首页 > 最新文献

Frontiers of Chemical Science and Engineering最新文献

英文 中文
Recent progress in the interfacial polymerization process for CO2 separation membrane fabrication 用于制造二氧化碳分离膜的界面聚合工艺的最新进展
IF 4.3 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-09-20 DOI: 10.1007/s11705-024-2510-5
Zhijie Shang, Qiangqiang Song, Bin Han, Jing Ma, Dongyang Li, Cancan Zhang, Xin Li, Jinghe Yang, Junyong Zhu, Wenpeng Li, Jing Wang, Yatao Zhang

Nowadays, global warming caused by the increasing levels of CO2 has become a serious environmental problem. Membrane separation technology has demonstrated its promising potential in carbon capture due to its easy operation, energy-efficientness and high efficiency. Interfacial polymerization process, as a facile and well-established technique for preparing membranes with a thin selective layer, has been widely used for fabricating commercial reverse osmosis and nanofiltration membranes in water treatment domain. To push forward such an interfacial polymerization process in the research of CO2 separation membranes, herein we make a review on the regulation and research progress of the interfacial polymerization membranes for CO2 separation. First, a comprehensive and critical review of the progress in the monomers, nanoparticles and interfacial polymerization process optimization for preparing CO2 separation membrane is presented. In addition, the potential of molecular dynamics simulation and machine learning in accelerating the screen and design of interfacial polymerization membranes for CO2 separation are outlined. Finally, the possible challenges and development prospects of CO2 separation membranes by interfacial polymerization process are proposed. It is believed that this review can offer valuable insights and guidance for the future advancement of interfacial polymerization membranes for CO2 separation, thereby fostering its development.

如今,二氧化碳含量的增加导致的全球变暖已成为一个严重的环境问题。膜分离技术因其操作简便、节能高效而在碳捕集领域展现出巨大潜力。界面聚合工艺作为制备具有薄选择性层的膜的一种简便而成熟的技术,已被广泛应用于水处理领域的商用反渗透膜和纳滤膜的制造。为了推动这种界面聚合工艺在二氧化碳分离膜研究中的应用,我们在此对用于二氧化碳分离的界面聚合膜的规程和研究进展进行综述。首先,对制备 CO2 分离膜的单体、纳米粒子和界面聚合工艺优化方面的进展进行了全面而严谨的综述。此外,还概述了分子动力学模拟和机器学习在加速筛选和设计用于二氧化碳分离的界面聚合膜方面的潜力。最后,提出了界面聚合工艺二氧化碳分离膜可能面临的挑战和发展前景。相信这篇综述能为未来推进用于二氧化碳分离的界面聚合膜提供有价值的见解和指导,从而促进其发展。
{"title":"Recent progress in the interfacial polymerization process for CO2 separation membrane fabrication","authors":"Zhijie Shang,&nbsp;Qiangqiang Song,&nbsp;Bin Han,&nbsp;Jing Ma,&nbsp;Dongyang Li,&nbsp;Cancan Zhang,&nbsp;Xin Li,&nbsp;Jinghe Yang,&nbsp;Junyong Zhu,&nbsp;Wenpeng Li,&nbsp;Jing Wang,&nbsp;Yatao Zhang","doi":"10.1007/s11705-024-2510-5","DOIUrl":"10.1007/s11705-024-2510-5","url":null,"abstract":"<div><p>Nowadays, global warming caused by the increasing levels of CO<sub>2</sub> has become a serious environmental problem. Membrane separation technology has demonstrated its promising potential in carbon capture due to its easy operation, energy-efficientness and high efficiency. Interfacial polymerization process, as a facile and well-established technique for preparing membranes with a thin selective layer, has been widely used for fabricating commercial reverse osmosis and nanofiltration membranes in water treatment domain. To push forward such an interfacial polymerization process in the research of CO<sub>2</sub> separation membranes, herein we make a review on the regulation and research progress of the interfacial polymerization membranes for CO<sub>2</sub> separation. First, a comprehensive and critical review of the progress in the monomers, nanoparticles and interfacial polymerization process optimization for preparing CO<sub>2</sub> separation membrane is presented. In addition, the potential of molecular dynamics simulation and machine learning in accelerating the screen and design of interfacial polymerization membranes for CO<sub>2</sub> separation are outlined. Finally, the possible challenges and development prospects of CO<sub>2</sub> separation membranes by interfacial polymerization process are proposed. It is believed that this review can offer valuable insights and guidance for the future advancement of interfacial polymerization membranes for CO<sub>2</sub> separation, thereby fostering its development.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"19 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142691844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reversible heat-set four-phase transitions of gel1-to-sol1-to-gel2-to-sol2 in binary hydrogels 二元水凝胶中凝胶1-溶胶1-凝胶2-溶胶2的可逆热固四相转变
IF 4.3 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-09-19 DOI: 10.1007/s11705-024-2501-6
Mengjiao Liang, Wenwen Cao, Yaodong Huang

A class of supramolecular binary hydrogels is formed from dodecylamine or tridecylamine and sparing carboxylic acids (with amine/acid molar ratio ⩾ 18). These hydrogels exhibit a remarkable thermally reversible four-phase transition. On heating, they transition from gel one (G1)-to-sol one (Sol1), then to gel two (G2)-to-sol two (Sol2). On cooling, they revert from Sol2-to-G2-to-Sol1-to-G1. Additionally, several G1 and G2 hydrogels undergo thermally reversible gel-to-gel phase transitions, which are reflected by translucent-opaque and opaque-translucent changes in their appearance. The nature of the four-phase transformation was analyzed using a range of techniques. Scanning electron microscopy images confirmed that the fibers of the opaque hydrogel at high temperatures were considerably larger than those of its translucent counterpart at low temperatures. Fluorescence emission spectra demonstrated that higher temperatures, higher amine/acid ratios, and greater acid hydrophobicity increased the hydrophobic interactions. Fourier transform infrared spectroscopy and ultraviolet-visible spectroscopic analyses confirmed the existence of hydrogen-bonding interactions and aggregation in the hydrogels. X-ray diffraction profiles indicated that the hydrogels adopt lamellar structures. The findings advance our current understanding of the phase transition of supramolecular gels and facilitate the constitution of binary or multicomponent gels, providing a practical way to create new smart functional materials.

