Flexible aqueous zinc-air batteries with high energy density and safety have garnered significant attention. Gel polymer electrolytes have emerged as the preferred option over conventional liquid electrolytes due to their ability to prevent electrolyte leakage. In this study, a composite PANa-PVP-TiO2(NH2) hydrogel with high alkaline resistance and ionic conductivity is designed, where the inorganic TiO2(NH2) nanoparticles are evenly distributed and integrated into the organic dual network of polyacrylate sodium and polyvinyl pyrrolidone. The organic-inorganic hybrid structure enhances the absorption and retention capabilities for electrolyte solution, leading to impressive ionic conductivity of the gel polymer electrolyte throughout the operation of flexible aqueous zinc-air batteries. Additionally, the incorporation of TiO2(NH2) nanoparticles and the dual network construction effectively strengthen the mechanical strength and flexibility of the gel polymer electrolyte, suppressing by-products and zinc dendrite formation. The enhancements lead to the extended cycling longevity of zinc symmetric batteries and excellent power density, as well as the prolonged cycle life of flexible aqueous zinc-air batteries.
{"title":"Organic-inorganic hybrid hydrogel electrolyte for high-performance quasi-solid-state zinc-air batteries","authors":"Mingzhu Wu, Niu Huang, Minghui Lv, Fengyi Wang, Fang Ma, Yihan Deng, Panpan Sun, Yong Zheng, Wei Liu, Liqun Ye","doi":"10.1007/s11705-025-2519-4","DOIUrl":"10.1007/s11705-025-2519-4","url":null,"abstract":"<div><p>Flexible aqueous zinc-air batteries with high energy density and safety have garnered significant attention. Gel polymer electrolytes have emerged as the preferred option over conventional liquid electrolytes due to their ability to prevent electrolyte leakage. In this study, a composite PANa-PVP-TiO<sub>2</sub>(NH<sub>2</sub>) hydrogel with high alkaline resistance and ionic conductivity is designed, where the inorganic TiO<sub>2</sub>(NH<sub>2</sub>) nanoparticles are evenly distributed and integrated into the organic dual network of polyacrylate sodium and polyvinyl pyrrolidone. The organic-inorganic hybrid structure enhances the absorption and retention capabilities for electrolyte solution, leading to impressive ionic conductivity of the gel polymer electrolyte throughout the operation of flexible aqueous zinc-air batteries. Additionally, the incorporation of TiO<sub>2</sub>(NH<sub>2</sub>) nanoparticles and the dual network construction effectively strengthen the mechanical strength and flexibility of the gel polymer electrolyte, suppressing by-products and zinc dendrite formation. The enhancements lead to the extended cycling longevity of zinc symmetric batteries and excellent power density, as well as the prolonged cycle life of flexible aqueous zinc-air batteries.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"19 3","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142963050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-10DOI: 10.1007/s11705-025-2525-6
Xiangtai Zhang, Lei Wu
Exploiting advanced transition metal based electrocatalysts is critical for the oxygen evolution reaction (OER) due to their high efficiency in an alkaline environment for water splitting. Herein, CoS2 nanosheets were synthesized through simple hydrothermal process and sulfurized layered β-Co(OH)2 nanosheets as a precursor. The regulation strategy of hexamethylenetetramine was employed to create layered single-crystal β-Co(OH)2 nanosheets. X-ray absorption fine structure indicates the crystal phase reconstructions occur on β-Co(OH)2 surface during the sulfidation reaction. The sulfurized β-Co(OH)2 nanosheets present an overpotential of only 297 mV to reach 10 mA·cm−2, a low Tafel slope of 71.7 mV·dec−1 and excellent stability for OER. The results clarified that the CoS2 nanosheets excellent OER performance is attributable to cobalt sulfide sheet structure and structural changes by sulfur dopants. The results of the sulfurized layered β-Co(OH)2 to produce CoS2 nanosheets indicate that this strategy may represents a potential replacement for oxygen evolution application, particularly for the large-scale production of water splitting catalysts.
