF":1.5,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12290","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143253549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ming Xie, Hengliang Tan, Jiao Du, Shuo Yang, Guofeng Yan, Wangwang Li, Jianwei Feng
Linear discriminant analysis is a classical method for solving problems of dimensional reduction and pattern classification. Although it has been extensively developed, however, it still suffers from various common problems, such as the Small Sample Size (SSS) and the multimodal problem. Neighbourhood linear discriminant analysis (nLDA) was recently proposed to solve the problem of multimodal class caused by the contravention of independently and identically distributed samples. However, due to the existence of many small-scale practical applications, nLDA still has to face the SSS problem, which leads to instability and poor generalisation caused by the singularity of the within-neighbourhood scatter matrix. The authors exploit the eigenspectrum regularisation techniques to circumvent the singularity of the within-neighbourhood scatter matrix of nLDA, which is called Eigenspectrum Regularisation Reverse Neighbourhood Discriminative Learning (ERRNDL). The algorithm of nLDA is reformulated as a framework by searching two projection matrices. Three eigenspectrum regularisation models are introduced to our framework to evaluate the performance. Experiments are conducted on the University of California, Irvine machine learning repository and six image classification datasets. The proposed ERRNDL-based methods achieve considerable performance.
{"title":"Eigenspectrum regularisation reverse neighbourhood discriminative learning","authors":"Ming Xie, Hengliang Tan, Jiao Du, Shuo Yang, Guofeng Yan, Wangwang Li, Jianwei Feng","doi":"10.1049/cvi2.12284","DOIUrl":"10.1049/cvi2.12284","url":null,"abstract":"<p>Linear discriminant analysis is a classical method for solving problems of dimensional reduction and pattern classification. Although it has been extensively developed, however, it still suffers from various common problems, such as the Small Sample Size (SSS) and the multimodal problem. Neighbourhood linear discriminant analysis (nLDA) was recently proposed to solve the problem of multimodal class caused by the contravention of independently and identically distributed samples. However, due to the existence of many small-scale practical applications, nLDA still has to face the SSS problem, which leads to instability and poor generalisation caused by the singularity of the within-neighbourhood scatter matrix. The authors exploit the eigenspectrum regularisation techniques to circumvent the singularity of the within-neighbourhood scatter matrix of nLDA, which is called Eigenspectrum Regularisation Reverse Neighbourhood Discriminative Learning (ERRNDL). The algorithm of nLDA is reformulated as a framework by searching two projection matrices. Three eigenspectrum regularisation models are introduced to our framework to evaluate the performance. Experiments are conducted on the University of California, Irvine machine learning repository and six image classification datasets. The proposed ERRNDL-based methods achieve considerable performance.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"18 6","pages":"842-858"},"PeriodicalIF":1.5,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12284","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140980457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Despite the impressive progress in visual localisation, 6-DoF cross-view localisation is still a challenging task in the computer vision community due to the huge appearance changes. To address this issue, the authors propose the CLaSP, a coarse-to-fine framework, which leverages a synthetic panorama to facilitate cross-view 6-DoF localisation in a large-scale scene. The authors first leverage a segmentation map to correct the prior pose, followed by a synthetic panorama on the ground to enable coarse pose estimation combined with a template matching method. The authors finally formulate the refine localisation process as feature matching and pose refinement to obtain the final result. The authors evaluate the performance of the CLaSP and several state-of-the-art baselines on the Airloc dataset, which demonstrates the effectiveness of our proposed framework.