有一类超分子二元水凝胶是由十二胺或十三胺和疏羧酸(胺/酸摩尔比⩾ 18)形成的。这些水凝胶表现出显著的热可逆四相转变。加热时,它们从凝胶一(G1)转变为溶胶一(Sol1),然后转变为凝胶二(G2),再转变为溶胶二(Sol2)。冷却时,它们又从 Sol2 到 G2 再到 Sol1 到 G1。此外,几种 G1 和 G2 水凝胶还发生了凝胶到凝胶的热可逆相变,这反映在其外观的半透明-不透明和不透明-半透明变化上。我们使用一系列技术分析了四相转变的性质。扫描电子显微镜图像证实,高温下不透明水凝胶的纤维比低温下半透明水凝胶的纤维大得多。荧光发射光谱显示,较高的温度、较高的胺/酸比例和较强的酸疏水性增加了疏水相互作用。傅立叶变换红外光谱和紫外可见光谱分析证实了水凝胶中存在氢键相互作用和聚集现象。X 射线衍射曲线表明,水凝胶采用了片层结构。这些发现推进了我们目前对超分子凝胶相变的理解,促进了二元或多组分凝胶的形成,为创造新型智能功能材料提供了实用途径。
{"title":"Reversible heat-set four-phase transitions of gel1-to-sol1-to-gel2-to-sol2 in binary hydrogels","authors":"Mengjiao Liang,&nbsp;Wenwen Cao,&nbsp;Yaodong Huang","doi":"10.1007/s11705-024-2501-6","DOIUrl":"10.1007/s11705-024-2501-6","url":null,"abstract":"<div><p>A class of supramolecular binary hydrogels is formed from dodecylamine or tridecylamine and sparing carboxylic acids (with amine/acid molar ratio ⩾ 18). These hydrogels exhibit a remarkable thermally reversible four-phase transition. On heating, they transition from gel one (G<sup>1</sup>)-to-sol one (Sol<sup>1</sup>), then to gel two (G<sup>2</sup>)-to-sol two (Sol<sup>2</sup>). On cooling, they revert from Sol<sup>2</sup>-to-G<sup>2</sup>-to-Sol<sup>1</sup>-to-G<sup>1</sup>. Additionally, several G<sup>1</sup> and G<sup>2</sup> hydrogels undergo thermally reversible gel-to-gel phase transitions, which are reflected by translucent-opaque and opaque-translucent changes in their appearance. The nature of the four-phase transformation was analyzed using a range of techniques. Scanning electron microscopy images confirmed that the fibers of the opaque hydrogel at high temperatures were considerably larger than those of its translucent counterpart at low temperatures. Fluorescence emission spectra demonstrated that higher temperatures, higher amine/acid ratios, and greater acid hydrophobicity increased the hydrophobic interactions. Fourier transform infrared spectroscopy and ultraviolet-visible spectroscopic analyses confirmed the existence of hydrogen-bonding interactions and aggregation in the hydrogels. X-ray diffraction profiles indicated that the hydrogels adopt lamellar structures. The findings advance our current understanding of the phase transition of supramolecular gels and facilitate the constitution of binary or multicomponent gels, providing a practical way to create new smart functional materials.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"18 12","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142412523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergistic technologies for a circular economy: upcycling waste plastics and biomass 循环经济的协同技术:废塑料和生物质的升级再造
IF 4.3 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-09-15 DOI: 10.1007/s11705-024-2507-0
Ahmed I. Osman, Mahmoud Nasr, Chukwunonso O. Aniagor, Mohamed Farghali, Mee Mee Huang, Bridgid Lai Fui Chin, Ziqiang Sun, Serene Sow Mun Lock, Eduardo A. López-Maldonado, Chung Loong Yiin, Charles E. Chinyelu, Abid Salam Farooqi, Zhonghao Chen, Pow-Seng Yap

The urgent need for sustainable waste management has led to the exploration of upcycling waste plastics and biomass as viable solutions. In 2018, global plastic production reached 359 million tonnes, with an estimated 12000 million tonnes projected to be delivered and disposed of in landfills by 2050. Unfortunately, current waste management practices result in only 19.5% of plastics being recycled, while the rest is either landfilled (55%) or incinerated (25.5%). The improper disposal of plastics contributes to issues such as soil and groundwater contamination, air pollution, and wildlife disturbance. On the other hand, biomass has the potential to deliver around 240 exajoules of energy per year by 2060. However, its current utilization remains relatively small, with only approximately 9% of biomass-derived energy being consumed in Europe in 2017. This review explores various upcycling methods for waste plastics and biomass, including mechanical, chemical, biological, and thermal approaches. It also highlights the applications of upcycled plastics and biomass in sectors such as construction, packaging, energy generation, and chemicals. The environmental and economic benefits of upcycling are emphasized, including the reduction of plastic pollution, preservation of natural resources, carbon footprint reduction, and circular economy advancement.

