Pub Date : 2024-08-26DOI: 10.1007/s11705-024-2492-3
Haiping Yang, Zhiqiang Chen, Yi Zhang, Biao Liu, Yang Yang, Ziyue Tang, Yingquan Chen, Hanping Chen
Alkali metals (AMs) play an important role in biomass pyrolysis, and it is important to explore their catalytic effects so to better utilize biomass pyrolysis. This study analyzed the catalytic influence of K and Na with different anions (Cl−, SO42−, and CO32−) on biomass pyrolysis, and explored the influence on the pyrolytic mechanism. AM chlorides (NaCl and KCl), sulfates (Na2SO4 and K2SO4) and carbonates (Na2CO3 and K2CO3) were mixed with cellulose and bamboo feedstocks at a mass ratio of 20 wt %, in order to maximize their potential on in situ upgrading of the pyrolysis products. AM chlorides had little effect on the pyrolysis products, whereas sulfates slightly promoted the yields of char and gas, and had a positive effect on the composition of the gaseous and liquid products. Carbonates noticeably increased the yields of the char and gases, and improved the C content of the char. Besides, AM salt catalysis is an effective method for co-production of bio-oil and porous char.
碱金属(AMs)在生物质热解过程中发挥着重要作用,因此探讨其催化作用对更好地利用生物质热解具有重要意义。本研究分析了 K 和 Na 与不同阴离子(Cl-、SO42- 和 CO32-)对生物质热解的催化作用,并探讨了其对热解机理的影响。将 AM 氯化物(NaCl 和 KCl)、硫酸盐(Na2SO4 和 K2SO4)和碳酸盐(Na2CO3 和 K2CO3)与纤维素和竹子原料按 20% 的质量比混合,以最大限度地发挥它们对热解产物原位升级的潜力。AM 氯化物对热解产物的影响很小,而硫酸盐则略微提高了木炭和气体的产量,并对气态和液态产物的成分产生了积极影响。碳酸盐明显提高了焦炭和气体的产量,并改善了焦炭中的碳含量。此外,AM 盐催化是生物油和多孔炭联合生产的有效方法。
{"title":"Catalytic effect of K and Na with different anions on lignocellulosic biomass pyrolysis","authors":"Haiping Yang, Zhiqiang Chen, Yi Zhang, Biao Liu, Yang Yang, Ziyue Tang, Yingquan Chen, Hanping Chen","doi":"10.1007/s11705-024-2492-3","DOIUrl":"10.1007/s11705-024-2492-3","url":null,"abstract":"<div><p>Alkali metals (AMs) play an important role in biomass pyrolysis, and it is important to explore their catalytic effects so to better utilize biomass pyrolysis. This study analyzed the catalytic influence of K and Na with different anions (Cl<sup>−</sup>, SO<sub>4</sub><sup>2−</sup>, and CO<sub>3</sub><sup>2−</sup>) on biomass pyrolysis, and explored the influence on the pyrolytic mechanism. AM chlorides (NaCl and KCl), sulfates (Na<sub>2</sub>SO<sub>4</sub> and K<sub>2</sub>SO<sub>4</sub>) and carbonates (Na<sub>2</sub>CO<sub>3</sub> and K<sub>2</sub>CO<sub>3</sub>) were mixed with cellulose and bamboo feedstocks at a mass ratio of 20 wt %, in order to maximize their potential on <i>in situ</i> upgrading of the pyrolysis products. AM chlorides had little effect on the pyrolysis products, whereas sulfates slightly promoted the yields of char and gas, and had a positive effect on the composition of the gaseous and liquid products. Carbonates noticeably increased the yields of the char and gases, and improved the C content of the char. Besides, AM salt catalysis is an effective method for co-production of bio-oil and porous char.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"18 12","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142177496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-20DOI: 10.1007/s11705-024-2488-z