{"title":"CLaSP: Cross-view 6-DoF localisation assisted by synthetic panorama","authors":"Juelin Zhu, Shen Yan, Xiaoya Cheng, Rouwan Wu, Yuxiang Liu, Maojun Zhang","doi":"10.1049/cvi2.12285","DOIUrl":"10.1049/cvi2.12285","url":null,"abstract":"<p>Despite the impressive progress in visual localisation, 6-DoF cross-view localisation is still a challenging task in the computer vision community due to the huge appearance changes. To address this issue, the authors propose the CLaSP, a coarse-to-fine framework, which leverages a synthetic panorama to facilitate cross-view 6-DoF localisation in a large-scale scene. The authors first leverage a segmentation map to correct the prior pose, followed by a synthetic panorama on the ground to enable coarse pose estimation combined with a template matching method. The authors finally formulate the refine localisation process as feature matching and pose refinement to obtain the final result. The authors evaluate the performance of the CLaSP and several state-of-the-art baselines on the <i>Airloc</i> dataset, which demonstrates the effectiveness of our proposed framework.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"18 7","pages":"859-874"},"PeriodicalIF":1.5,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12285","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140986129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Longguang Wang, Juncheng Li, Naoto Yokoya, Radu Timofte, Yulan Guo
<p>Image restoration and enhancement has always been a fundamental task in computer vision and is widely used in numerous applications, such as surveillance imaging, remote sensing, and medical imaging. In recent years, remarkable progress has been witnessed with deep learning techniques. Despite the promising performance achieved on synthetic data, compelling research challenges remain to be addressed in the wild. These include: (i) degradation models for low-quality images in the real world are complicated and unknown, (ii) paired low-quality and high-quality data are difficult to acquire in the real world, and a large quantity of real data are provided in an unpaired form, (iii) it is challenging to incorporate cross-modal information provided by advanced imaging techniques (e.g. RGB-D camera) for image restoration, (iv) real-time inference on edge devices is important for image restoration and enhancement methods, and (v) it is difficult to provide the confidence or performance bounds of a learning-based method on different images/regions. This special issue invites original contributions in datasets, innovative architectures, and training methods for image restoration and enhancement to address these and other challenges.</p><p>In this Special Issue, we have received 17 papers, of which 8 papers underwent the peer review process, while the rest were desk-rejected. Among these reviewed papers, 5 papers have been accepted and 3 papers have been rejected as they did not meet the criteria of IET Computer Vision. Thus, the overall submissions were of high quality, which marks the success of this Special Issue.</p><p>The five eventually accepted papers can be clustered into two categories, namely video reconstruction and image super-resolution. The first category of papers aims at reconstructing high-quality videos. The papers in this category are of Zhang et al., Gu et al., and Xu et al. The second category of papers studies the task of image super-resolution. The papers in this category are of Dou et al. and Yang et al. A brief presentation of each of the paper in this special issue is as follows.</p><p>Zhang et al. propose a point-image fusion network for event-based frame interpolation. Temporal information in event streams plays a critical role in this task as it provides temporal context cues complementary to images. Previous approaches commonly transform the unstructured event data to structured data formats through voxelisation and then employ advanced CNNs to extract temporal information. However, the voxelisation operation inevitably leads to information loss and introduces redundant computation. To address these limitations, the proposed method directly extracts temporal information from the events at the point level without relying on any voxelisation operation. Afterwards, a fusion module is adopted to aggregate complementary cues from both points and images for frame interpolation. Experiments on both synthetic and real-world dataset
{"title":"Guest Editorial: Advanced image restoration and enhancement in the wild","authors":"Longguang Wang, Juncheng Li, Naoto Yokoya, Radu Timofte, Yulan Guo","doi":"10.1049/cvi2.12283","DOIUrl":"https://doi.org/10.1049/cvi2.12283","url":null,"abstract":"<p>Image restoration and enhancement has always been a fundamental task in computer vision and is widely used in numerous applications, such as surveillance imaging, remote sensing, and medical imaging. In recent years, remarkable progress has been witnessed with deep learning techniques. Despite the promising performance achieved on synthetic data, compelling research challenges remain to be addressed in the wild. These include: (i) degradation models for low-quality images in the real world are complicated and unknown, (ii) paired low-quality and high-quality data are difficult to acquire in the real world, and a large quantity of real data are provided in an unpaired form, (iii) it is challenging to incorporate cross-modal information provided by advanced imaging techniques (e.g. RGB-D camera) for image restoration, (iv) real-time inference on edge devices is important for image restoration and enhancement methods, and (v) it is difficult to provide the confidence or performance bounds of a learning-based method on different images/regions. This special issue invites original contributions in datasets, innovative architectures, and training methods for image restoration and enhancement to address these and other challenges.</p><p>In this Special Issue, we have received 17 papers, of which 8 papers underwent the peer review process, while the rest were desk-rejected. Among these reviewed papers, 5 papers have been accepted and 3 papers have been rejected as they did not meet the criteria of IET Computer Vision. Thus, the overall submissions were of high quality, which marks the success of this Special Issue.