{"title":"Reconstructing cobalt disulfide nanosheets through sulfur doping hexamethylenetetramine regulated β-Co(OH)2 for oxygen evolution reaction","authors":"Xiangtai Zhang, Lei Wu","doi":"10.1007/s11705-025-2525-6","DOIUrl":"10.1007/s11705-025-2525-6","url":null,"abstract":"<div><p>Exploiting advanced transition metal based electrocatalysts is critical for the oxygen evolution reaction (OER) due to their high efficiency in an alkaline environment for water splitting. Herein, CoS<sub>2</sub> nanosheets were synthesized through simple hydrothermal process and sulfurized layered <i>β</i>-Co(OH)<sub>2</sub> nanosheets as a precursor. The regulation strategy of hexamethylenetetramine was employed to create layered single-crystal <i>β</i>-Co(OH)<sub>2</sub> nanosheets. X-ray absorption fine structure indicates the crystal phase reconstructions occur on <i>β</i>-Co(OH)<sub>2</sub> surface during the sulfidation reaction. The sulfurized <i>β</i>-Co(OH)<sub>2</sub> nanosheets present an overpotential of only 297 mV to reach 10 mA·cm<sup>−2</sup>, a low Tafel slope of 71.7 mV·dec<sup>−1</sup> and excellent stability for OER. The results clarified that the CoS<sub>2</sub> nanosheets excellent OER performance is attributable to cobalt sulfide sheet structure and structural changes by sulfur dopants. The results of the sulfurized layered <i>β</i>-Co(OH)<sub>2</sub> to produce CoS<sub>2</sub> nanosheets indicate that this strategy may represents a potential replacement for oxygen evolution application, particularly for the large-scale production of water splitting catalysts.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"19 3","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143423203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-05DOI: 10.1007/s11705-025-2523-8
Peng Sun, Kelan Liu, Cunjun Dong, Li Yan, Hongyan Zhu, Mingliang Fang, Donglei Fu, Xinghai Liu
Polylactic acid, a biodegradable polymer derived from renewable resources, is increasingly used in food packaging due to its transparency, renewability, and food safety. However, its mechanical properties, heat resistance, and barrier performance present significant challenges that limit its application. Currently, there is a lack of comprehensive literature addressing methods to optimize polylactic acid’s performance for various food packaging application. Hence, this review provides an overview of polylactic acid production processes, including the synthesis of lactic acid and lactide, as well as methods such as polycondensation and ring-opening polymerization. We critically examine the advantages and limitations of polylactic acid in various food packaging contexts, focusing on strategies to enhance its mechanical properties, barrier performance against oxygen and water vapor, surface hydrophobicity, thermal stability, and resistance to ultraviolet light. Furthermore, we summarize recent advancements in polylactic acid applications for food packaging, highlighting innovations in antioxidant, antimicrobial, and freshness indicator packaging. These developments underscore the significant potential of polylactic acid in the food packaging sector and offer valuable insights for future research directions.
{"title":"Optimizing polylactic acid: synthesis, properties, and regulatory strategies for food packaging applications","authors":"Peng Sun, Kelan Liu, Cunjun Dong, Li Yan, Hongyan Zhu, Mingliang Fang, Donglei Fu, Xinghai Liu","doi":"10.1007/s11705-025-2523-8","DOIUrl":"10.1007/s11705-025-2523-8","url":null,"abstract":"<div><p>Polylactic acid, a biodegradable polymer derived from renewable resources, is increasingly used in food packaging due to its transparency, renewability, and food safety. However, its mechanical properties, heat resistance, and barrier performance present significant challenges that limit its application. Currently, there is a lack of comprehensive literature addressing methods to optimize polylactic acid’s performance for various food packaging application. Hence, this review provides an overview of polylactic acid production processes, including the synthesis of lactic acid and lactide, as well as methods such as polycondensation and ring-opening polymerization. We critically examine the advantages and limitations of polylactic acid in various food packaging contexts, focusing on strategies to enhance its mechanical properties, barrier performance against oxygen and water vapor, surface hydrophobicity, thermal stability, and resistance to ultraviolet light. Furthermore, we summarize recent advancements in polylactic acid applications for food packaging, highlighting innovations in antioxidant, antimicrobial, and freshness indicator packaging. These developments underscore the significant potential of polylactic acid in the food packaging sector and offer valuable insights for future research directions.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"19 3","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-04DOI: 10.1007/s11705-025-2522-9
Siqi Liu, Zhiqiang Zhou, Yuan Xiao, Huanhuan Duan, Guomin Cui
This paper proposes an innovative simultaneous optimization approach for single and multi-component mass exchanger network synthesis (MENS). A retrofitted stage-wise superstructure and a parallelized random walk algorithm with compulsive evolution (RWCE) are adopted. An iterative calculation method is designed to satisfy the requirements of multi-component mass transfer, with a relaxation for the outlet composition of the lean streams. The parametric analysis shows that the relaxation coefficient plays a major role in driving the convergence of the method. To improve the robustness of the established model, an adaptive relaxation coefficient strategy is implemented for multi-component MENS problems. In a divergence situation, the outlet concentration of the lean stream can be adjusted automatically by a random relaxation coefficient. Finally, three industrial MENS examples are considered in this work, whose total annual cost (TAC) are reduced by 7179, 2212, and 551 $·year−1. The corresponding optimization times are obtained to be 336, 125, and 145 s. The results indicate improvements in the economy and time, demonstrating that the parallelized RWCE can yield an optimal TAC and optimization efficiency compared to previous results. Overall, the adaptive relaxation coefficient strategy enhances the convergence for multi-component MENS problems.