Rong Fan, Jiarong Lu, Hao Yan, Yibin Liu, Xin Zhou, Hui Zhao, Xiang Feng, Xiaobo Chen, Chaohe Yang
Exploring effective transition metal single-atom catalysts for selective oxidation of benzene to phenol is still a great challenge due to the lack of a comprehensive mechanism and mechanism-driven approach. Here, robust 4N-coordinated transition metal single atom catalysts embedded within graphene (TM1-N4/C) are systematically screened by density functional theory and microkinetic modeling approach to assess their selectivity and activity in benzene oxidation reaction. Our findings indicate that the single metal atom triggers the dissociation of H2O2 to form an active oxygen species (O*). The lone-electronic pair character of O* activates the benzene C-H bond by constructing C-O bond with C atom of benzene, promoting the formation of phenol products. In addition, after benzene captures O* to form phenol, the positively charged bare single metal atom activates the phenol O-H bond by electron interaction with the O atom in the phenol, inducing the generation of benzoquinone by-products. The activation process of O-H bond is accompanied by H atom falling onto the carrier. On this basis, it can be inferred that adsorption energy of the C atom on the O* atom (EC) and the H atom on the TM1-N4/C (EH), which respectively represent activation ability of benzene C-H bond and phenol O-H bond, could be labeled as descriptors describing catalytic activity and selectivity. Moreover, based on the as-obtained volcano map, appropriate EC (−8 to −7 eV) and weakened EH (−1.5 to 0 eV) contribute to the optimization of catalytic performance for benzene oxidation to phenol. This study offers profound opinions on the rational design of metal single-atom catalysts that exhibit favorable catalytic behaviors in hydrocarbon oxidation.
由于缺乏全面的机理和机理驱动方法,探索有效的过渡金属单原子催化剂将苯选择性氧化为苯酚仍然是一个巨大的挑战。在此,我们采用密度泛函理论和微动力学建模方法系统地筛选了嵌入石墨烯(TM1-N4/C)的强健的 4N 配位过渡金属单原子催化剂,以评估它们在苯氧化反应中的选择性和活性。我们的研究结果表明,单个金属原子会引发 H2O2 解离,形成活性氧物种(O*)。O* 的孤电子对特性通过与苯的 C 原子构建 C-O 键来激活苯的 C-H 键,促进苯酚产物的形成。此外,苯俘获 O* 形成苯酚后,带正电的裸单个金属原子通过与苯酚中的 O 原子发生电子相互作用,激活苯酚的 O-H 键,诱导苯醌副产物的生成。O-H 键的活化过程伴随着 H 原子落到载体上。据此可以推断,C 原子在 O* 原子上的吸附能(EC)和 H 原子在 TM1-N4/C 上的吸附能(EH)分别代表苯 C-H 键和苯酚 O-H 键的活化能力,可以作为描述催化活性和选择性的描述符。此外,根据已获得的火山图,适当的 EC(-8 至 -7 eV)和减弱的 EH(-1.5 至 0 eV)有助于优化苯氧化为苯酚的催化性能。这项研究为合理设计金属单原子催化剂提供了深刻的见解,使其在烃氧化过程中表现出良好的催化性能。
{"title":"Comprehensive mechanism and microkinetic model-driven rational screening of 4N-modulated single-atom catalysts for selective oxidation of benzene to phenol","authors":"Rong Fan, Jiarong Lu, Hao Yan, Yibin Liu, Xin Zhou, Hui Zhao, Xiang Feng, Xiaobo Chen, Chaohe Yang","doi":"10.1007/s11705-024-2488-z","DOIUrl":"10.1007/s11705-024-2488-z","url":null,"abstract":"<div><p>Exploring effective transition metal single-atom catalysts for selective oxidation of benzene to phenol is still a great challenge due to the lack of a comprehensive mechanism and mechanism-driven approach. Here, robust 