</p><p>The five eventually accepted papers can be clustered into two categories, namely video reconstruction and image super-resolution. The first category of papers aims at reconstructing high-quality videos. The papers in this category are of Zhang et al., Gu et al., and Xu et al. The second category of papers studies the task of image super-resolution. The papers in this category are of Dou et al. and Yang et al. A brief presentation of each of the paper in this special issue is as follows.</p><p>Zhang et al. propose a point-image fusion network for event-based frame interpolation. Temporal information in event streams plays a critical role in this task as it provides temporal context cues complementary to images. Previous approaches commonly transform the unstructured event data to structured data formats through voxelisation and then employ advanced CNNs to extract temporal information. However, the voxelisation operation inevitably leads to information loss and introduces redundant computation. To address these limitations, the proposed method directly extracts temporal information from the events at the point level without relying on any voxelisation operation. Afterwards, a fusion module is adopted to aggregate complementary cues from both points and images for frame interpolation. Experiments on both synthetic and real-world dataset","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"18 4","pages":"435-438"},"PeriodicalIF":1.7,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12283","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141246088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Siyue Lei, Bin Tang, Yanhua Chen, Mingfu Zhao, Yifei Xu, Zourong Long
Skeleton-based action recognition has received much attention and achieved remarkable achievements in the field of human action recognition. In time series action prediction for different scales, existing methods mainly focus on attention mechanisms to enhance modelling capabilities in spatial dimensions. However, this approach strongly depends on the local information of a single input feature and fails to facilitate the flow of information between channels. To address these issues, the authors propose a novel Temporal Channel Reconfiguration Multi-Graph Convolution Network (TRMGCN). In the temporal convolution part, the authors designed a module called Temporal Channel Fusion with Guidance (TCFG) to capture important temporal information within channels at different scales and avoid ignoring cross-spatio-temporal dependencies among joints. In the graph convolution part, the authors propose Top-Down Attention Multi-graph Independent Convolution (TD-MIG), which uses multi-graph independent convolution to learn the topological graph feature for different length time series. Top-down attention is introduced for spatial and channel modulation to facilitate information flow in channels that do not establish topological relationships. Experimental results on the large-scale datasets NTU-RGB + D60 and 120, as well as UAV-Human, demonstrate that TRMGCN exhibits advanced performance and capabilities. Furthermore, experiments on the smaller dataset NW-UCLA have indicated that the authors’ model possesses strong generalisation abilities.
{"title":"Temporal channel reconfiguration multi-graph convolution network for skeleton-based action recognition","authors":"Siyue Lei, Bin Tang, Yanhua Chen, Mingfu Zhao, Yifei Xu, Zourong Long","doi":"10.1049/cvi2.12279","DOIUrl":"10.1049/cvi2.12279","url":null,"abstract":"<p>Skeleton-based action recognition has received much attention and achieved remarkable achievements in the field of human action recognition. In time series action prediction for different scales, existing methods mainly focus on attention mechanisms to enhance modelling capabilities in spatial dimensions. However, this approach strongly depends on the local information of a single input feature and fails to facilitate the flow of information between channels. To address these issues, the authors propose a novel Temporal Channel Reconfiguration Multi-Graph Convolution Network (TRMGCN). In the temporal convolution part, the authors designed a module called Temporal Channel Fusion with Guidance (TCFG) to capture important temporal information within channels at different scales and avoid ignoring cross-spatio-temporal dependencies among joints. In the graph convolution part, the authors propose Top-Down Attention Multi-graph Independent Convolution (TD-MIG), which uses multi-graph independent convolution to learn the topological graph feature for different length time series. Top-down attention is introduced for spatial and channel modulation to facilitate information flow in channels that do not establish topological relationships. Experimental results on the large-scale datasets NTU-RGB + D60 and 120, as well as UAV-Human, demonstrate that TRMGCN exhibits advanced performance and capabilities. Furthermore, experiments on the smaller dataset NW-UCLA have indicated that the authors’ model possesses strong generalisation abilities.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"18 6","pages":"813-825"},"PeriodicalIF":1.5,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12279","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140693975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Instance segmentation is still challengeable to correctly distinguish different instances on overlapping, dense and large number of target objects. To address this, the authors simplify the instance segmentation problem to an instance classification problem and propose a novel end-to-end trained instance segmentation algorithm CotuNet. Firstly, the algorithm combines convolutional neural networks (CNN), Outlooker and Transformer to design a new hybrid Encoder (COT) to further feature extraction. It consists of extracting low-level features of the image using CNN, which is passed through the Outlooker to extract more refined local data representations. Then global contextual information is generated by aggregating the data representations in local space using Transformer. Finally, the combination of cascaded upsampling and skip connection modules is used as Decoders (C-UP) to enable the blend of multiple different scales of high-resolution information to generate accurate masks. By validating on the CVPPP 2017 dataset and comparing with previous state-of-the-art methods, CotuNet shows superior competitiveness and segmentation performance.