{"title":"Enhanced optimization of single and multi-component mass exchanger networks using parallelization and adaptive relaxation","authors":"Siqi Liu, Zhiqiang Zhou, Yuan Xiao, Huanhuan Duan, Guomin Cui","doi":"10.1007/s11705-025-2522-9","DOIUrl":"10.1007/s11705-025-2522-9","url":null,"abstract":"<div><p>This paper proposes an innovative simultaneous optimization approach for single and multi-component mass exchanger network synthesis (MENS). A retrofitted stage-wise superstructure and a parallelized random walk algorithm with compulsive evolution (RWCE) are adopted. An iterative calculation method is designed to satisfy the requirements of multi-component mass transfer, with a relaxation for the outlet composition of the lean streams. The parametric analysis shows that the relaxation coefficient plays a major role in driving the convergence of the method. To improve the robustness of the established model, an adaptive relaxation coefficient strategy is implemented for multi-component MENS problems. In a divergence situation, the outlet concentration of the lean stream can be adjusted automatically by a random relaxation coefficient. Finally, three industrial MENS examples are considered in this work, whose total annual cost (TAC) are reduced by 7179, 2212, and 551 $·year<sup>−1</sup>. The corresponding optimization times are obtained to be 336, 125, and 145 s. The results indicate improvements in the economy and time, demonstrating that the parallelized RWCE can yield an optimal TAC and optimization efficiency compared to previous results. Overall, the adaptive relaxation coefficient strategy enhances the convergence for multi-component MENS problems.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"19 2","pages":""},"PeriodicalIF":4.3,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The use of metal-organic frameworks (MOFs) as CO2-gas-capture materials has attracted extensive research attention. In this study, two types of MOFs—Zn-MOF and ZnCe-MOF—were synthesized utilizing the microchannel reaction method, with water being employed as the solvent. The specific surface area, pore size, and pore volume of Zn-MOF and ZnCe-MOF were 1566.4 and 15.6 m2·g−1, 0.65 and 7.32 nm, as well as 1.65 and 0.03 cm3·g−1, respectively. Furthermore, Ce doping not only increased the pore size of ZnCe-MOF but also its adsorption energy from −0.19 eV (Zn-MOF) to −0.53 eV (ZnCe-MOF). At 298 K, the adsorption capacities of Zn-MOF and ZnCe-MOF were 0.66 and 0.74 mmol·g−1, respectively. In addition, the CO2 adsorption behaviors of Zn-MOF and ZnCe-MOF were linear and logarithmic, respectively. Theoretical calculations show that the results of adsorption thermodynamic simulations were consistent with the experiments. Thus, the preparation of ZnCe-MOF materials using a microchannel reactor provides a new approach for the continuous preparation of MOFs.