4N-coordinated transition metal single atom catalysts embedded within graphene (TM<sub>1</sub>-N<sub>4</sub>/C) are systematically screened by density functional theory and microkinetic modeling approach to assess their selectivity and activity in benzene oxidation reaction. Our findings indicate that the single metal atom triggers the dissociation of H<sub>2</sub>O<sub>2</sub> to form an active oxygen species (O*). The lone-electronic pair character of O* activates the benzene C-H bond by constructing C-O bond with C atom of benzene, promoting the formation of phenol products. In addition, after benzene captures O* to form phenol, the positively charged bare single metal atom activates the phenol O-H bond by electron interaction with the O atom in the phenol, inducing the generation of benzoquinone by-products. The activation process of O-H bond is accompanied by H atom falling onto the carrier. On this basis, it can be inferred that adsorption energy of the C atom on the O* atom (<i>E</i><sub><i>C</i></sub>) and the H atom on the TM<sub>1</sub>-N<sub>4</sub>/C (<i>E</i><sub>H</sub>), which respectively represent activation ability of benzene C-H bond and phenol O-H bond, could be labeled as descriptors describing catalytic activity and selectivity. Moreover, based on the as-obtained volcano map, appropriate <i>E</i><sub>C</sub> (−8 to −7 eV) and weakened <i>E</i><sub>H</sub> (−1.5 to 0 eV) contribute to the optimization of catalytic performance for benzene oxidation to phenol. This study offers profound opinions on the rational design of metal single-atom catalysts that exhibit favorable catalytic behaviors in hydrocarbon oxidation.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"18 11","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-15DOI: 10.1007/s11705-024-2494-1
Yang Xu, Xuan Guo, Meng Wang, Yunming Fang
The characterization of bio-aviation fuel composition is paramount for assessing biomass conversion processes and its suitability to meet international standards. Compared with one-dimensional gas chromatography mass spectrometry (1DGC-MS), comprehensive two-dimensional gas chromatography with mass spectrometry (GC × GC-MS) emerges as a promising analytical approach for bio-aviation fuel, offering enhanced separation, resolution, selectivity, and sensitivity. This study addresses the qualitative and quantitative analysis methods for both bulk components and trace fatty acid methyl ester (FAME) in bio-aviation fuel obtained by hydrogenation at 400 °C with Ni-Mo/γ-Al2O3&Meso-SAPO-11 as catalyst using GC × GC-MS. In bulk composition analysis, C12 concentration was highest at 25.597%. Based on GC × GC-MS analysis platform, the quality control method of FAME in bio-aviation fuel was established. At the split ratio of 10:1, limits of detections of six FAMEs were 0.011–0.027 mg·kg−1, and limits of quantifications were 0.036–0.090 mg·kg−1, and the GC × GC-MS research platform had the ability to detect FAME from 2 to 5 mg·kg−1. The results showed that this bioaviation fuel did not contain FAME.