{"title":"Instance segmentation by blend U-Net and VOLO network","authors":"Hongfei Deng, Bin Wen, Rui Wang, Zuwei Feng","doi":"10.1049/cvi2.12275","DOIUrl":"10.1049/cvi2.12275","url":null,"abstract":"<p>Instance segmentation is still challengeable to correctly distinguish different instances on overlapping, dense and large number of target objects. To address this, the authors simplify the instance segmentation problem to an instance classification problem and propose a novel end-to-end trained instance segmentation algorithm CotuNet. Firstly, the algorithm combines convolutional neural networks (CNN), Outlooker and Transformer to design a new hybrid Encoder (COT) to further feature extraction. It consists of extracting low-level features of the image using CNN, which is passed through the Outlooker to extract more refined local data representations. Then global contextual information is generated by aggregating the data representations in local space using Transformer. Finally, the combination of cascaded upsampling and skip connection modules is used as Decoders (C-UP) to enable the blend of multiple different scales of high-resolution information to generate accurate masks. By validating on the CVPPP 2017 dataset and comparing with previous state-of-the-art methods, CotuNet shows superior competitiveness and segmentation performance.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"18 6","pages":"735-744"},"PeriodicalIF":1.5,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12275","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140726439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hongjian Gu, Wenxuan Zou, Keyang Cheng, Bin Wu, Humaira Abdul Ghafoor, Yongzhao Zhan
Person re-identification is aimed at searching for specific target pedestrians from non-intersecting cameras. However, in real complex scenes, pedestrians are easily obscured, which makes the target pedestrian search task time-consuming and challenging. To address the problem of pedestrians' susceptibility to occlusion, a person re-identification via deep compound eye network (CEN) and pose repair module is proposed, which includes (1) A deep CEN based on multi-camera logical topology is proposed, which adopts graph convolution and a Gated Recurrent Unit to capture the temporal and spatial information of pedestrian walking and finally carries out pedestrian global matching through the Siamese network; (2) An integrated spatial-temporal information aggregation network is designed to facilitate pose repair. The target pedestrian features under the multi-level logic topology camera are utilised as auxiliary information to repair the occluded target pedestrian image, so as to reduce the impact of pedestrian mismatch due to pose changes; (3) A joint optimisation mechanism of CEN and pose repair network is introduced, where multi-camera logical topology inference provides auxiliary information and retrieval order for the pose repair network. The authors conducted experiments on multiple datasets, including Occluded-DukeMTMC, CUHK-SYSU, PRW, SLP, and UJS-reID. The results indicate that the authors’ method achieved significant performance across these datasets. Specifically, on the CUHK-SYSU dataset, the authors’ model achieved a top-1 accuracy of 89.1% and a mean Average Precision accuracy of 83.1% in the recognition of occluded individuals.