金属有机骨架(MOFs)作为二氧化碳气体捕获材料已引起广泛的研究关注。本研究以水为溶剂,采用微通道反应法合成了zn - mof和znce - mof两种类型的mof。Zn-MOF和ZnCe-MOF的比表面积分别为1566.4和15.6 m2·g−1,孔径分别为0.65和7.32 nm,孔体积分别为1.65和0.03 cm3·g−1。此外,Ce的掺杂不仅增加了ZnCe-MOF的孔径,而且使其吸附能从- 0.19 eV (Zn-MOF)增加到- 0.53 eV (ZnCe-MOF)。在298 K时,Zn-MOF和ZnCe-MOF的吸附量分别为0.66和0.74 mmol·g−1。此外,Zn-MOF和ZnCe-MOF的CO2吸附行为分别呈线性和对数关系。理论计算表明,吸附热力学模拟结果与实验结果一致。因此,利用微通道反应器制备ZnCe-MOF材料为mof的连续制备提供了新的途径。
{"title":"Enhanced CO2 adsorption properties with bimetallic ZnCe-MOF prepared using a microchannel reactor","authors":"Pin Cui, Ying Tang, Aixia Guo, Chenxu Wang, Minmin Liu, Wencai Peng, Feng Yu","doi":"10.1007/s11705-025-2518-5","DOIUrl":"10.1007/s11705-025-2518-5","url":null,"abstract":"<div><p>The use of metal-organic frameworks (MOFs) as CO<sub>2</sub>-gas-capture materials has attracted extensive research attention. In this study, two types of MOFs—Zn-MOF and ZnCe-MOF—were synthesized utilizing the microchannel reaction method, with water being employed as the solvent. The specific surface area, pore size, and pore volume of Zn-MOF and ZnCe-MOF were 1566.4 and 15.6 m<sup>2</sup>·g<sup>−1</sup>, 0.65 and 7.32 nm, as well as 1.65 and 0.03 cm<sup>3</sup>·g<sup>−1</sup>, respectively. Furthermore, Ce doping not only increased the pore size of ZnCe-MOF but also its adsorption energy from −0.19 eV (Zn-MOF) to −0.53 eV (ZnCe-MOF). At 298 K, the adsorption capacities of Zn-MOF and ZnCe-MOF were 0.66 and 0.74 mmol·g<sup>−1</sup>, respectively. In addition, the CO<sub>2</sub> adsorption behaviors of Zn-MOF and ZnCe-MOF were linear and logarithmic, respectively. Theoretical calculations show that the results of adsorption thermodynamic simulations were consistent with the experiments. Thus, the preparation of ZnCe-MOF materials using a microchannel reactor provides a new approach for the continuous preparation of MOFs.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"19 2","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142962961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-22DOI: 10.1007/s11705-024-2511-4
Wentao Pan, Hong Liu, Yongzhi Chen, Qi Wang, Yunxia Wang, Li Zhang, Yongzhen Peng
Enhancing nitrogen removal is a very active branch in municipal wastewater treatment research, toward this end, anammox technology is a sustainable solution. This review systematically outlines the strategies employed to enhance mainstream anammox performance, including nitrite accumulation and microbial enrichment based on partial nitrification coupled anammox and partial denitrification coupled anammox, developed to address the challenges of low ammonium content in wastewater, nitrate accumulation in the effluent, and the influence of organic matter. The characteristics and advantages of novel anammox-coupled processes, including partial nitrification and partial denitrification coupled anammox, endogenous partial denitrification coupled anammox, and denitrifying anaerobic methane oxic coupled anammox are also comprehensively discussed; these aim to ensure the highly efficient and stable operation of anammox under diverse wastewater conditions by constructing a composite biological nitrogen removal system based on anammox, supplemented by nitrification-denitrification and other processes. Additionally, a novel anammox application route including mainstream partial denitrification/anammox and absorptionbiodegradation as well as sidestream partial nitrification/anammox is proposed, and its application pathway in conceptual wastewater treatment plants is outlined, aiming to foster the development of cost-effective, efficient, and energy-saving advanced wastewater treatment processes. Finally, prospects are presented that indicate the gaps in contemporary research and potential future research directions. Overall, this review provides a reference for treating municipal wastewater with anammox and sheds new light on related strategies and nitrogen removal mechanisms.
