The powdery mildew (Erysiphe necator) is a prevalent pathogen hampering grapevine growth in the vineyard. An arsenal of candidate secreted effector proteins (CSEPs) was encoded in the E. necator genome, but it is largely unclear what role CSEPs plays during the E. necator infection. In the present study, we identified a secreted effector CSEP080 of E. necator, which was located in plant chloroplasts and plasma membrane. Transient expressing CSEP080 promotes plant photosynthesis and inhibits INF1-induced cell death in tobacco leaves. We found that CSEP080 was a necessary effector for the E. necator pathogenicity, which interacted with grapevine chloroplast protein VviB6f (cytochrome b6-f complex iron-sulfur subunit), affecting plant photosynthesis. Transient silencing VviB6f increased the plant hydrogen peroxide production, and the plant resistance to powdery mildew. In addition, CSEP080 manipulated the VviPE (pectinesterase) to promote pectin degradation. Our results demonstrated the molecular mechanisms that an effector of E. necator translocates to host chloroplasts and plasma membrane, which suppresses with the grapevine immunity system by targeting the chloroplast protein VviB6f to suppress hydrogen peroxide accumulation and manipulating VviPE to promote pectin degradation.
{"title":"An effector of <i>Erysiphe necator</i> translocates to chloroplasts and plasma membrane to suppress host immunity in grapevine.","authors":"Bo Mu, Zhaolin Teng, Ruixin Tang, Mengjiao Lu, Jinfu Chen, Xiangnan Xu, Ying-Qiang Wen","doi":"10.1093/hr/uhad163","DOIUrl":"https://doi.org/10.1093/hr/uhad163","url":null,"abstract":"<p><p>The powdery mildew (<i>Erysiphe necator</i>) is a prevalent pathogen hampering grapevine growth in the vineyard. An arsenal of candidate secreted effector proteins (CSEPs) was encoded in the <i>E. necator</i> genome, but it is largely unclear what role CSEPs plays during the <i>E. necator</i> infection. In the present study, we identified a secreted effector CSEP080 of <i>E. necator</i>, which was located in plant chloroplasts and plasma membrane. Transient expressing <i>CSEP080</i> promotes plant photosynthesis and inhibits INF1-induced cell death in tobacco leaves. We found that <i>CSEP080</i> was a necessary effector for the <i>E. necator</i> pathogenicity, which interacted with grapevine chloroplast protein VviB6f (cytochrome b6-f complex iron-sulfur subunit), affecting plant photosynthesis. Transient silencing VviB6f increased the plant hydrogen peroxide production, and the plant resistance to powdery mildew. In addition, CSEP080 manipulated the VviPE (pectinesterase) to promote pectin degradation. Our results demonstrated the molecular mechanisms that an effector of <i>E. necator</i> translocates to host chloroplasts and plasma membrane, which suppresses with the grapevine immunity system by targeting the chloroplast protein VviB6f to suppress hydrogen peroxide accumulation and manipulating VviPE to promote pectin degradation.</p>","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":"10 9","pages":"uhad163"},"PeriodicalIF":0.0,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10516348/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41162668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-10eCollection Date: 2023-09-01DOI: 10.1093/hr/uhad161
Yan Cheng, Jin Sun, Mengwei Jiang, Ziqiang Luo, Yu Wang, Yanhui Liu, Weiming Li, Bing Hu, Chunxing Dong, Kangzhuo Ye, Zixian Li, Fang Deng, Lulu Wang, Ling Cao, Shijiang Cao, Chenglang Pan, Ping Zheng, Sheng Wang, Mohammad Aslam, Hong Wang, Yuan Qin
Soil salinity is a growing concern for global crop production and the sustainable development of humanity. Therefore, it is crucial to comprehend salt tolerance mechanisms and identify salt-tolerance genes to enhance crop tolerance to salt stress. Suaeda glauca, a halophyte species well adapted to the seawater environment, possesses a unique ability to absorb and retain high salt concentrations within its cells, particularly in its leaves, suggesting the presence of a distinct mechanism for salt tolerance. In this study, we performed de novo sequencing of the S. glauca genome. The genome has a size of 1.02 Gb (consisting of two sets of haplotypes) and contains 54 761 annotated genes, including alleles and repeats. Comparative genomic analysis revealed a strong synteny between the genomes of S. glauca and Beta vulgaris. Of the S. glauca genome, 70.56% comprises repeat sequences, with retroelements being the most abundant. Leveraging the allele-aware assembly of the S. glauca genome, we investigated genome-wide allele-specific expression in the analyzed samples. The results indicated that the diversity in promoter sequences might contribute to consistent allele-specific expression. Moreover, a systematic analysis of the ABCE gene families shed light on the formation of S. glauca's flower morphology, suggesting that dysfunction of A-class genes is responsible for the absence of petals in S. glauca. Gene family expansion analysis demonstrated significant enrichment of Gene Ontology (GO) terms associated with DNA repair, chromosome stability, DNA demethylation, cation binding, and red/far-red light signaling pathways in the co-expanded gene families of S. glauca and S. aralocaspica, in comparison with glycophytic species within the chenopodium family. Time-course transcriptome analysis under salt treatments revealed detailed responses of S. glauca to salt tolerance, and the enrichment of the transition-upregulated genes in the leaves associated with DNA repair and chromosome stability, lipid biosynthetic process, and isoprenoid metabolic process. Additionally, genome-wide analysis of transcription factors indicated a significant expansion of FAR1 gene family. However, further investigation is needed to determine the exact role of the FAR1 gene family in salt tolerance in S. glauca.