{"title":"In-depth multi-component analysis of bio-aviation fuel derived from waste cooking oil using comprehensive two-dimensional gas chromatography mass spectrometry","authors":"Yang Xu, Xuan Guo, Meng Wang, Yunming Fang","doi":"10.1007/s11705-024-2494-1","DOIUrl":"10.1007/s11705-024-2494-1","url":null,"abstract":"<div><p>The characterization of bio-aviation fuel composition is paramount for assessing biomass conversion processes and its suitability to meet international standards. Compared with one-dimensional gas chromatography mass spectrometry (1DGC-MS), comprehensive two-dimensional gas chromatography with mass spectrometry (GC × GC-MS) emerges as a promising analytical approach for bio-aviation fuel, offering enhanced separation, resolution, selectivity, and sensitivity. This study addresses the qualitative and quantitative analysis methods for both bulk components and trace fatty acid methyl ester (FAME) in bio-aviation fuel obtained by hydrogenation at 400 °C with Ni-Mo/<i>γ</i>-Al<sub>2</sub>O<sub>3</sub>&Meso-SAPO-11 as catalyst using GC × GC-MS. In bulk composition analysis, C<sub>12</sub> concentration was highest at 25.597%. Based on GC × GC-MS analysis platform, the quality control method of FAME in bio-aviation fuel was established. At the split ratio of 10:1, limits of detections of six FAMEs were 0.011–0.027 mg·kg<sup>−1</sup>, and limits of quantifications were 0.036–0.090 mg·kg<sup>−1</sup>, and the GC × GC-MS research platform had the ability to detect FAME from 2 to 5 mg·kg<sup>−1</sup>. The results showed that this bioaviation fuel did not contain FAME.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"18 12","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142177497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Over the past few decades, significant progress has been made in thin-film optoelectronic devices based on transition metal dichalcogenides. However, the exciton states’ sensitivity to the environment presents challenges for device applications. This study reports the evolution of photoinduced exciton states in monolayer tungsten disulfide in a low-pressure environment to help elucidate the physical mechanism of the transition between neutral and charged excitons. At 222 mTorr, the transition rate between excitons comprises two components: 0.09 s−1 and 1.68 s−1. Based on this phenomenon, we developed a pressure-tuning method that allows for a tuning range of approximately 40% of exciton weight. Our study demonstrates that the intensity of neutral exciton emission from monolayer tungsten disulfide follows a power-law distribution in relation to pressure, indicating a highly sensitive pressure dependence. We provide a nondestructive and highly sensitive method for exciton conversion through in situ optical manipulation. This highlights the potential development of monolayer tungsten disulfide for pressure sensors and explains the impact of environmental factors on the product quality in photovoltaic devices. In addition, it demonstrates the promising future of monolayer transition metal dichalcogenides in applications such as photovoltaic devices and miniature biochemical sensors.
{"title":"Gas pressure-sensitive regulation of exciton state of monolayer tungsten disulfide","authors":"Shuangping Han, Pengyu Zan, Yu Yan, Yaoxing Bian, Chengbing Qin, Liantuan Xiao","doi":"10.1007/s11705-024-2483-4","DOIUrl":"10.1007/s11705-024-2483-4","url":null,"abstract":"<div><p>Over the past few decades, significant progress has been made in thin-film optoelectronic devices based on transition metal dichalcogenides. However, the exciton states’ sensitivity to the environment presents challenges for device applications. This study reports the evolution of photoinduced exciton states in monolayer tungsten disulfide in a low-pressure environment to help elucidate the physical mechanism of the transition between neutral and charged excitons. At 222 mTorr, the transition rate between excitons comprises two components: 0.09 s<sup>−1</sup> and 1.68 s<sup>−1</sup>. Based on this phenomenon, we developed a pressure-tuning method that allows for a tuning range of approximately 40% of exciton weight. Our study demonstrates that the intensity of neutral exciton emission from monolayer tungsten disulfide follows a power-law distribution in relation to pressure, indicating a highly sensitive pressure dependence. We provide a nondestructive and highly sensitive method for exciton conversion through <i>in situ</i> optical manipulation. This highlights the potential development of monolayer tungsten disulfide for pressure sensors and explains the impact of environmental factors on the product quality in photovoltaic devices. In addition, it demonstrates the promising future of monolayer transition metal dichalcogenides in applications such as photovoltaic devices and miniature biochemical sensors.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"18 11","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142177346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-10DOI: 10.1007/s11705-024-2479-0
Yanli Zhang, Shurui Han, Fengkai Wang, Hui Ye, Qingping Xin, Xiaoli Ding, Lizhi Zhao, Ligang Lin, Hong Li, Yuzhong Zhang
Two-dimensional porous nanosheets such as metal-organic frameworks, covalent organic frameworks, fluorides of light lanthanide, and perforated graphene oxide are a class of nanomaterials with sheet-like morphologies and defined pore structures. Due to their porous structure and large lateral sizes, these materials exhibit excellent molecular transport properties in separation processes. This review focuses on the pore formation strategies for two-dimensional porous nanosheets and applications of these nanosheets and their constructed membranes in gas separation processes and separation processes applicable to water treatment and the humidity control of gas permeation. A brief discussion of challenges and future developments of separation applications with two-dimensional porous nanosheets and their constructed membranes is included in this review.