对可持续废物管理的迫切需求促使人们探索废塑料和生物质的升级再循环作为可行的解决方案。2018 年,全球塑料产量达到 3.59 亿吨,预计到 2050 年,将有 1.2 亿吨塑料被送往垃圾填埋场处理。遗憾的是,目前的废物管理做法导致只有 19.5% 的塑料被回收利用,其余的要么被填埋(55%),要么被焚烧(25.5%)。塑料的不当处置造成了土壤和地下水污染、空气污染和野生动物干扰等问题。另一方面,到 2060 年,生物质具有每年提供约 240 艾焦能源的潜力。然而,目前其利用率仍然相对较低,2017 年欧洲仅消耗了约 9% 的生物质衍生能源。本综述探讨了废塑料和生物质的各种升级再循环方法,包括机械、化学、生物和热能方法。报告还重点介绍了塑料和生物质升级再循环在建筑、包装、能源生产和化工等领域的应用。报告强调了升级再循环的环境和经济效益,包括减少塑料污染、保护自然资源、减少碳足迹和促进循环经济发展。
{"title":"Synergistic technologies for a circular economy: upcycling waste plastics and biomass","authors":"Ahmed I. Osman,&nbsp;Mahmoud Nasr,&nbsp;Chukwunonso O. Aniagor,&nbsp;Mohamed Farghali,&nbsp;Mee Mee Huang,&nbsp;Bridgid Lai Fui Chin,&nbsp;Ziqiang Sun,&nbsp;Serene Sow Mun Lock,&nbsp;Eduardo A. López-Maldonado,&nbsp;Chung Loong Yiin,&nbsp;Charles E. Chinyelu,&nbsp;Abid Salam Farooqi,&nbsp;Zhonghao Chen,&nbsp;Pow-Seng Yap","doi":"10.1007/s11705-024-2507-0","DOIUrl":"10.1007/s11705-024-2507-0","url":null,"abstract":"<div><p>The urgent need for sustainable waste management has led to the exploration of upcycling waste plastics and biomass as viable solutions. In 2018, global plastic production reached 359 million tonnes, with an estimated 12000 million tonnes projected to be delivered and disposed of in landfills by 2050. Unfortunately, current waste management practices result in only 19.5% of plastics being recycled, while the rest is either landfilled (55%) or incinerated (25.5%). The improper disposal of plastics contributes to issues such as soil and groundwater contamination, air pollution, and wildlife disturbance. On the other hand, biomass has the potential to deliver around 240 exajoules of energy per year by 2060. However, its current utilization remains relatively small, with only approximately 9% of biomass-derived energy being consumed in Europe in 2017. This review explores various upcycling methods for waste plastics and biomass, including mechanical, chemical, biological, and thermal approaches. It also highlights the applications of upcycled plastics and biomass in sectors such as construction, packaging, energy generation, and chemicals. The environmental and economic benefits of upcycling are emphasized, including the reduction of plastic pollution, preservation of natural resources, carbon footprint reduction, and circular economy advancement.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"19 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11705-024-2507-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142691970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced C3H6/C3H8 separation performance in polysulfone membrane blended with rigid ZIF-8 crystals 增强聚砜膜与硬质 ZIF-8 结晶体的 C3H6/C3H8 分离性能
IF 4.3 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-09-15 DOI: 10.1007/s11705-024-2504-3
Jiayu Luo, Luxi Lyu, Zongjie Yin, Yanying Wei

Metal-organic frameworks have a wide range of applications in the field of membrane separation, but the inherent flexible structure and the difficulty for scale-up hinder their further applications. Herein, the relatively rigid zeolitic imidazolate framework-8 particles prepared under an electric field (E-ZIF-8) were used as the fillers in polysulfone (PSF) to form series of mixed matrix membranes. It was found that the introduction of E-ZIF-8 improves both the C3H6 permeability and C3H6/C3H8 selectivity of the membranes. Compared with the bare PSF membrane, the C3H6/C3H8 selectivity of the 30 wt % E-ZIF-8@PSF membrane increased by ∼230%, while the C3H6 permeability was enhanced by ∼830%. In addition, time and pressure dependence analysis demonstrated that such E-ZIF-8@PSF membranes also exhibited good long-term stability and pressure resistance, offering significant industrialization advantages.