{"title":"Towards the application of mainstream low-carbon anammox wastewater treatment technologies: strategies, innovations, and prospects","authors":"Wentao Pan, Hong Liu, Yongzhi Chen, Qi Wang, Yunxia Wang, Li Zhang, Yongzhen Peng","doi":"10.1007/s11705-024-2511-4","DOIUrl":"10.1007/s11705-024-2511-4","url":null,"abstract":"<div><p>Enhancing nitrogen removal is a very active branch in municipal wastewater treatment research, toward this end, anammox technology is a sustainable solution. This review systematically outlines the strategies employed to enhance mainstream anammox performance, including nitrite accumulation and microbial enrichment based on partial nitrification coupled anammox and partial denitrification coupled anammox, developed to address the challenges of low ammonium content in wastewater, nitrate accumulation in the effluent, and the influence of organic matter. The characteristics and advantages of novel anammox-coupled processes, including partial nitrification and partial denitrification coupled anammox, endogenous partial denitrification coupled anammox, and denitrifying anaerobic methane oxic coupled anammox are also comprehensively discussed; these aim to ensure the highly efficient and stable operation of anammox under diverse wastewater conditions by constructing a composite biological nitrogen removal system based on anammox, supplemented by nitrification-denitrification and other processes. Additionally, a novel anammox application route including mainstream partial denitrification/anammox and absorptionbiodegradation as well as sidestream partial nitrification/anammox is proposed, and its application pathway in conceptual wastewater treatment plants is outlined, aiming to foster the development of cost-effective, efficient, and energy-saving advanced wastewater treatment processes. Finally, prospects are presented that indicate the gaps in contemporary research and potential future research directions. Overall, this review provides a reference for treating municipal wastewater with anammox and sheds new light on related strategies and nitrogen removal mechanisms.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"19 2","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142811067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-27DOI: 10.1007/s11705-024-2508-z
Asma Leghari, Yao Xiao, Lu Ding, Hammad Sadiq, Abdul Raheem, Guangsuo Yu
Coal utilization, as a major energy source, raises sustainability concerns and environmental impacts, prompting researchers to explore blending it with other feedstocks. This study discusses hydrochar coal-water slurry (HC-CWS) preparation conditions, emphasizing apparent viscosity and exploring the influence of high ash content on char reactivity. The study highlights that the presence of free water in sludge is moderately influential, while high amounts of free water in raw sewage sludge (SS) and its near absence during hydrothermal carbonization (HTC) of SS are both unfavorable for enhancing the overall performance of coal-water slurry (CWS). HTC reduces the concentration of hydroxyl functional group, enhancing slurry performance and reducing ash content in HC-CWS, indicating that coal complements hydrochar (HC). High-temperature HC preparation is unsuitable for HC-CWS due to increased viscosity and decreased stability. In terms of ash content, the optimal pH and HC ratio for CWS are determined at 30% HC. The gasification reactivity of HC, prepared at 180 °C with a 30% HC ratio in CWS at R0.5 is 6 × 10−3 and at R0.9 is 9 × 10−3. However, increasing HC to 50% diminishes reactivity under CO2 atmosphere. The inhibitory effect was observed with an increasing percentage of HC in CWS and the synergy factor decreased in the following order: 10% HC > 30% HC > 50% HC, i.e., from 1.04 to 0.35. The possible reason is the presence of high ash content and their similar initial gasification rates during its early stages.