{"title":"Advanced membrane separation based on two-dimensional porous nanosheets","authors":"Yanli Zhang, Shurui Han, Fengkai Wang, Hui Ye, Qingping Xin, Xiaoli Ding, Lizhi Zhao, Ligang Lin, Hong Li, Yuzhong Zhang","doi":"10.1007/s11705-024-2479-0","DOIUrl":"10.1007/s11705-024-2479-0","url":null,"abstract":"<div><p>Two-dimensional porous nanosheets such as metal-organic frameworks, covalent organic frameworks, fluorides of light lanthanide, and perforated graphene oxide are a class of nanomaterials with sheet-like morphologies and defined pore structures. Due to their porous structure and large lateral sizes, these materials exhibit excellent molecular transport properties in separation processes. This review focuses on the pore formation strategies for two-dimensional porous nanosheets and applications of these nanosheets and their constructed membranes in gas separation processes and separation processes applicable to water treatment and the humidity control of gas permeation. A brief discussion of challenges and future developments of separation applications with two-dimensional porous nanosheets and their constructed membranes is included in this review.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"18 11","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142177499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-09DOI: 10.1007/s11705-024-2472-7
Weizuo Wang, Bingru Lu, Jinwen Shi, Qiuyang Zhao, Hui Jin
Supercritical water gasification is a clean technology for biomass conversion and utilization. In supercritical water gasification systems, H2O is often used as the transport medium. Decreases in the reaction temperature at the gasification area and in the heating rate of biomass may limit the gasification rate and efficiency. In this paper, CO2 is used as the transport medium due to its relatively low critical point and specific heat capacity. Moreover, a corn stalk gasification system with different transport media is established in this paper, and the influences of various operating parameters, such as temperature, pressure and feedstock concentration, are investigated. The results show that the gas yield in the CO2-transport system decreases by no more than 5 wt %. In addition, thermodynamic analysis reveals that a system with CO2 as transport medium consumes approximately 25% less electricity than a system with H2O as the transport medium. In addition, the reaction heat absorption decreases. The results show the superiority of CO2 to H2O as a transport medium.
{"title":"Comparison of CO2 with H2O as the transport medium in a biomass supercritical water gasification system","authors":"Weizuo Wang, Bingru Lu, Jinwen Shi, Qiuyang Zhao, Hui Jin","doi":"10.1007/s11705-024-2472-7","DOIUrl":"10.1007/s11705-024-2472-7","url":null,"abstract":"<div><p>Supercritical water gasification is a clean technology for biomass conversion and utilization. In supercritical water gasification systems, H<sub>2</sub>O is often used as the transport medium. Decreases in the reaction temperature at the gasification area and in the heating rate of biomass may limit the gasification rate and efficiency. In this paper, CO<sub>2</sub> is used as the transport medium due to its relatively low critical point and specific heat capacity. Moreover, a corn stalk gasification system with different transport media is established in this paper, and the influences of various operating parameters, such as temperature, pressure and feedstock concentration, are investigated. The results show that the gas yield in the CO<sub>2</sub>-transport system decreases by no more than 5 wt %. In addition, thermodynamic analysis reveals that a system with CO<sub>2</sub> as transport medium consumes approximately 25% less electricity than a system with H<sub>2</sub>O as the transport medium. In addition, the reaction heat absorption decreases. The results show the superiority of CO<sub>2</sub> to H<sub>2</sub>O as a transport medium.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"18 11","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141921214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-09DOI: 10.1007/s11705-024-2486-1
Lei Bi, Qiong Wang, Jingzhang Liu, Fuxiang Cui, Maoyong Song
Due to the relentless exploitation of nonrenewable resources, humanity is faced with a resource depletion crisis in the coming decades and serious environmental issues. Achieving efficient removal and upcycling of pollutants (ERUP) may become a potential strategy to address these issues. Wastewater, characterized by its large production volume and fluidity, can easily cause widespread environmental pollution through natural water networks. Due to solubility constraints, pollutants in wastewater typically exhibit low concentrations and complex compositions, thereby impeding effective recovery. Therefore, achieving ERUP in wastewater is both highly significant and extremely challenging. Unlike conventional wastewater treatment strategies that are focused on removing pollutants, ERUP strategies can not only realize the efficient removal of pollutants from water but also convert pollutants into valuable and functional products. Herein, we enumerated the latest research progress on ERUP in wastewater and highlighted studies that demonstrate the simultaneous achievement of pollutant removal and the direct conversion of these contaminants into high-efficiency catalysts, hydrogen energy, electrical energy, and other high-value chemicals. Finally, we identified the problems and challenges in the development of ERUP in wastewater and outlined potential research directions for future studies.