金属有机框架在膜分离领域有着广泛的应用,但其固有的柔性结构和放大困难阻碍了其进一步应用。在此,我们使用在电场下制备的相对坚硬的沸石咪唑盐酸盐框架-8 颗粒(E-ZIF-8)作为聚砜(PSF)的填料,形成了一系列混合基质膜。研究发现,E-ZIF-8 的引入提高了膜的 C3H6 渗透性和 C3H6/C3H8 选择性。与裸 PSF 膜相比,30 wt % E-ZIF-8@PSF 膜的 C3H6/C3H8 选择性提高了 ∼230%,而 C3H6 渗透性提高了 ∼830%。此外,时间和压力依赖性分析表明,这种 E-ZIF-8@PSF 膜还具有良好的长期稳定性和耐压性,具有显著的工业化优势。
{"title":"Enhanced C3H6/C3H8 separation performance in polysulfone membrane blended with rigid ZIF-8 crystals","authors":"Jiayu Luo,&nbsp;Luxi Lyu,&nbsp;Zongjie Yin,&nbsp;Yanying Wei","doi":"10.1007/s11705-024-2504-3","DOIUrl":"10.1007/s11705-024-2504-3","url":null,"abstract":"<div><p>Metal-organic frameworks have a wide range of applications in the field of membrane separation, but the inherent flexible structure and the difficulty for scale-up hinder their further applications. Herein, the relatively rigid zeolitic imidazolate framework-8 particles prepared under an electric field (E-ZIF-8) were used as the fillers in polysulfone (PSF) to form series of mixed matrix membranes. It was found that the introduction of E-ZIF-8 improves both the C<sub>3</sub>H<sub>6</sub> permeability and C<sub>3</sub>H<sub>6</sub>/C<sub>3</sub>H<sub>8</sub> selectivity of the membranes. Compared with the bare PSF membrane, the C<sub>3</sub>H<sub>6</sub>/C<sub>3</sub>H<sub>8</sub> selectivity of the 30 wt % E-ZIF-8@PSF membrane increased by ∼230%, while the C<sub>3</sub>H<sub>6</sub> permeability was enhanced by ∼830%. In addition, time and pressure dependence analysis demonstrated that such E-ZIF-8@PSF membranes also exhibited good long-term stability and pressure resistance, offering significant industrialization advantages.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"19 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142691971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating CO2 electro-reduction mechanisms: DFT insight into earth-abundant Mn diimine catalysts for CO2 conversions over hydrogen evolution reaction, feasibility, and selectivity considerations 研究二氧化碳电还原机制:通过氢气进化反应、可行性和选择性考虑,对二氧化碳转化的富土二亚胺锰催化剂进行 DFT 深入研究
IF 4.3 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-09-13 DOI: 10.1007/s11705-024-2502-5
Murugesan Panneerselvam, Marcelo Albuquerque, Iuri Soter Viana Segtovich, Frederico W. Tavares, Luciano T. Costa

This study investigates the detailed mechanism of CO2 conversion to CO using the manganese(I) diimine electrocatalyst [Mn(pyrox)(CO)3Br], synthesized by Christoph Steinlechner and coworkers. Employing density functional theory calculations, we thoroughly explore the electrocatalytic pathway of CO2 reduction alongside the competing hydrogen evolution reaction. Our analysis reveals the significant role of diimine nitrogen coordination in enhancing the electron density of the Mn center, thereby favoring both CO2 reduction and hydrogen evolution reaction thermodynamically. Furthermore, we observe that triethanolamine (TEOA) stabilizes transition states, aiding in CO2 fixation and reduction. The critical steps influencing the reaction rate involve breaking the MnC(O)–OH bond during CO2 reduction and cleaving the MnH–H–TEOA bond in the hydrogen evolution reaction. We explain the preference for CO2 conversion to CO over H2 evolution due to the higher energy barrier in forming the Mn-H2 species during H2 production. Our findings suggest the potential for tuning the electron density of the Mn center to enhance reactivity and selectivity in CO2 reduction. Additionally, we analyze potential competing reactions, focusing on electrocatalytic processes for CO2 reduction and evaluating “protonation-first” and “reduction-first” pathways through density functional theory calculations of redox potentials and Gibbs free energies. This analysis indicates the predominance of the “reduction-first” pathway in CO production, especially under high applied potential conditions. Moreover, our research highlights the selectivity of [Mn(pyrox)(CO)3Br] toward CO production over HCOO and H2 formation, proposing avenues for future research to expand upon these findings by using larger basis sets and exploring additional functionalized ligands.

本研究利用 Christoph Steinlechner 及其同事合成的二(I)亚胺锰电催化剂 [Mn(pyrox)(CO)3Br],研究了将 CO2 转化为 CO 的详细机理。利用密度泛函理论计算,我们深入探讨了二氧化碳还原与竞争性氢进化反应的电催化途径。我们的分析揭示了二亚胺氮配位在提高锰中心电子密度方面的重要作用,从而在热力学上有利于二氧化碳还原和氢进化反应。此外,我们还观察到三乙醇胺(TEOA)稳定了过渡态,有助于二氧化碳的固定和还原。影响反应速率的关键步骤包括在二氧化碳还原过程中断开 MnC(O)-OH 键,以及在氢演化反应中裂解 MnH-H-TEOA 键。我们解释了二氧化碳转化为一氧化碳比氢气进化更优先的原因,因为在产生氢气的过程中形成 Mn-H2 物种的能量障碍更高。我们的研究结果表明,可以通过调整 Mn 中心的电子密度来提高二氧化碳还原反应的活性和选择性。此外,我们还分析了潜在的竞争反应,重点是二氧化碳还原的电催化过程,并通过对氧化还原电势和吉布斯自由能的密度泛函理论计算,评估了 "质子化优先 "和 "还原优先 "的途径。分析表明,"还原优先 "途径在 CO 生成中占主导地位,尤其是在高电势条件下。此外,我们的研究还强调了[Mn(pyrox)(CO)3Br]对 CO 生成的选择性,而不是对 HCOO- 和 H2 生成的选择性,这为今后的研究提出了途径,即通过使用更大的基集和探索更多的功能化配体来扩展这些发现。
{"title":"Investigating CO2 electro-reduction mechanisms: DFT insight into earth-abundant Mn diimine catalysts for CO2 conversions over hydrogen evolution reaction, feasibility, and selectivity considerations","authors":"Murugesan Panneerselvam,&nbsp;Marcelo Albuquerque,&nbsp;Iuri Soter Viana Segtovich,&nbsp;Frederico W. Tavares,&nbsp;Luciano T. Costa","doi":"10.1007/s11705-024-2502-5","DOIUrl":"10.1007/s11705-024-2502-5","url":null,"abstract":"<div><p>This study investigates the detailed mechanism of CO<sub>2</sub> conversion to CO using the manganese(I) diimine electrocatalyst [Mn(pyrox)(CO)<sub>3</sub>Br], synthesized by Christoph Steinlechner and coworkers. Employing density functional theory calculations, we thoroughly explore the electrocatalytic pathway of CO<sub>2</sub> reduction alongside the competing hydrogen evolution reaction. Our analysis reveals the significant role of diimine nitrogen coordination in enhancing the electron density of the Mn center, thereby favoring both CO<sub>2</sub> reduction and hydrogen evolution reaction thermodynamically. Furthermore, we observe that triethanolamine (TEOA) stabilizes transition states, aiding in CO<sub>2</sub> fixation and reduction. The critical steps influencing the reaction rate involve breaking the MnC(O)–OH bond during CO<sub>2</sub> reduction and cleaving the MnH–H–TEOA bond in the hydrogen evolution reaction. We explain the preference for CO<sub>2</sub> conversion to CO over H<sub>2</sub> evolution due to the higher energy barrier in forming the Mn-H<sub>2</sub> species during H<sub>2</sub> production. Our findings suggest the potential for tuning the electron density of the Mn center to enhance reactivity and selectivity in CO<sub>2</sub> reduction. Additionally, we analyze potential competing reactions, focusing on electrocatalytic processes for CO<sub>2</sub> reduction and evaluating “protonation-first” and “reduction-first” pathways through density functional theory calculations of redox potentials and Gibbs free energies. This analysis indicates the predominance of the “reduction-first” pathway in CO production, especially under high applied potential conditions. Moreover, our research highlights the selectivity of [Mn(pyrox)(CO)<sub>3</sub>Br] toward CO production over HCOO<sup>−</sup> and H<sub>2</sub> formation, proposing avenues for future research to expand upon these findings by using larger basis sets and exploring additional functionalized ligands.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"18 12","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142411611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chemical recycling of polyolefin waste: from the perspective of efficient pyrolysis reactors 聚烯烃废料的化学循环利用:从高效热解反应器的角度看问题
IF 4.3 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-09-10 DOI: 10.1007/s11705-024-2498-x
Weiqiang Gao, Yinlong Chang, Qimin Zhou, Qingyue Wang, Khak Ho Lim, Deliang Wang, Jijiang Hu, Wen-Jun Wang, Bo-Geng Li, Pingwei Liu

