Pub Date : 2024-03-26DOI: 10.1007/s11483-024-09837-7
Onur Civil, Levent Şen, Aslıhan Demirdöven
Aflatoxins (AFs) are toxic secondary metabolites of filamentous fungi which can reduce the quality of several food commodities like hazelnut and hazelnut products. For the AFs, the data were fitted to polynomial response models using multiple regression analysis, resulting in high coefficients of determination (R2 values ranging from 0.8917 to 0.9674) for each type of aflatoxins. The optimal conditions for achieving maximum degradation percentages for total aflatoxins (AFT) and AFB1 were determined to be US power of 80W, enzyme treatment of 2.5 U g sample, and 20 min of US application for 12.5 µg kg AFT conditions after graphical and numerical optimizations. The optimum conditions resulted in 44.33% and 45.58% degradation for AFT% and AFB1 respectively, with predicted values of 43.93% and 44.17% for AFT% and AFB1. The data exhibited that, enzyme treatments were not significant for degradation for AFB1% and AFT%, whereas significant for AFB2 and AFG2. Depending on the initial AFT concentration, more than 50% degradation rate was achieved by current design parameters. Study results indicated that US treatment can alter certain quality parameters of hazelnut paste, including changes in aroma, a decrease in browning index, and a slight increase in peroxide value.
摘要 黄曲霉毒素(AFs)是丝状真菌的有毒次级代谢产物,会降低多种食品(如榛子和榛子制品)的质量。对于 AFs,采用多元回归分析法将数据拟合到多项式响应模型中,结果发现每种黄曲霉毒素的决定系数都很高(R2 值从 0.8917 到 0.9674 不等)。经过图形和数值优化后,确定总黄曲霉毒素(AFT)和 AFB1 降解率最高的最佳条件是 US 功率为 80W,酶处理量为 2.5 U g 样品,以及在 12.5 µg kg AFT 条件下使用 US 20 分钟。最佳条件下,AFT% 和 AFB1 的降解率分别为 44.33% 和 45.58%,预测值分别为 43.93% 和 44.17%。数据显示,酶处理对 AFB1% 和 AFT% 的降解作用不明显,而对 AFB2 和 AFG2 的降解作用明显。根据初始 AFT 浓度的不同,目前的设计参数可实现 50% 以上的降解率。研究结果表明,US 处理可改变榛子酱的某些质量参数,包括香味的变化、褐变指数的降低和过氧化值的轻微升高。
{"title":"Investigating the Effect of Glucoamylase Enzyme Treatment and Continuous Ultrasound Application on Quality Characteristics and Aflatoxins Degradation of Hazelnut Paste by Box-Behnken Response Surface Design","authors":"Onur Civil, Levent Şen, Aslıhan Demirdöven","doi":"10.1007/s11483-024-09837-7","DOIUrl":"10.1007/s11483-024-09837-7","url":null,"abstract":"<div><p>Aflatoxins (AFs) are toxic secondary metabolites of filamentous fungi which can reduce the quality of several food commodities like hazelnut and hazelnut products. For the AFs, the data were fitted to polynomial response models using multiple regression analysis, resulting in high coefficients of determination (R<sup>2</sup> values ranging from 0.8917 to 0.9674) for each type of aflatoxins. The optimal conditions for achieving maximum degradation percentages for total aflatoxins (AFT) and AFB1 were determined to be US power of 80W, enzyme treatment of 2.5 U g sample, and 20 min of US application for 12.5 µg kg AFT conditions after graphical and numerical optimizations. The optimum conditions resulted in 44.33% and 45.58% degradation for AFT% and AFB1 respectively, with predicted values of 43.93% and 44.17% for AFT% and AFB1. The data exhibited that, enzyme treatments were not significant for degradation for AFB1% and AFT%, whereas significant for AFB2 and AFG2. Depending on the initial AFT concentration, more than 50% degradation rate was achieved by current design parameters. Study results indicated that US treatment can alter certain quality parameters of hazelnut paste, including changes in aroma, a decrease in browning index, and a slight increase in peroxide value.</p></div>","PeriodicalId":564,"journal":{"name":"Food Biophysics","volume":"19 2","pages":"471 - 489"},"PeriodicalIF":2.8,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140298307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this study, kefir-containing healthy snacks were produced by using 3D food printing technique. Although kefir has many important health benefits, its consumption is quite low. It was thought that kefir-containing snacks in attractive shapes produced with a 3D food printer could increase the kefir consumption. For this purpose, disintegrated kefir gels prepared with starch, gelatin and alginate were used as inks. First, the minimum gelation concentration (C*) of each gelator was determined. Then, disintegrated gels with concentrations of C*, C*+1%, and C*+2% were prepared with each gelator and the effect of gelator concentration on printing quality was investigated for each gelator. Printing quality was associated with storage modulus, loss factor and flow behavior, and the minimum gelator concentration required for a suitable formulation for 3D printing (highest printability and dimensional stability) was determined as 5%, 6% and 3% for starch, gelatin and alginate, respectively. Lactobacillus spp. and Lactococcus spp. contents of the starch-based sample were found to be significantly lower than those of fresh kefir and gelatin and alginate-based samples. Sensory properties and consumer appreciation were lower for the gelatin-based sample. Due to the high printing quality (98% printability and 99% dimensional stability), high probiotic content (7.81 and 8.13 log cfu/ml Lactobacillus spp. and Lactococcus spp. content, respectively) and high consumer appreciation (4.71 out of 5 for general acceptance), alginate-based sample (containing 3% alginate) was chosen as the best sample. In conclusion, new, chewable, alive, alternative kefir products were successfully developed for consumers seeking new ways of kefir consumption.