{"title":"Efficient removal and upcycling of pollutants in wastewater: a strategy for reconciling environmental pollution and resource depletion crisis","authors":"Lei Bi, Qiong Wang, Jingzhang Liu, Fuxiang Cui, Maoyong Song","doi":"10.1007/s11705-024-2486-1","DOIUrl":"10.1007/s11705-024-2486-1","url":null,"abstract":"<div><p>Due to the relentless exploitation of nonrenewable resources, humanity is faced with a resource depletion crisis in the coming decades and serious environmental issues. Achieving efficient removal and upcycling of pollutants (ERUP) may become a potential strategy to address these issues. Wastewater, characterized by its large production volume and fluidity, can easily cause widespread environmental pollution through natural water networks. Due to solubility constraints, pollutants in wastewater typically exhibit low concentrations and complex compositions, thereby impeding effective recovery. Therefore, achieving ERUP in wastewater is both highly significant and extremely challenging. Unlike conventional wastewater treatment strategies that are focused on removing pollutants, ERUP strategies can not only realize the efficient removal of pollutants from water but also convert pollutants into valuable and functional products. Herein, we enumerated the latest research progress on ERUP in wastewater and highlighted studies that demonstrate the simultaneous achievement of pollutant removal and the direct conversion of these contaminants into high-efficiency catalysts, hydrogen energy, electrical energy, and other high-value chemicals. Finally, we identified the problems and challenges in the development of ERUP in wastewater and outlined potential research directions for future studies.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"18 11","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142177498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-09DOI: 10.1007/s11705-024-2487-0
Shuangshuang Cao, Houjun Zhang, Haoyang Liu, Zhiyuan Lyu, Xiangyuan Li, Bin Zhang, You Han
The reduced mechanism based on the minimized reaction network method can effectively solve the rigidity problem in the numerical calculation of turbulent internal combustion engine. The optimization of dynamic parameters of the reduced mechanism is the key to reproduce the experimental data. In this work, the experimental data of ignition delay times and laminar flame speeds were taken as the optimization objectives based on the machine-learning model constructed by radial basis function interpolation method, and pre-exponential factors and activation energies of H2 combustion mechanism were optimized. Compared with the origin mechanism, the performance of the optimized mechanism was significantly improved. The error of ignition delay times and laminar flame speeds was reduced by 24.3% and 26.8%, respectively, with 25% decrease in total mean error. The optimized mechanism was used to predict the ignition delay times, laminar flame speeds and species concentrations of jet stirred reactor, and the predicted results were in good agreement with experimental results. In addition, the differences of the key reactions of the combustion mechanism under specific working conditions were studied by sensitivity analysis. Therefore, the machine-learning model is a tool with broad application prospects to optimize various combustion mechanisms in a wide range of operating conditions.