煤炭作为一种主要能源,其利用引起了可持续发展的关注和对环境的影响,促使研究人员探索将其与其他原料混合。本研究讨论了水煤浆(HC-CWS)的制备条件,强调了表观粘度,并探讨了高灰分对炭反应性的影响。研究强调,污泥中游离水的存在影响不大,而原污水污泥(SS)中的大量游离水和 SS 水热碳化(HTC)过程中几乎不存在的游离水均不利于提高水煤浆(CWS)的整体性能。水热碳化降低了羟基官能团的浓度,从而提高了水煤浆的性能,并降低了水煤浆中的灰分含量,这表明煤与水炭(HC)是相辅相成的。由于粘度增加和稳定性降低,高温碳氢化合物制备不适合 HC-CWS。就灰分含量而言,CWS 的最佳 pH 值和碳氢化合物比率确定为 30%。在 180 °C 下以 30% 的碳氢化合物比例制备的碳氢化合物在 CWS 中的气化反应活性在 R0.5 时为 6 × 10-3,在 R0.9 时为 9 × 10-3。然而,将碳氢化合物的比例提高到 50%,会降低在二氧化碳气氛下的反应活性。随着碳氢化合物在 CWS 中的比例增加,抑制作用也随之增加,协同系数依次降低:10% HC > 30% HC > 50% HC,即从 1.04 降至 0.35。可能的原因是灰分含量高,而且在早期阶段它们的初始气化率相似。
{"title":"Influence of hydrothermal carbonized sewage sludge on coal water slurry performance","authors":"Asma Leghari, Yao Xiao, Lu Ding, Hammad Sadiq, Abdul Raheem, Guangsuo Yu","doi":"10.1007/s11705-024-2508-z","DOIUrl":"10.1007/s11705-024-2508-z","url":null,"abstract":"<div><p>Coal utilization, as a major energy source, raises sustainability concerns and environmental impacts, prompting researchers to explore blending it with other feedstocks. This study discusses hydrochar coal-water slurry (HC-CWS) preparation conditions, emphasizing apparent viscosity and exploring the influence of high ash content on char reactivity. The study highlights that the presence of free water in sludge is moderately influential, while high amounts of free water in raw sewage sludge (SS) and its near absence during hydrothermal carbonization (HTC) of SS are both unfavorable for enhancing the overall performance of coal-water slurry (CWS). HTC reduces the concentration of hydroxyl functional group, enhancing slurry performance and reducing ash content in HC-CWS, indicating that coal complements hydrochar (HC). High-temperature HC preparation is unsuitable for HC-CWS due to increased viscosity and decreased stability. In terms of ash content, the optimal pH and HC ratio for CWS are determined at 30% HC. The gasification reactivity of HC, prepared at 180 °C with a 30% HC ratio in CWS at <i>R</i><sub>0.5</sub> is 6 × 10<sup>−3</sup> and at <i>R</i><sub>0.9</sub> is 9 × 10<sup>−3</sup>. However, increasing HC to 50% diminishes reactivity under CO<sub>2</sub> atmosphere. The inhibitory effect was observed with an increasing percentage of HC in CWS and the synergy factor decreased in the following order: 10% HC > 30% HC > 50% HC, i.e., from 1.04 to 0.35. The possible reason is the presence of high ash content and their similar initial gasification rates during its early stages.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"19 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142692043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Direct air capture (DAC) using amine-functionalized solid adsorbents holds promise for achieving negative carbon emissions. In this study, a series of additive-incorporated tetraethylenepentamine-functionalized SiO2 adsorbents with varying tetraethylenepentamine and additive contents were prepared via a simple impregnation method, characterized by various techniques, and applied in the DAC process. The structure-performance relationship of these adsorbents in DAC was investigated, revealing that the quantity of active amine sites (or the tetraethylenepentamine content in the exposed layer), as determined by CO2-TPD measurement, was an important factor affecting the adsorbent performance. This factor, which varied with the tetraethylenepentamine content, additive type, and additive content, showed a positive correlation with the CO2 adsorption capacity of the adsorbents. The optimal adsorbent, 40TEPA-10PEG/SiO2 containing 40 wt % tetraethylenepentamine and 10 wt % polyethylene glycol (Mn = 200), exhibited a stable CO2 capacity of 2.1 mmol·g−1 and amine efficiency of 0.22 over 20 adsorption–desorption cycles (adsorption at 400 ppm CO2/N2 and 30 °C for 60 min, and desorption at pure N2 and 90 °C for 20 min). Moreover, even after deliberate accelerated oxidation treatment (pretreated in air at 100 °C for 10 h), the CO2 capacity of 40TEPA-10PEG/SiO2 remained at 2.0 mmol·g−1. The superior thermal and oxidative stability of 40TEPA-10PEG/SiO2 makes it a promising adsorbent for DAC applications.