{"title":"Preparation and Characterization of 3D Printed Objects Based on Different Kefir Gels","authors":"Selçuk Ok, Emin Yilmaz, Nükhet Nilüfer Demirel Zorba","doi":"10.1007/s11483-024-09839-5","DOIUrl":"10.1007/s11483-024-09839-5","url":null,"abstract":"<div><p>In this study, kefir-containing healthy snacks were produced by using 3D food printing technique. Although kefir has many important health benefits, its consumption is quite low. It was thought that kefir-containing snacks in attractive shapes produced with a 3D food printer could increase the kefir consumption. For this purpose, disintegrated kefir gels prepared with starch, gelatin and alginate were used as inks. First, the minimum gelation concentration (C*) of each gelator was determined. Then, disintegrated gels with concentrations of C*, C*+1%, and C*+2% were prepared with each gelator and the effect of gelator concentration on printing quality was investigated for each gelator. Printing quality was associated with storage modulus, loss factor and flow behavior, and the minimum gelator concentration required for a suitable formulation for 3D printing (highest printability and dimensional stability) was determined as 5%, 6% and 3% for starch, gelatin and alginate, respectively. <i>Lactobacillus</i> spp. and <i>Lactococcus</i> spp. contents of the starch-based sample were found to be significantly lower than those of fresh kefir and gelatin and alginate-based samples. Sensory properties and consumer appreciation were lower for the gelatin-based sample. Due to the high printing quality (98% printability and 99% dimensional stability), high probiotic content (7.81 and 8.13 log cfu/ml <i>Lactobacillus</i> spp. and <i>Lactococcus</i> spp. content, respectively) and high consumer appreciation (4.71 out of 5 for general acceptance), alginate-based sample (containing 3% alginate) was chosen as the best sample. In conclusion, new, chewable, alive, alternative kefir products were successfully developed for consumers seeking new ways of kefir consumption.</p></div>","PeriodicalId":564,"journal":{"name":"Food Biophysics","volume":"19 2","pages":"453 - 470"},"PeriodicalIF":2.8,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11483-024-09839-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140298189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-23DOI: 10.1007/s11483-024-09836-8
Yakoub Ladjal-Ettoumi, Lina Hadjer Douik, Meriem Hamadi, Johar Amin Ahmed Abdullah, Zakaria Cherifi, Mohamed Nadir Keddar, Mahammed Zidour, Akmal Nazir
In this study, microalgae proteins (Spirulina and Chlorella) were extracted, characterized, and investigated for their potential techno-functionalities. The proteins from the microalgae biomass were extracted by alkaline solubilization followed by iso-electric precipitation. Subsequently, their physicochemical characteristics (microstructure, thermal stability, secondary structure, and crystallinity) and functional properties (protein solubility, water and oil holding capacities, as well as emulsifying and foaming properties) were investigated. Spirulina biomass resulted in a high extraction yield (37%), giving a protein isolate containing 90% of proteins. Both Spirulina and Chlorella protein extracts displayed high thermal stability. FTIR analysis revealed a clear difference in the secondary structure of the protein extracts. A slight difference in microstructure was noted between the two proteins, but both had small particle sizes and uniform dispersity. Spirulina proteins were more crystalline (53%) than the Chlorella proteins (36%). Spirulina showed better functional properties (protein solubility, emulsifying, and foaming properties) compared to Chlorella. We observed that the Spirulina protein had more water-holding capacity than the Chlorella protein, while the latter also showed appreciable oil-holding capacity. These findings suggest that the microalgal proteins could be useful in the food industry.