{"title":"Optimization of kinetic mechanism for hydrogen combustion based on machine learning","authors":"Shuangshuang Cao, Houjun Zhang, Haoyang Liu, Zhiyuan Lyu, Xiangyuan Li, Bin Zhang, You Han","doi":"10.1007/s11705-024-2487-0","DOIUrl":"10.1007/s11705-024-2487-0","url":null,"abstract":"<div><p>The reduced mechanism based on the minimized reaction network method can effectively solve the rigidity problem in the numerical calculation of turbulent internal combustion engine. The optimization of dynamic parameters of the reduced mechanism is the key to reproduce the experimental data. In this work, the experimental data of ignition delay times and laminar flame speeds were taken as the optimization objectives based on the machine-learning model constructed by radial basis function interpolation method, and pre-exponential factors and activation energies of H<sub>2</sub> combustion mechanism were optimized. Compared with the origin mechanism, the performance of the optimized mechanism was significantly improved. The error of ignition delay times and laminar flame speeds was reduced by 24.3% and 26.8%, respectively, with 25% decrease in total mean error. The optimized mechanism was used to predict the ignition delay times, laminar flame speeds and species concentrations of jet stirred reactor, and the predicted results were in good agreement with experimental results. In addition, the differences of the key reactions of the combustion mechanism under specific working conditions were studied by sensitivity analysis. Therefore, the machine-learning model is a tool with broad application prospects to optimize various combustion mechanisms in a wide range of operating conditions.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"18 11","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142177522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In light of the challenges associated with catalyst separation and recovery, as well as the low production efficiency resulting from intermittent operation for titanium silicalite-1 (TS-1) catalyzed phenol hydroxylation to dihydroxybenzene in the slurry bed, researchers keep on exploring the use of a continuous fixed bed to replace the slurry bed process in recent years. This study focuses on preparing a TS-1 coated structured catalyst on SiC foam, which exhibits significant process intensification in performance. We investigated the kinetics of this structured catalyst and compared it with those of extruded TS-1 catalyst; the dynamic equations of the two catalysts were obtained. It was observed that both catalysts followed E-R adsorption mechanism model, with an effective internal diffusion factor ratio between structured and extruded TS-1 of approximately 7.71. It was confirmed that the foamed SiC-based structured TS-1 catalyst exhibited significant improvements in phenol hydroxylation in fixed-bed reactor due to its well-developed pore structure, good thermal conductivity, excellent internal mass transfer performance, and short reactant diffusion distance, leading to higher utilization efficiency of active components. This finding also provides a foundation for designing and developing phenol hydroxylation processes in fixed-bed using structured catalysts through computational fluid dynamics calculations.
{"title":"Kinetics of hydroxylation of phenol with SiC foam supported TS-1 structured catalyst","authors":"Yanzhao Sun, Zhitao Lv, Siyu Zhang, Guodong Wen, Yilai Jiao","doi":"10.1007/s11705-024-2481-6","DOIUrl":"10.1007/s11705-024-2481-6","url":null,"abstract":"<div><p>In light of the challenges associated with catalyst separation and recovery, as well as the low production efficiency resulting from intermittent operation for titanium silicalite-1 (TS-1) catalyzed phenol hydroxylation to dihydroxybenzene in the slurry bed, researchers keep on exploring the use of a continuous fixed bed to replace the slurry bed process in recent years. This study focuses on preparing a TS-1 coated structured catalyst on SiC foam, which exhibits significant process intensification in performance. We investigated