{"title":"Structure-performance relationship of additive-incorporated tetraethylenepentamine-functionalized SiO2 in direct air capture of CO2","authors":"Zuoyan Yang, Yuqi Zhou, Hongjie Cui, Zhenmin Cheng, Zhiming Zhou","doi":"10.1007/s11705-024-2512-3","DOIUrl":"10.1007/s11705-024-2512-3","url":null,"abstract":"<div><p>Direct air capture (DAC) using amine-functionalized solid adsorbents holds promise for achieving negative carbon emissions. In this study, a series of additive-incorporated tetraethylenepentamine-functionalized SiO<sub>2</sub> adsorbents with varying tetraethylenepentamine and additive contents were prepared via a simple impregnation method, characterized by various techniques, and applied in the DAC process. The structure-performance relationship of these adsorbents in DAC was investigated, revealing that the quantity of active amine sites (or the tetraethylenepentamine content in the exposed layer), as determined by CO<sub>2</sub>-TPD measurement, was an important factor affecting the adsorbent performance. This factor, which varied with the tetraethylenepentamine content, additive type, and additive content, showed a positive correlation with the CO<sub>2</sub> adsorption capacity of the adsorbents. The optimal adsorbent, 40TEPA-10PEG/SiO<sub>2</sub> containing 40 wt % tetraethylenepentamine and 10 wt % polyethylene glycol (Mn = 200), exhibited a stable CO<sub>2</sub> capacity of 2.1 mmol·g<sup>−1</sup> and amine efficiency of 0.22 over 20 adsorption–desorption cycles (adsorption at 400 ppm CO<sub>2</sub>/N<sub>2</sub> and 30 °C for 60 min, and desorption at pure N<sub>2</sub> and 90 °C for 20 min). Moreover, even after deliberate accelerated oxidation treatment (pretreated in air at 100 °C for 10 h), the CO<sub>2</sub> capacity of 40TEPA-10PEG/SiO<sub>2</sub> remained at 2.0 mmol·g<sup>−1</sup>. The superior thermal and oxidative stability of 40TEPA-10PEG/SiO<sub>2</sub> makes it a promising adsorbent for DAC applications.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"19 2","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142761775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-24DOI: 10.1007/s11705-024-2505-2
Chao Wang, Min Hu, Jun Xu, Feng Deng
Zeolites, with their exquisite microporous frameworks and tailorable acidities, serve as ubiquitous catalysts across a diverse spectrum of industrial applications, ranging from petroleum and coal processing to sustainable chemistry and environmental remediation. Optimizing their performance hinges on a thorough understanding of the structure-performance relationship. In situ solid-state nuclear magnetic resonance spectroscopy has emerged as a critical tool, providing unparalleled atomic-level insights into both structure and dynamic aspects of zeolite-catalyzed reactions. Herein, we review recent progress in the development and application of the in situ solid-state nuclear magnetic resonance technique to zeolite catalysis. We first review the in situ nuclear magnetic resonance techniques used in zeolite-catalyzed reaction, including batch-like and continuous-flow reaction modes. The conditions and limitations for these techniques are thoroughly summarized. Subsequently, we review the applications of in situ nuclear magnetic resonance techniques in zeolite-catalyzed reaction, focusing on some important catalytic reactions like methanol-to-hydrocarbons, ethanol dehydration, alkane activation, and beyond. Emphasis is placed on the strategies of specific in situ nuclear magnetic resonance methodologies to tackle critical challenges encountered in these fields, such as probing intermediates and unraveling reaction mechanisms. Additionally, we discuss the burgeoning opportunities and prospective challenges associated with in situ nuclear magnetic resonance studies of zeolite-catalyzed processes.