{"title":"Physicochemical and Functional Properties of Spirulina and Chlorella Proteins Obtained by Iso-Electric Precipitation","authors":"Yakoub Ladjal-Ettoumi, Lina Hadjer Douik, Meriem Hamadi, Johar Amin Ahmed Abdullah, Zakaria Cherifi, Mohamed Nadir Keddar, Mahammed Zidour, Akmal Nazir","doi":"10.1007/s11483-024-09836-8","DOIUrl":"10.1007/s11483-024-09836-8","url":null,"abstract":"<div><p>In this study, microalgae proteins (<i>Spirulina</i> and <i>Chlorella</i>) were extracted, characterized, and investigated for their potential techno-functionalities. The proteins from the microalgae biomass were extracted by alkaline solubilization followed by iso-electric precipitation. Subsequently, their physicochemical characteristics (microstructure, thermal stability, secondary structure, and crystallinity) and functional properties (protein solubility, water and oil holding capacities, as well as emulsifying and foaming properties) were investigated. <i>Spirulina</i> biomass resulted in a high extraction yield (37%), giving a protein isolate containing 90% of proteins. Both <i>Spirulina</i> and <i>Chlorella</i> protein extracts displayed high thermal stability. FTIR analysis revealed a clear difference in the secondary structure of the protein extracts. A slight difference in microstructure was noted between the two proteins, but both had small particle sizes and uniform dispersity. <i>Spirulina</i> proteins were more crystalline (53%) than the <i>Chlorella</i> proteins (36%). <i>Spirulina</i> showed better functional properties (protein solubility, emulsifying, and foaming properties) compared to <i>Chlorella</i>. We observed that the <i>Spirulina</i> protein had more water-holding capacity than the <i>Chlorella</i> protein, while the latter also showed appreciable oil-holding capacity. These findings suggest that the microalgal proteins could be useful in the food industry.</p></div>","PeriodicalId":564,"journal":{"name":"Food Biophysics","volume":"19 2","pages":"439 - 452"},"PeriodicalIF":2.8,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140201860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-23DOI: 10.1007/s11483-024-09832-y
Bahareh Javadi, Mohammad Mohsenzadeh
In this study, we successfully fabricated vanillin (VAN) incorporated poly (ethylene oxide) (PEO) and whey protein isolate (WPI) nanofibers and optimized the preparation conditions. The nanofibers were prepared at different percentages of PEO/WPI/VAN, and the characterization techniques of XRD, FTIR, FESEM, and DSC were employed to analyze the samples. Additionally, mechanical properties, and physicochemical were measured to identify the critical factors for nanofiber optimization. The best parameters observed at a PEO 10%: WPI 3% ratio of 80:20, producing narrower and smoother fibers (average diameter of 264.07 nm; additionally, the addition of VAN to the optimal PEO/WPI ratio (80:20) decreased fiber diameter. Furthermore, vanillin was incorporated into the optimized PEO/WPI nanofibers at concentrations of 1MIC (10 mg/mL) and 2MIC (20 mg/mL) to evaluate their antioxidant and antibacterial abilities before and after electrospinning. In summery, these findings suggest that the PEO/WPI nanofibers, with the addition of VAN, hold potential as a promising platform for future applications in the food and drug industries. Further research can build upon these findings to explore the specific functionalities and applications of these nanofibers in greater detail.