the kinetics of this structured catalyst and compared it with those of extruded TS-1 catalyst; the dynamic equations of the two catalysts were obtained. It was observed that both catalysts followed E-R adsorption mechanism model, with an effective internal diffusion factor ratio between structured and extruded TS-1 of approximately 7.71. It was confirmed that the foamed SiC-based structured TS-1 catalyst exhibited significant improvements in phenol hydroxylation in fixed-bed reactor due to its well-developed pore structure, good thermal conductivity, excellent internal mass transfer performance, and short reactant diffusion distance, leading to higher utilization efficiency of active components. This finding also provides a foundation for designing and developing phenol hydroxylation processes in fixed-bed using structured catalysts through computational fluid dynamics calculations.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"18 11","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142177526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study investigated the interaction between the furfural residue and polyvinyl chloride co-pyrolysis using an infrared heating method. Various analytical techniques including production distribution analysis, thermal behavior, pyrolysis kinetic, simulated distillation and gas chromatography-mass spectrography (GCMS), and X-ray photoelectron spectroscopy were utilized to elucidate the pyrolysis characterization and reaction mechanism during the co-pyrolysis. Initially, the yield of co-pyrolysis oil increased from 35.12% at 5 °C·s−1 to 37.70% at 10 °C·s−1, but then decreased to 32.07% at 20 °C·s−1. Kinetic and thermodynamic parameters suggested non-spontaneous and endothermic behaviors. GCMS analysis revealed that aromatic hydrocarbons, especially mono- and bi-cyclic ones, are the predominant compounds in the oil due to the presence of H radicals in polyvinyl chloride, suggesting an enhancement in oil quality. Meanwhile, the fixed chlorine content increased to 65.11% after co-pyrolysis due to the interaction between inorganic salts in furfural residues and chlorine from polyvinyl chloride.
本研究采用红外加热法研究了糠醛残渣与聚氯乙烯共热解之间的相互作用。利用各种分析技术,包括产率分布分析、热行为、热解动力学、模拟蒸馏和气相色谱-质谱法(GCMS)以及 X 射线光电子能谱法,阐明了热解特征和共热解过程中的反应机理。最初,共热解油的产量从 5 °C-s-1 时的 35.12% 增加到 10 °C-s-1 时的 37.70%,但随后又下降到 20 °C-s-1 时的 32.07%。动力学和热力学参数表明,这种行为是非自发和内热的。GCMS 分析表明,由于聚氯乙烯中 H 自由基的存在,芳香烃,尤其是单环和双环芳香烃成为油中的主要化合物,这表明油的质量有所提高。同时,由于糠醛残渣中的无机盐与聚氯乙烯中的氯相互作用,共热解后的固定氯含量增至 65.11%。
{"title":"Interaction and characteristics of furfural residues and polyvinyl chloride in fast co-pyrolysis","authors":"Yue Zhang, Moshan Li, Erfeng Hu, Rui Qu, Shuai Li, Qingang Xiong","doi":"10.1007/s11705-024-2493-2","DOIUrl":"10.1007/s11705-024-2493-2","url":null,"abstract":"<div><p>This study investigated the interaction between the furfural residue and polyvinyl chloride co-pyrolysis using an infrared heating method. Various analytical techniques including production distribution analysis, thermal behavior, pyrolysis kinetic, simulated distillation and gas chromatography-mass spectrography (GCMS), and X-ray photoelectron spectroscopy were utilized to elucidate the pyrolysis characterization and reaction mechanism during the co-pyrolysis. Initially, the yield of co-pyrolysis oil increased from 35.12% at 5 °C·s<sup>−1</sup> to 37.70% at 10 °C·s<sup>−1</sup>, but then decreased to 32.07% at 20 °C·s<sup>−1</sup>. Kinetic and thermodynamic parameters suggested non-spontaneous and endothermic behaviors. GCMS analysis revealed that aromatic hydrocarbons, especially mono- and bi-cyclic ones, are the predominant compounds in the oil due to the presence of H radicals in polyvinyl chloride, suggesting an enhancement in oil quality. Meanwhile, the fixed chlorine content increased to 65.11% after co-pyrolysis due to the interaction between inorganic salts in furfural residues and chlorine from polyvinyl chloride.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"18 12","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141934140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}