Polyolefins, widely used for packaging, construction, and electronics, facilitate daily life but cause severe environmental pollution when discarded after usage. Chemical recycling of polyolefins has received widespread attention for eliminating polyolefin pollution, as it is promising to convert polyolefin wastes to high-value chemicals (e.g., fuels, light olefins, aromatic hydrocarbons). However, the chemical recycling of polyolefins typically involves high-viscosity, high-temperature and high-pressure, and its efficiency depends on the catalytic materials, reaction conditions, and more essentially, on the reactors which are overlooked in previous studies. Herein, this review first introduces the mechanisms and influencing factors of polyolefin waste upcycling, followed by a brief overview of in situ and ex situ processes. Emphatically, the review focuses on the various reactors used in polyolefin recycling (i.e., batch/semi-batch reactor, fixed bed reactor, fluidized bed reactor, conical spouted bed reactor, screw reactor, molten metal bed reactor, vertical falling film reactor, rotary kiln reactor and microwave-assisted reactor) and their respective merits and demerits. Nevertheless, challenges remain in developing highly efficient reacting techniques to realize the practical application. In light of this, the review is concluded with recommendations and prospects to enlighten the future of polyolefin upcycling.

聚烯烃被广泛应用于包装、建筑和电子产品等领域,为人们的日常生活提供了便利,但使用后的废弃物会造成严重的环境污染。聚烯烃的化学回收有望将聚烯烃废料转化为高价值的化学品(如燃料、轻烯烃、芳香烃等),因此,消除聚烯烃污染受到广泛关注。然而,聚烯烃的化学回收通常涉及高粘度、高温和高压,其效率取决于催化材料、反应条件,更重要的是取决于反应器,而这些在以往的研究中都被忽视了。在此,本综述首先介绍了聚烯烃废料升级再循环的机理和影响因素,然后简要概述了原位和非原位工艺。本综述重点介绍了用于聚烯烃回收利用的各种反应器(即间歇/半间歇反应器、固定床反应器、流化床反应器、锥形喷射床反应器、螺杆反应器、熔融金属床反应器、垂直降膜反应器、回转窑反应器和微波辅助反应器)及其各自的优缺点。然而,在开发高效反应技术以实现实际应用方面仍然存在挑战。有鉴于此,本综述最后提出了一些建议和展望,以启迪聚烯烃升级再循环的未来。
{"title":"Chemical recycling of polyolefin waste: from the perspective of efficient pyrolysis reactors","authors":"Weiqiang Gao,&nbsp;Yinlong Chang,&nbsp;Qimin Zhou,&nbsp;Qingyue Wang,&nbsp;Khak Ho Lim,&nbsp;Deliang Wang,&nbsp;Jijiang Hu,&nbsp;Wen-Jun Wang,&nbsp;Bo-Geng Li,&nbsp;Pingwei Liu","doi":"10.1007/s11705-024-2498-x","DOIUrl":"10.1007/s11705-024-2498-x","url":null,"abstract":"<div><p>Polyolefins, widely used for packaging, construction, and electronics, facilitate daily life but cause severe environmental pollution when discarded after usage. Chemical recycling of polyolefins has received widespread attention for eliminating polyolefin pollution, as it is promising to convert polyolefin wastes to high-value chemicals (e.g., fuels, light olefins, aromatic hydrocarbons). However, the chemical recycling of polyolefins typically involves high-viscosity, high-temperature and high-pressure, and its efficiency depends on the catalytic materials, reaction conditions, and more essentially, on the reactors which are overlooked in previous studies. Herein, this review first introduces the mechanisms and influencing factors of polyolefin waste upcycling, followed by a brief overview of <i>in situ</i> and <i>ex situ</i> processes. Emphatically, the review focuses on the various reactors used in polyolefin recycling (i.e., batch/semi-batch reactor, fixed bed reactor, fluidized bed reactor, conical spouted bed reactor, screw reactor, molten metal bed reactor, vertical falling film reactor, rotary kiln reactor and microwave-assisted reactor) and their respective merits and demerits. Nevertheless, challenges remain in developing highly efficient reacting techniques to realize the practical application. In light of this, the review is concluded with recommendations and prospects to enlighten the future of polyolefin upcycling.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"18 12","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142255054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DFT insights into oxygen vacancy formation and chemical looping dry reforming of methane on metal-substituted CeO2 (111) surface DFT 对金属取代 CeO2 (111) 表面氧空位形成和甲烷化学循环干重整的见解
IF 4.3 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-09-10 DOI: 10.1007/s11705-024-2513-2
Mingyi Chen, Zeshan Wang, Yuelun Li, Yuxin Wang, Lei Jiang, Huicong Zuo, Linan Huang, Yuhao Wang, Dong Tian, Hua Wang, Kongzhai Li