{"title":"Electrospun PEO/WPI Nanofibers with Vanillin for Food Applications","authors":"Bahareh Javadi, Mohammad Mohsenzadeh","doi":"10.1007/s11483-024-09832-y","DOIUrl":"10.1007/s11483-024-09832-y","url":null,"abstract":"<div><p>In this study, we successfully fabricated vanillin (VAN) incorporated poly (ethylene oxide) (PEO) and whey protein isolate (WPI) nanofibers and optimized the preparation conditions. The nanofibers were prepared at different percentages of PEO/WPI/VAN, and the characterization techniques of XRD, FTIR, FESEM, and DSC were employed to analyze the samples. Additionally, mechanical properties, and physicochemical were measured to identify the critical factors for nanofiber optimization. The best parameters observed at a PEO 10%: WPI 3% ratio of 80:20, producing narrower and smoother fibers (average diameter of 264.07 nm; additionally, the addition of VAN to the optimal PEO/WPI ratio (80:20) decreased fiber diameter. Furthermore, vanillin was incorporated into the optimized PEO/WPI nanofibers at concentrations of 1MIC (10 mg/mL) and 2MIC (20 mg/mL) to evaluate their antioxidant and antibacterial abilities before and after electrospinning. In summery, these findings suggest that the PEO/WPI nanofibers, with the addition of VAN, hold potential as a promising platform for future applications in the food and drug industries. Further research can build upon these findings to explore the specific functionalities and applications of these nanofibers in greater detail.</p></div>","PeriodicalId":564,"journal":{"name":"Food Biophysics","volume":"19 2","pages":"425 - 438"},"PeriodicalIF":2.8,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140201633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01DOI: 10.1007/s11483-024-09833-x
Regina De Matteo, Juan M. Rey, Rocío Corfield, Victoria A. Gómez Andrade, Patricio R. Santagapita, Florencia Di Salvo, Oscar E. Pérez
The objective of this research was to obtain and characterize chitosan (CS) based matrices conceived as folic acid (FA) dried reservoir that could find application as food coating upon rehydration. An Argentinean and high molecular weight (MW) chitosan (AC) was used and contrasted with a commercial type one (CC). FTIR and XRD were applied for the polysaccharide-vitamin dried mixed systems characterization. Shifts in bands of FA and AC or CC were observed in the mixed systems, confirming the interaction among the components, for example, the bands at 1382 and 1391 cm− 1 (AC and FA, respectively) shifted to 1387 cm–1 in the in AC-FA mixed systems. XRD data showed that the FA is in its protonated form as expected and is maintained in the different mixed systems obtained using either with CC or AC, demonstrating the robustness and applicability of the material to properly conserve the active ingredient.
The ultrastructure and topography were studied by SEM and AFM, respectively. FA incrustations in a self-associated form were observed in the topography images. Variations in topography observed for the AC-FA and CC-FA mixed systems could be attributed to specific interactions between the components and the molecular features of each CS (i.e. the mean particle size was 63 ± 3 and 9 ± 1 nm and, roughness gave values of 0.47 and 0.41 nm, respectively).
Vitamin bioaccessibility remained unchanged compared to the control (88.36% ±10.35%), being equal to 91.08% ± 5.02% for AC-FA and 71.56% ±14.08% for CC-FA, after submitted samples to an in vitro digestion process. In sum, mixed AC-FA systems obtained are promising materials for a possible additional application in coating matrices inspired by biopolymers to improve food preservation, maintaining the bioaccessibility of vitamins.
摘要 这项研究的目的是获得和表征壳聚糖(CS)基质,并将其设想为叶酸(FA)干燥储层,可在再水化后用作食品涂层。研究中使用了阿根廷产的高分子量壳聚糖(AC),并将其与商用壳聚糖(CC)进行对比。傅立叶变换红外光谱(FTIR)和 X 射线衍射(XRD)被用于多糖-维生素干混合体系的表征。在混合体系中观察到 FA 和 AC 或 CC 的条带发生了移动,证实了各组分之间的相互作用,例如,在 AC-FA 混合体系中,1382 和 1391 cm- 1(分别为 AC 和 FA)处的条带移动到了 1387 cm-1。XRD 数据显示,在使用 CC 或 AC 得到的不同混合体系中,FA 如预期的那样处于质子化形式,并保持不变,这证明了该材料在适当保存活性成分方面的稳健性和适用性。扫描电镜和原子力显微镜分别对超微结构和形貌进行了研究。在形貌图像中观察到了自结合形式的 FA 结壳。在 AC-FA 和 CC-FA 混合体系中观察到的形貌变化可归因于成分之间的特定相互作用和每种 CS 的分子特征(即平均粒径分别为 63 ± 3 和 9 ± 1 nm,粗糙度值分别为 0.47 和 0.41 nm)。与对照组(88.36%±10.35%)相比,维生素的生物可及性保持不变,经过体外消化过程后,AC-FA 的生物可及性为 91.08% ± 5.02%,CC-FA 的生物可及性为 71.56% ± 14.08%。总之,所获得的 AC-FA 混合体系是一种很有前景的材料,有可能进一步应用于受生物聚合物启发的涂层基质中,以改善食品保存,保持维生素的生物可及性。
{"title":"Chitosan-inspired Matrices for Folic Acid. Insightful Structural Characterization and Ensured Bioaccessibility","authors":"Regina De Matteo, Juan M. Rey, Rocío Corfield, Victoria A. Gómez Andrade, Patricio R. Santagapita, Florencia Di Salvo, Oscar E. Pérez","doi":"10.1007/s11483-024-09833-x","DOIUrl":"10.1007/s11483-024-09833-x","url":null,"abstract":"<div><p>The objective of this research was to obtain and characterize chitosan (CS) based matrices conceived as folic acid (FA) dried reservoir that could find application as food coating upon rehydration. An Argentinean and high molecular weight (MW) chitosan (AC) was used and contrasted with a commercial type one (CC). FTIR and XRD were applied for the polysaccharide-vitamin dried mixed systems characterization. Shifts in bands of FA and AC or CC were observed in the mixed systems, confirming the interaction among the components, for example, the bands at 1382 and 1391 cm<sup>− 1</sup> (AC and FA, respectively) shifted to 1387 cm<sup>–1</sup> in the in AC-FA mixed systems. XRD data showed that the FA is in its protonated form as expected and is maintained in the different mixed systems obtained using either with CC or AC, demonstrating the robustness and applicability of the material to properly conserve the active ingredient.