{"title":"Mechanistic studies of zeolite catalysis via in situ solid-state nuclear magnetic resonance spectroscopy: progress and prospects","authors":"Chao Wang, Min Hu, Jun Xu, Feng Deng","doi":"10.1007/s11705-024-2505-2","DOIUrl":"10.1007/s11705-024-2505-2","url":null,"abstract":"<div><p>Zeolites, with their exquisite microporous frameworks and tailorable acidities, serve as ubiquitous catalysts across a diverse spectrum of industrial applications, ranging from petroleum and coal processing to sustainable chemistry and environmental remediation. Optimizing their performance hinges on a thorough understanding of the structure-performance relationship. <i>In situ</i> solid-state nuclear magnetic resonance spectroscopy has emerged as a critical tool, providing unparalleled atomic-level insights into both structure and dynamic aspects of zeolite-catalyzed reactions. Herein, we review recent progress in the development and application of the <i>in situ</i> solid-state nuclear magnetic resonance technique to zeolite catalysis. We first review the <i>in situ</i> nuclear magnetic resonance techniques used in zeolite-catalyzed reaction, including batch-like and continuous-flow reaction modes. The conditions and limitations for these techniques are thoroughly summarized. Subsequently, we review the applications of <i>in situ</i> nuclear magnetic resonance techniques in zeolite-catalyzed reaction, focusing on some important catalytic reactions like methanol-to-hydrocarbons, ethanol dehydration, alkane activation, and beyond. Emphasis is placed on the strategies of specific <i>in situ</i> nuclear magnetic resonance methodologies to tackle critical challenges encountered in these fields, such as probing intermediates and unraveling reaction mechanisms. Additionally, we discuss the burgeoning opportunities and prospective challenges associated with <i>in situ</i> nuclear magnetic resonance studies of zeolite-catalyzed processes.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"19 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142691963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The rapid migration and separation of photoinduced carriers is a key factor influencing photocatalytic efficiency. Constructing an S-scheme heterojunction is a strategic technique to enhance the separation of photo-generated carriers and boost overall catalytic activity. Herein, a simple physical stirring technique was adopted to successfully fabricate a novel NiCo2S4/CoTiO3 S-scheme heterojunction photocatalyst. Upon exposure to light, the NiCo2S4/CoTiO3-10 specimen demonstrated an outstanding hydrogen evolution rate of 2037.76 µmol·g−1·h−1, exceeding twice the rate observed for the pristine NiCo2S4 (833.72 µmol·g−1·h−1). The experimental outcomes reveal that the incorporation of CoTiO3 significantly enhances the charge separation and transfer within the system. Concurrently, the formation of the S-scheme mechanism facilitates the separation of carriers while maintaining high redox capabilities. This work introduces an innovative approach to forming S-scheme heterojunctions based on bimetallic sulfides, thereby offering new prospects for the efficient utilization of solar energy.
光诱导载流子的快速迁移和分离是影响光催化效率的关键因素。构建 S 型异质结是增强光生载流子分离、提高整体催化活性的一项战略性技术。本文采用简单的物理搅拌技术,成功制备了新型 NiCo2S4/CoTiO3 S 型异质结光催化剂。在光照下,NiCo2S4/CoTiO3-10 试样的氢气进化率达到了 2037.76 µmol-g-1-h-1,是原始 NiCo2S4(833.72 µmol-g-1-h-1)的两倍。实验结果表明,CoTiO3 的加入显著增强了系统内的电荷分离和转移。同时,S 型机制的形成促进了载流子的分离,同时保持了较高的氧化还原能力。这项工作介绍了一种基于双金属硫化物形成 S 型异质结的创新方法,从而为高效利用太阳能提供了新的前景。
{"title":"Excellent charge separation over NiCo2S4/CoTiO3 nanocomposites improved photocatalytic hydrogen production","authors":"Linlin Fan, Xin Guo, Lujun Wang, Zhiliang Jin, Noritatsu Tsubaki","doi":"10.1007/s11705-024-2509-y","DOIUrl":"10.1007/s11705-024-2509-y","url":null,"abstract":"<div><p>The rapid migration and separation of photoinduced carriers is a key factor influencing photocatalytic efficiency. Constructing an S-scheme heterojunction is a strategic technique to enhance the separation of photo-generated carriers and boost overall catalytic activity. Herein, a simple physical stirring technique was adopted to successfully fabricate a novel NiCo<sub>2</sub>S<sub>4</sub>/CoTiO<sub>3</sub> S-scheme heterojunction photocatalyst. Upon exposure to light, the NiCo<sub>2</sub>S<sub>4</sub>/CoTiO<sub>3</sub>-10 specimen demonstrated an outstanding hydrogen evolution rate of 2037.76 µmol·g<sup>−1</sup>·h<sup>−1</sup>, exceeding twice the rate observed for the pristine NiCo<sub>2</sub>S<sub>4</sub> (833.72 µmol·g<sup>−1</sup>·h<sup>−1</sup>). The experimental outcomes reveal that the incorporation of CoTiO<sub>3</sub> significantly enhances the charge separation and transfer within the system. Concurrently, the formation of the S-scheme mechanism facilitates the separation of carriers while maintaining high redox capabilities. This work introduces an innovative approach to forming S-scheme heterojunctions based on bimetallic sulfides, thereby offering new prospects for the efficient utilization of solar energy.</p></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"19 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142691843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}