The oxygen vacancy formation energy and chemical looping dry reforming of methane over metal-substituted CeO2 (111) are investigated based on density functional theory calculations. The calculated results indicate that among the various metals that can substitute for the Ce atom in the CeO2(111) surface, Zn substitution results in the lowest oxygen vacancy formation energy. For the activation of CH4 on CeO2 (111) and Zn-substituted CeO2 (111) surfaces, the calculated results illustrate that the dissociation process of CH3(ads) is very difficult on pristine surfaces and unfavorable for CHO(ads) on substituted surfaces. Furthermore, the dissociative adsorption of CO and H2 on the Zn-substituted CeO2 (111) surface requires high energy, which is unfavorable for syngas production. This work demonstrates that excessive formation of oxygen vacancy can lead to excessively high adsorption energies, thus limiting the conversion efficiency of the reaction intermediates. This finding provides important guidance and application prospects for the design and optimization of oxygen carrier materials, especially in the field of chemical looping dry methane reforming to syngas.

基于密度泛函理论计算,研究了金属取代的 CeO2 (111) 上的氧空位形成能和甲烷的化学循环干重整。计算结果表明,在可以替代 CeO2(111)表面 Ce 原子的各种金属中,Zn 的替代导致氧空位形成能最低。对于 CeO2(111)和 Zn 取代的 CeO2(111)表面上 CH4 的活化,计算结果说明在原始表面上 CH3(吸附)的解离过程非常困难,而在取代表面上 CHO(吸附)的解离过程不利。此外,CO 和 H2 在 Zn 取代的 CeO2 (111) 表面上的解离吸附需要很高的能量,这不利于合成气的生产。这项研究表明,氧空位的过度形成会导致过高的吸附能,从而限制反应中间产物的转化效率。这一发现为载氧材料的设计和优化提供了重要的指导和应用前景,尤其是在化学循环干甲烷重整制合成气领域。
{"title":"DFT insights into oxygen vacancy formation and chemical looping dry reforming of methane on metal-substituted CeO2 (111) surface","authors":"Mingyi Chen,&nbsp;Zeshan Wang,&nbsp;Yuelun Li,&nbsp;Yuxin Wang,&nbsp;Lei Jiang,&nbsp;Huicong Zuo,&nbsp;Linan Huang,&nbsp;Yuhao Wang,&nbsp;Dong Tian,&nbsp;Hua Wang,&nbsp;Kongzhai Li","doi":"10.1007/s11705-024-2513-2","DOIUrl":"10.1007/s11705-024-2513-2","url":null,"abstract":"<div><p>The oxygen vacancy formation energy and chemical looping dry reforming of methane over metal-substituted CeO<sub>2</sub> (111) are investigated based on density functional theory calculations. The calculated results indicate that among the various metals that can substitute for the Ce atom in the CeO<sub>2</sub>(111) surface, Zn substitution results in the lowest oxygen vacancy formation energy. For the activation of CH<sub>4</sub> on CeO<sub>2</sub> (111) and Zn-substituted CeO<sub>2</sub> (111) surfaces, the calculated results illustrate that the dissociation process of CH<sub>3(ads)</sub> is very difficult on pristine surfaces and unfavorable for CHO<sub>(ads)</sub> on substituted surfaces. Furthermore, the dissociative adsorption of CO and H<sub>2</sub> on the Zn-substituted CeO<sub>2</sub> (111) surface requires high energy, which is unfavorable for syngas production. This work demonstrates that excessive formation of oxygen vacancy can lead to excessively high adsorption energies, thus limiting the conversion efficiency of the reaction intermediates. This finding provides important guidance and application prospects for the design and optimization of oxygen carrier materials, especially in the field of chemical looping dry methane reforming to syngas.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"18 12","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142254759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine learning meets enzyme engineering: examples in the design of polyethylene terephthalate hydrolases 机器学习与酶工程的结合:聚对苯二甲酸乙二醇酯水解酶设计实例
IF 4.3 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-09-10 DOI: 10.1007/s11705-024-2500-7
Rohan Ali, Yifei Zhang

The trend of employing machine learning methods has been increasing to develop promising biocatalysts. Leveraging the experimental findings and simulation data, these methods facilitate enzyme engineering and even the design of new-to-nature enzymes. This review focuses on the application of machine learning methods in the engineering of polyethylene terephthalate (PET) hydrolases, enzymes that have the potential to help address plastic pollution. We introduce an overview of machine learning workflows, useful methods and tools for protein design and engineering, and discuss the recent progress of machine learning-aided PET hydrolase engineering and de novo design of PET hydrolases. Finally, as machine learning in enzyme engineering is still evolving, we foresee that advancements in computational power and quality data resources will considerably increase the use of data-driven approaches in enzyme engineering in the coming decades.