</p><p>The ultrastructure and topography were studied by SEM and AFM, respectively. FA incrustations in a self-associated form were observed in the topography images. Variations in topography observed for the AC-FA and CC-FA mixed systems could be attributed to specific interactions between the components and the molecular features of each CS (i.e. the mean particle size was 63 ± 3 and 9 ± 1 nm and, roughness gave values of 0.47 and 0.41 nm, respectively).</p><p>Vitamin bioaccessibility remained unchanged compared to the control (88.36% ±10.35%), being equal to 91.08% ± 5.02% for AC-FA and 71.56% ±14.08% for CC-FA, after submitted samples to an in vitro digestion process. In sum, mixed AC-FA systems obtained are promising materials for a possible additional application in coating matrices inspired by biopolymers to improve food preservation, maintaining the bioaccessibility of vitamins.</p></div>","PeriodicalId":564,"journal":{"name":"Food Biophysics","volume":"19 2","pages":"412 - 424"},"PeriodicalIF":2.8,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140016787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Konjac glucomannan (KGM) is commonly blended with κ-carrageenan to improve the gel properties of food, which are mostly influenced by KGM purification. Control of ethanol pH for KGM purification is an easy and simple option to modify the properties of KGM, that tends to alter the gel properties of κ-carrageenan/KGM blends. In this study, the effect of ethanol at different pH (ranging from 2.5 to 12.5) on KGM was investigated, and the gels of κ-carrageenan with KGM purified by ethanol at different pH were prepared with microwave heating. With KGM purified with ethanol between pH 5.5 and 9.5, κ-carrageenan/KGM blends exhibited higher gel strength, hardness and water holding capacity than those of gel with native KGM, which was much related with the removal of impurity, the increased viscosity and altered structure of KGM, enhancing the interaction between κ-carrageenan and KGM. Poor gel properties of the blends were observed with KGM purified with ethanol at pH between 2.5 and 4.5 caused by KGM degradation, or at pH 12.5 due to the removal of acetyl groups. Thus, control of ethanol pH during KGM purification can easily and simply optimize the gel characteristics of κ-carrageenan/KGM blends to meet desired application requirements.
{"title":"Improving Gel Properties of Glucomannan/κ-carrageenan Blends by Controlling Ethanol pH for Glucomannan Purification","authors":"Mingjing Zheng, Yiman Wei, Xiaojia Jiao, Zedong Jiang, Hui Ni, Qingbiao Li, Yanbing Zhu","doi":"10.1007/s11483-024-09831-z","DOIUrl":"10.1007/s11483-024-09831-z","url":null,"abstract":"<div><p>Konjac glucomannan (KGM) is commonly blended with κ-carrageenan to improve the gel properties of food, which are mostly influenced by KGM purification. Control of ethanol pH for KGM purification is an easy and simple option to modify the properties of KGM, that tends to alter the gel properties of κ-carrageenan/KGM blends. In this study, the effect of ethanol at different pH (ranging from 2.5 to 12.5) on KGM was investigated, and the gels of κ-carrageenan with KGM purified by ethanol at different pH were prepared with microwave heating. With KGM purified with ethanol between pH 5.5 and 9.5, κ-carrageenan/KGM blends exhibited higher gel strength, hardness and water holding capacity than those of gel with native KGM, which was much related with the removal of impurity, the increased viscosity and altered structure of KGM, enhancing the interaction between κ-carrageenan and KGM. Poor gel properties of the blends were observed with KGM purified with ethanol at pH between 2.5 and 4.5 caused by KGM degradation, or at pH 12.5 due to the removal of acetyl groups. Thus, control of ethanol pH during KGM purification can easily and simply optimize the gel characteristics of κ-carrageenan/KGM blends to meet desired application requirements.</p></div>","PeriodicalId":564,"journal":{"name":"Food Biophysics","volume":"19 2","pages":"400 - 411"},"PeriodicalIF":2.8,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139909973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-14DOI: 10.1007/s11483-024-09830-0
Bruna Trindade Paim, Cristina Jansen-Alves, Alexandra Lizandra Gomes Rosas, Thamyres Cesar de Albuquerque Sousa, Yasmin Völz Bezerra Massaut, Vandressa Alves, Gustavo Henrique Fidelis dos Santos, Vinícius Gonçalves Deon, Vania Zanella Pinto, Adriana Dillenburg Meinhart