{"title":"Person re-identification via deep compound eye network and pose repair module","authors":"Hongjian Gu, Wenxuan Zou, Keyang Cheng, Bin Wu, Humaira Abdul Ghafoor, Yongzhao Zhan","doi":"10.1049/cvi2.12282","DOIUrl":"10.1049/cvi2.12282","url":null,"abstract":"<p>Person re-identification is aimed at searching for specific target pedestrians from non-intersecting cameras. However, in real complex scenes, pedestrians are easily obscured, which makes the target pedestrian search task time-consuming and challenging. To address the problem of pedestrians' susceptibility to occlusion, a person re-identification via deep compound eye network (CEN) and pose repair module is proposed, which includes (1) A deep CEN based on multi-camera logical topology is proposed, which adopts graph convolution and a Gated Recurrent Unit to capture the temporal and spatial information of pedestrian walking and finally carries out pedestrian global matching through the Siamese network; (2) An integrated spatial-temporal information aggregation network is designed to facilitate pose repair. The target pedestrian features under the multi-level logic topology camera are utilised as auxiliary information to repair the occluded target pedestrian image, so as to reduce the impact of pedestrian mismatch due to pose changes; (3) A joint optimisation mechanism of CEN and pose repair network is introduced, where multi-camera logical topology inference provides auxiliary information and retrieval order for the pose repair network. The authors conducted experiments on multiple datasets, including Occluded-DukeMTMC, CUHK-SYSU, PRW, SLP, and UJS-reID. The results indicate that the authors’ method achieved significant performance across these datasets. Specifically, on the CUHK-SYSU dataset, the authors’ model achieved a top-1 accuracy of 89.1% and a mean Average Precision accuracy of 83.1% in the recognition of occluded individuals.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"18 6","pages":"826-841"},"PeriodicalIF":1.5,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12282","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140741587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Video frame interpolation (VFI) is a technique that synthesises intermediate frames between adjacent original video frames to enhance the temporal super-resolution of the video. However, existing methods usually rely on heavy model architectures with a large number of parameters. The authors introduce an efficient VFI network based on multiple lightweight convolutional units and a Local three-scale encoding (LTSE) structure. In particular, the authors introduce a LTSE structure with two-level attention cascades. This design is tailored to enhance the efficient capture of details and contextual information across diverse scales in images. Secondly, the authors introduce recurrent convolutional layers (RCL) and residual operations, designing the recurrent residual convolutional unit to optimise the LTSE structure. Additionally, a lightweight convolutional unit named separable recurrent residual convolutional unit is introduced to reduce the model parameters. Finally, the authors obtain the three-scale decoding features from the decoder and warp them for a set of three-scale pre-warped maps. The authors fuse them into the synthesis network to generate high-quality interpolated frames. The experimental results indicate that the proposed approach achieves superior performance with fewer model parameters.
{"title":"Video frame interpolation via spatial multi-scale modelling","authors":"Zhe Qu, Weijing Liu, Lizhen Cui, Xiaohui Yang","doi":"10.1049/cvi2.12281","DOIUrl":"10.1049/cvi2.12281","url":null,"abstract":"<p>Video frame interpolation (VFI) is a technique that synthesises intermediate frames between adjacent original video frames to enhance the temporal super-resolution of the video. However, existing methods usually rely on heavy model architectures with a large number of parameters. The authors introduce an efficient VFI network based on multiple lightweight convolutional units and a Local three-scale encoding (LTSE) structure. In particular, the authors introduce a LTSE structure with two-level attention cascades. This design is tailored to enhance the efficient capture of details and contextual information across diverse scales in images. Secondly, the authors introduce recurrent convolutional layers (RCL) and residual operations, designing the recurrent residual convolutional unit to optimise the LTSE structure. Additionally, a lightweight convolutional unit named separable recurrent residual convolutional unit is introduced to reduce the model parameters. Finally, the authors obtain the three-scale decoding features from the decoder and warp them for a set of three-scale pre-warped maps. The authors fuse them into the synthesis network to generate high-quality interpolated frames. The experimental results indicate that the proposed approach achieves superior performance with fewer model parameters.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"18 4","pages":"458-472"},"PeriodicalIF":1.7,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12281","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140746884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}