采用机器学习方法开发有前途的生物催化剂的趋势日益明显。利用实验结果和模拟数据,这些方法有助于酶工程,甚至有助于设计新的天然酶。本综述侧重于机器学习方法在聚对苯二甲酸乙二醇酯(PET)水解酶工程中的应用,这种酶有可能帮助解决塑料污染问题。我们概述了机器学习工作流程、蛋白质设计和工程的有用方法和工具,并讨论了机器学习辅助 PET水解酶工程和从头设计 PET水解酶的最新进展。最后,由于机器学习在酶工程中的应用仍在不断发展,我们预计在未来几十年中,计算能力和高质量数据资源的进步将大大提高数据驱动方法在酶工程中的应用。
{"title":"Machine learning meets enzyme engineering: examples in the design of polyethylene terephthalate hydrolases","authors":"Rohan Ali,&nbsp;Yifei Zhang","doi":"10.1007/s11705-024-2500-7","DOIUrl":"10.1007/s11705-024-2500-7","url":null,"abstract":"<div><p>The trend of employing machine learning methods has been increasing to develop promising biocatalysts. Leveraging the experimental findings and simulation data, these methods facilitate enzyme engineering and even the design of new-to-nature enzymes. This review focuses on the application of machine learning methods in the engineering of polyethylene terephthalate (PET) hydrolases, enzymes that have the potential to help address plastic pollution. We introduce an overview of machine learning workflows, useful methods and tools for protein design and engineering, and discuss the recent progress of machine learning-aided PET hydrolase engineering and <i>de novo</i> design of PET hydrolases. Finally, as machine learning in enzyme engineering is still evolving, we foresee that advancements in computational power and quality data resources will considerably increase the use of data-driven approaches in enzyme engineering in the coming decades.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"18 12","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142411224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative analysis of aromatic compounds steam reforming over Rh supported on γ-Al2O3 γ-Al2O3负载Rh上芳香族化合物蒸汽重整的对比分析
IF 4.3 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-09-06 DOI: 10.1007/s11705-024-2514-1
Marinela D. Zhurka, Panagiotis N. Kechagiopoulos

The steam reforming of bio-oil can provide a sustainable means to produce hydrogen, while tar steam reforming can significantly enhance the efficiency of the biomass gasification process. Bio-oils and tars are highly complex mixtures, and while there has been extensive research on the reforming of small oxygenates and aliphatic hydrocarbons, there have been comparatively much less studies on aromatics reforming. In the current work, we present a comparative study of the steam reforming of hydroquinone, benzyl alcohol and toluene, selected as model compounds of the aromatic fraction of bio-oils and tars with different functional groups. The effect of temperature, partial pressure of reactants, and contact time is studied over a Rh catalyst supported on γ-Al2O3. Across the range of conditions studied, hydroquinone is found to be more reactive, followed by benzyl alcohol, and, lastly, toluene. The differences are attributed to the presence of hydroxyl groups in the case of the former two compounds, versus a methyl group in the case of toluene, effectively correlating activity with the O/C ratio in the compounds’ molecule. Nonetheless, similar pathways are observed, with methane, benzene, naphthalene and toluene (during hydroquinone and benzyl alcohol reforming) detected as products in addition to carbon oxides and hydrogen.

生物油蒸汽重整可提供可持续的制氢手段,而焦油蒸汽重整可显著提高生物质气化过程的效率。生物油和焦油是高度复杂的混合物,虽然对小氧化物和脂肪烃的重整已经有了广泛的研究,但对芳烃的重整研究相对较少。本文以不同官能团的生物油和焦油的芳香族组分为模型化合物,对对苯二酚、苯甲醇和甲苯的蒸汽重整进行了比较研究。在γ-Al2O3负载的Rh催化剂上,研究了温度、反应物分压和接触时间对反应的影响。在研究的各种条件下,发现对苯二酚的反应性更强,其次是苯醇,最后是甲苯。这种差异归因于前两种化合物中羟基的存在,而甲苯中甲基的存在,有效地将活性与化合物分子中的O/C比率联系起来。尽管如此,也观察到类似的反应途径,除碳氧化物和氢外,还检测到甲烷、苯、萘和甲苯(在对苯二酚和苯甲醇重整过程中)。
{"title":"Comparative analysis of aromatic compounds steam reforming over Rh supported on γ-Al2O3","authors":"Marinela D. Zhurka,&nbsp;Panagiotis N. Kechagiopoulos","doi":"10.1007/s11705-024-2514-1","DOIUrl":"10.1007/s11705-024-2514-1","url":null,"abstract":"<div><p>The steam reforming of bio-oil can provide a sustainable means to produce hydrogen, while tar steam reforming can significantly enhance the efficiency of the biomass gasification process. Bio-oils and tars are highly complex mixtures, and while there has been extensive research on the reforming of small oxygenates and aliphatic hydrocarbons, there have been comparatively much less studies on aromatics reforming. In the current work, we present a comparative study of the steam reforming of hydroquinone, benzyl alcohol and toluene, selected as model compounds of the aromatic fraction of bio-oils and tars with different functional groups. The effect of temperature, partial pressure of reactants, and contact time is studied over a Rh catalyst supported on <i>γ</i>-Al<sub>2</sub>O<sub>3</sub>. Across the range of conditions studied, hydroquinone is found to be more reactive, followed by benzyl alcohol, and, lastly, toluene. The differences are attributed to the presence of hydroxyl groups in the case of the former two compounds, versus a methyl group in the case of toluene, effectively correlating activity with the O/C ratio in the compounds’ molecule. Nonetheless, similar pathways are observed, with methane, benzene, naphthalene and toluene (during hydroquinone and benzyl alcohol reforming) detected as products in addition to carbon oxides and hydrogen.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"19 3","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11705-024-2514-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Screening techniques as a preliminary diagnostic tool for advanced oxidative processes on a laboratory scale 筛选技术作为实验室规模上高级氧化过程的初步诊断工具
IF 4.3 3区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-09-06 DOI: 10.1007/s11705-024-2517-y
Larissa Pinheiro de Souza, Flávio Olimpio Sanches-Neto, Júlio César de Oliveira Ribeiro, Bruno Ramos, Valter H. Carvalho-Silva, Antonio Carlos Silva Costa Teixeira