The Ilex paraguariensis, known as yerba-mate, is widely consumed as a hot or cold infusion in South America. Every year during the leaves harvesting, a rate of 5 tons/ha of branches is generated due to the tree trimming. The epidermis of these branches (IPC) is characterized by a high concentration of chlorogenic acids. Due to its promising high compound concentration, IPC extract is well-suited for various applications, and its preservation is particularly crucial, especially in bakery goods. This study aimed to optimize the spray-drying encapsulation of IPC extract to enhance the stability of chlorogenic acids for baked product applications. Through multivariate design, the optimal encapsulation conditions were determined, resulting in 75% encapsulation efficiency (%EE), 66.5% loading capacity (%LC), a 41 ºC increase in thermal stability, and particles with an average diameter of up to 5 µm. In sponge cakes formulated with encapsulated IPC extract (IPCE), an average of 94.4% of chlorogenic acids was preserved, compared to only 69.3% when free-IPC extract was used. Furthermore, the chlorogenic acids in IPCE exhibited excellent stability over 12 months when stored at 4ºC. Spray-drying encapsulation proved to be a rapid and effective process for the food industry, preserving chlorogenic acids for at least one year during storage under conditions that would naturally lead to degradation. These findings encourage the application of encapsulates to enhance the functionality of foods and add value to a naturally neglected commercial product.
{"title":"Does the Encapsulation of Chlorogenic Acids from Ilex paraguariensis Co-Product by Spray-Drying Increase Their Stability?","authors":"Bruna Trindade Paim, Cristina Jansen-Alves, Alexandra Lizandra Gomes Rosas, Thamyres Cesar de Albuquerque Sousa, Yasmin Völz Bezerra Massaut, Vandressa Alves, Gustavo Henrique Fidelis dos Santos, Vinícius Gonçalves Deon, Vania Zanella Pinto, Adriana Dillenburg Meinhart","doi":"10.1007/s11483-024-09830-0","DOIUrl":"10.1007/s11483-024-09830-0","url":null,"abstract":"<div><p>The <i>Ilex paraguariensis</i>, known as yerba-mate, is widely consumed as a hot or cold infusion in South America. Every year during the leaves harvesting, a rate of 5 tons/ha of branches is generated due to the tree trimming. The epidermis of these branches (IPC) is characterized by a high concentration of chlorogenic acids. Due to its promising high compound concentration, IPC extract is well-suited for various applications, and its preservation is particularly crucial, especially in bakery goods. This study aimed to optimize the spray-drying encapsulation of IPC extract to enhance the stability of chlorogenic acids for baked product applications. Through multivariate design, the optimal encapsulation conditions were determined, resulting in 75% encapsulation efficiency (%EE), 66.5% loading capacity (%LC), a 41 ºC increase in thermal stability, and particles with an average diameter of up to 5 µm. In sponge cakes formulated with encapsulated IPC extract (IPCE), an average of 94.4% of chlorogenic acids was preserved, compared to only 69.3% when free-IPC extract was used. Furthermore, the chlorogenic acids in IPCE exhibited excellent stability over 12 months when stored at 4ºC. Spray-drying encapsulation proved to be a rapid and effective process for the food industry, preserving chlorogenic acids for at least one year during storage under conditions that would naturally lead to degradation. These findings encourage the application of encapsulates to enhance the functionality of foods and add value to a naturally neglected commercial product.</p></div>","PeriodicalId":564,"journal":{"name":"Food Biophysics","volume":"19 2","pages":"386 - 399"},"PeriodicalIF":2.8,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139768476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-08DOI: 10.1007/s11483-023-09825-3
Le Deng, Matt Golding, Roger Lentle, Alastair MacGibbon, Lara Matia-Merino
This study has sought to determine the impact of interfacial dynamics on the in vitro lipid digestion of a commercial infant formula; in particular, the specific role of interfacial proteolysis on the subsequent rates of reaction of droplet lipolysis. A powder infant formula was used as the as a protein-stabilised emulsion substrate during simulated infant gastric digestion at different pH level 3.5, 4.5 and 5.5. The digestate was treated with a fungal lipase and porcine pepsin (used to analogue human gastric lipase and pepsin) respectively and in a combined action. The study found that for fungal lipase treated digestate, the rate and extent of lipolysis were observed to be maxim at pH 5.5, in accordance with the optimal pH activity of the lipase. Findings also indicated that the proteinaceous interface did not appear to act as a barrier to lipolysis, since treatment with lipase and pepsin did not result in any significant increase in extent of lipolysis. However, it was observed that surface proteolysis did lead to alteration of the structural fate of the enzyme during digestion when compared to when the emulsion was digested solely by lipase. Findings suggest that lipolysis under these conditions may be independent of the structural dynamics of the emulsion during digestion, as observed within the context of this study design.
{"title":"The Role of Gastric Lipase and Pepsin in Lipid Digestion of a Powder Infant Formula Using a Simulated Neonatal Gastric System","authors":"Le Deng, Matt Golding, Roger Lentle, Alastair MacGibbon, Lara Matia-Merino","doi":"10.1007/s11483-023-09825-3","DOIUrl":"10.1007/s11483-023-09825-3","url":null,"abstract":"<div><p>This study has sought to determine the impact of interfacial dynamics on the <i>in vitro</i> lipid digestion of a commercial infant formula; in particular, the specific role of interfacial proteolysis on the subsequent rates of reaction of droplet lipolysis. A powder infant formula was used as the as a protein-stabilised emulsion substrate during simulated infant gastric digestion at different <i>p</i>H level 3.5, 4.5 and 5.5. The digestate was treated with a fungal lipase and porcine pepsin (used to analogue human gastric lipase and pepsin) respectively and in a combined action. The study found that for fungal lipase treated digestate, the rate and extent of lipolysis were observed to be maxim at <i>p</i>H 5.5, in accordance with the optimal pH activity of the lipase. Findings also indicated that the proteinaceous interface did not appear to act as a barrier to lipolysis, since treatment with lipase and pepsin did not result in any significant increase in extent of lipolysis. However, it was observed that surface proteolysis did lead to alteration of the structural fate of the enzyme during digestion when compared to when the emulsion was digested solely by lipase. Findings suggest that lipolysis under these conditions may be independent of the structural dynamics of the emulsion during digestion, as observed within the context of this study design.</p></div>","PeriodicalId":564,"journal":{"name":"Food Biophysics","volume":"19 2","pages":"369 - 385"},"PeriodicalIF":2.8,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11483-023-09825-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139768594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-07DOI: 10.1007/s11483-024-09829-7
Danni Sun, Feijie Wang, Suyang Wang, Liqiang Wang
Yogurt is popular among consumers because of its unique flavor and rich nutrition, but the residue of yogurt in the package causes a huge waste of resources and economic losses. To reduce yogurt residues in packaging, a green and safe anti-adhesion coating was assembled using beeswax and modified hydrophobic zinc oxide spray. The water contact angle of the coating reached up to 156.45° and up to 150.64° for yogurt, with a sliding angle of 4.50°, exhibiting good anti-adhesion ability. During actual storage, yogurt adhesion in the package was reduced by 93.73% and the coating had no negative effect on the quality of yogurt. The study showed that a secure anti-adhesion coating that is resistant to acidic environments and refrigeration temperatures and suitable for a variety of material surfaces can be prepared by a simple spraying process, providing a new approach to solving the yogurt adhesion problem.