This study introduces an innovative screening approach to evaluate advanced oxidation processes (AOPs) as a preliminary diagnostic tool for degrading emerging contaminants (EC). It includes the design, prototyping, and cost-benefit analysis of circular photochemical reactors with flat and spiral internal geometries. Three-dimensional (3D) printing was used for reactor prototyping, providing flexibility and economy, and this stage was assisted by the hydrodynamic analysis of the prototypes based on residence time distribution (RTD) and macromixing models. The research evaluates the degradation of a model contaminant of emerging concern, fluoxetine (FLX) hydrochloride, using the solar/persulfate (PS) process in two water matrices (i.e., ultrapure water and sewage treatment plant effluent) to optimize reactor performance. The study also proposes primary theoretical pathways for fluoxetine degradation involving hydroxyl and sulfate radicals, as well as predicting the toxicity of the parent compound and its primary metabolites using quantitative structure-activity relationship (QSAR) models. The spiral reactor exhibits improved hydrodynamic behavior, closely resembling continuous stirred and plug flow reactors in series. Despite a slightly lower specific degradation rate in real wastewater, the solar/PS process remains effective for both matrices. By-products generated via the sulfate radical pathway are expected to be less toxic than those formed by hydroxyl radicals (HO·) attack.

本研究介绍了一种创新的筛选方法来评估高级氧化过程(AOPs)作为降解新兴污染物(EC)的初步诊断工具。它包括设计,原型,和成本效益分析圆形光化学反应器与平面和螺旋内部几何形状。三维(3D)打印用于反应器原型设计,提供了灵活性和经济性,并且基于停留时间分布(RTD)和宏观混合模型的原型水动力分析辅助了这一阶段。该研究利用太阳能/过硫酸盐(PS)工艺在两种水基质(即超纯水和污水处理厂出水)中对新型污染物盐酸氟西汀(FLX)的降解进行了评估,以优化反应器的性能。该研究还提出了氟西汀降解的主要理论途径,包括羟基和硫酸盐自由基,以及使用定量构效关系(QSAR)模型预测母体化合物及其主要代谢物的毒性。螺旋反应器具有较好的流体力学性能,与连续搅拌和塞流串联反应器非常相似。尽管在实际废水中的特定降解率略低,但太阳能/PS工艺对两种基质仍然有效。通过硫酸盐自由基途径产生的副产物比由羟基自由基(HO·)攻击形成的副产物毒性更小。
{"title":"Screening techniques as a preliminary diagnostic tool for advanced oxidative processes on a laboratory scale","authors":"Larissa Pinheiro de Souza,&nbsp;Flávio Olimpio Sanches-Neto,&nbsp;Júlio César de Oliveira Ribeiro,&nbsp;Bruno Ramos,&nbsp;Valter H. Carvalho-Silva,&nbsp;Antonio Carlos Silva Costa Teixeira","doi":"10.1007/s11705-024-2517-y","DOIUrl":"10.1007/s11705-024-2517-y","url":null,"abstract":"<div><p>This study introduces an innovative screening approach to evaluate advanced oxidation processes (AOPs) as a preliminary diagnostic tool for degrading emerging contaminants (EC). It includes the design, prototyping, and cost-benefit analysis of circular photochemical reactors with flat and spiral internal geometries. Three-dimensional (3D) printing was used for reactor prototyping, providing flexibility and economy, and this stage was assisted by the hydrodynamic analysis of the prototypes based on residence time distribution (RTD) and macromixing models. The research evaluates the degradation of a model contaminant of emerging concern, fluoxetine (FLX) hydrochloride, using the solar/persulfate (PS) process in two water matrices (i.e., ultrapure water and sewage treatment plant effluent) to optimize reactor performance. The study also proposes primary theoretical pathways for fluoxetine degradation involving hydroxyl and sulfate radicals, as well as predicting the toxicity of the parent compound and its primary metabolites using quantitative structure-activity relationship (QSAR) models. The spiral reactor exhibits improved hydrodynamic behavior, closely resembling continuous stirred and plug flow reactors in series. Despite a slightly lower specific degradation rate in real wastewater, the solar/PS process remains effective for both matrices. By-products generated via the sulfate radical pathway are expected to be less toxic than those formed by hydroxyl radicals (HO·) attack.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"19 2","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142912766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Frontiers of Chemical Science and Engineering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1