{"title":"Anti-adhesive Coating with Natural Materials Application for Yogurt Storage","authors":"Danni Sun, Feijie Wang, Suyang Wang, Liqiang Wang","doi":"10.1007/s11483-024-09829-7","DOIUrl":"10.1007/s11483-024-09829-7","url":null,"abstract":"<div><p>Yogurt is popular among consumers because of its unique flavor and rich nutrition, but the residue of yogurt in the package causes a huge waste of resources and economic losses. To reduce yogurt residues in packaging, a green and safe anti-adhesion coating was assembled using beeswax and modified hydrophobic zinc oxide spray. The water contact angle of the coating reached up to 156.45° and up to 150.64° for yogurt, with a sliding angle of 4.50°, exhibiting good anti-adhesion ability. During actual storage, yogurt adhesion in the package was reduced by 93.73% and the coating had no negative effect on the quality of yogurt. The study showed that a secure anti-adhesion coating that is resistant to acidic environments and refrigeration temperatures and suitable for a variety of material surfaces can be prepared by a simple spraying process, providing a new approach to solving the yogurt adhesion problem.</p></div>","PeriodicalId":564,"journal":{"name":"Food Biophysics","volume":"19 2","pages":"360 - 368"},"PeriodicalIF":2.8,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139797557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-30DOI: 10.1007/s11483-024-09827-9
Elif Meltem Işçimen, Mehmet Hayta
Legume proteins were utilized in this study to electrospin an bioactive component for use in food packaging. Firstly, the protein extraction from legumes with ultrasound assistance with the use of deep eutectic solvents (UA-DES) has been studied. The optimum extraction conditions were determined. Secondly, lentil protein isolate (LPI) and chickpea protein isolate (CPI) produced by the UA-DES were used in nanofiber production by electrospinning using polyvinyl alcohol (PVA) at different ratios. Lastly, the usability of fibers obtained from protein isolates and PVA in coating bioactive components was tested using ferulic acid (FA). The encapsulation properties of nanofibers produced at a ratio of 50:50 (PVA:PI) were investigated. The characteristic and antibacterial properties and release kinetics of the produced FA-loaded nanofibers were evaluated. The distribution of FA within the fibers was confirmed by fluorescence microscopy. Furthermore, the antibacterial properties were proven and the release kinetics of the produced FA-loaded fibers in different food simulants were determined. As a result, the final encapsulated material obtained by coating FA with nanofibers created with PVA and LPI-CPI mixtures might have suitable properties which may be used in various food applications.
本研究利用豆类蛋白质电纺出一种生物活性成分,用于食品包装。首先,研究了利用超声波辅助深共晶溶剂(UA-DES)从豆科植物中提取蛋白质。确定了最佳提取条件。其次,将 UA-DES 生产的扁豆分离蛋白(LPI)和鹰嘴豆分离蛋白(CPI)用于使用聚乙烯醇(PVA)以不同比例电纺丝生产纳米纤维。最后,使用阿魏酸(FA)测试了由蛋白质分离物和 PVA 制成的纤维在包覆生物活性成分方面的可用性。研究了以 50:50 的比例(PVA:PI)生产的纳米纤维的封装特性。评估了所制得的含 FA 纳米纤维的特性、抗菌性能和释放动力学。荧光显微镜证实了 FA 在纤维中的分布。此外,还证明了所制备的含 FA 纳米纤维的抗菌特性,并测定了其在不同食品模拟物中的释放动力学。因此,将 FA 包覆在用 PVA 和 LPI-CPI 混合物制成的纳米纤维上得到的最终封装材料可能具有合适的特性,可用于各种食品应用。
{"title":"Fabrication of Legume Protein Isolate-Polyvinyl Alcohol Nanofibers Incorporated with Ferulic Acid","authors":"Elif Meltem Işçimen, Mehmet Hayta","doi":"10.1007/s11483-024-09827-9","DOIUrl":"10.1007/s11483-024-09827-9","url":null,"abstract":"<div><p>Legume proteins were utilized in this study to electrospin an bioactive component for use in food packaging. Firstly, the protein extraction from legumes with ultrasound assistance with the use of deep eutectic solvents (UA-DES) has been studied. The optimum extraction conditions were determined. Secondly, lentil protein isolate (LPI) and chickpea protein isolate (CPI) produced by the UA-DES were used in nanofiber production by electrospinning using polyvinyl alcohol (PVA) at different ratios. Lastly, the usability of fibers obtained from protein isolates and PVA in coating bioactive components was tested using ferulic acid (FA). The encapsulation properties of nanofibers produced at a ratio of 50:50 (PVA:PI) were investigated. The characteristic and antibacterial properties and release kinetics of the produced FA-loaded nanofibers were evaluated. The distribution of FA within the fibers was confirmed by fluorescence microscopy. Furthermore, the antibacterial properties were proven and the release kinetics of the produced FA-loaded fibers in different food simulants were determined. As a result, the final encapsulated material obtained by coating FA with nanofibers created with PVA and LPI-CPI mixtures might have suitable properties which may be used in various food applications.</p></div>","PeriodicalId":564,"journal":{"name":"Food Biophysics","volume":"19 2","pages":"347 - 359"},"PeriodicalIF":2.8,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139647734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}