{"title":"Chromosome-scale genome sequence of <i>Suaeda glauca</i> sheds light on salt stress tolerance in halophytes.","authors":"Yan Cheng, Jin Sun, Mengwei Jiang, Ziqiang Luo, Yu Wang, Yanhui Liu, Weiming Li, Bing Hu, Chunxing Dong, Kangzhuo Ye, Zixian Li, Fang Deng, Lulu Wang, Ling Cao, Shijiang Cao, Chenglang Pan, Ping Zheng, Sheng Wang, Mohammad Aslam, Hong Wang, Yuan Qin","doi":"10.1093/hr/uhad161","DOIUrl":"https://doi.org/10.1093/hr/uhad161","url":null,"abstract":"<p><p>Soil salinity is a growing concern for global crop production and the sustainable development of humanity. Therefore, it is crucial to comprehend salt tolerance mechanisms and identify salt-tolerance genes to enhance crop tolerance to salt stress. <i>Suaeda glauca</i>, a halophyte species well adapted to the seawater environment, possesses a unique ability to absorb and retain high salt concentrations within its cells, particularly in its leaves, suggesting the presence of a distinct mechanism for salt tolerance. In this study, we performed <i>de novo</i> sequencing of <i>the S. glauca</i> genome. The genome has a size of 1.02 Gb (consisting of two sets of haplotypes) and contains 54 761 annotated genes, including alleles and repeats. Comparative genomic analysis revealed a strong synteny between the genomes of <i>S. glauca</i> and <i>Beta vulgaris</i>. Of the <i>S. glauca</i> genome, 70.56% comprises repeat sequences, with retroelements being the most abundant. Leveraging the allele-aware assembly of the <i>S. glauca</i> genome, we investigated genome-wide allele-specific expression in the analyzed samples. The results indicated that the diversity in promoter sequences might contribute to consistent allele-specific expression. Moreover, a systematic analysis of the ABCE gene families shed light on the formation of <i>S. glauca</i>'s flower morphology, suggesting that dysfunction of A-class genes is responsible for the absence of petals in <i>S. glauca</i>. Gene family expansion analysis demonstrated significant enrichment of Gene Ontology (GO) terms associated with DNA repair, chromosome stability, DNA demethylation, cation binding, and red/far-red light signaling pathways in the co-expanded gene families of <i>S. glauca</i> and <i>S. aralocaspica</i>, in comparison with glycophytic species within the chenopodium family. Time-course transcriptome analysis under salt treatments revealed detailed responses of <i>S. glauca</i> to salt tolerance, and the enrichment of the transition-upregulated genes in the leaves associated with DNA repair and chromosome stability, lipid biosynthetic process, and isoprenoid metabolic process. Additionally, genome-wide analysis of transcription factors indicated a significant expansion of <i>FAR1</i> gene family. However, further investigation is needed to determine the exact role of the <i>FAR1</i> gene family in salt tolerance in <i>S. glauca</i>.</p>","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":"10 9","pages":"uhad161"},"PeriodicalIF":0.0,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10506132/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41141477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Caffeine is considered as one of the most important bioactive components in the popular plant beverages tea, cacao, and coffee, but as a wide-spread plant secondary metabolite its biosynthetic regulation at transcription level remains largely unclear. Here, we report a novel transcription factor Camellia sinensis Senescnece 40 (CsS40) as a caffeine biosynthesis regulator, which was discovered during screening a yeast expression library constructed from tea leaf cDNAs for activation of tea caffeine synthase (TCS1) promoter. Besides multiple hits of the non-self-activation CsS40 clones that bound to and activated TCS1 promoter in yeast-one-hybrid assays, a split-luciferase complementation assay demonstrated that CsS40 acts as a transcription factor to activate the CsTCS1 gene and EMSA assay also demonstrated that CsS40 bound to the TCS1 gene promoter. Consistently, immunofluorescence data indicated that CsS40-GFP fusion was localized in the nuclei of tobacco epidermal cells. The expression pattern of CsS40 in 'Fuding Dabai' developing leaves was opposite to that of TCS1; and knockdown and overexpression of CsS40 in tea leaf calli significantly increased and decreased TCS1 expression levels, respectively. The expression levels of CsS40 were also negatively correlated to caffeine accumulation in developing leaves and transgenic calli of 'Fuding Dabai'. Furthermore, overexpression of CsS40 reduced the accumulation of xanthine and hypoxanthine in tobacco plants, meanwhile, increased their susceptibility to aging. CsS40 expression in tea leaves was also induced by senescence-promoting hormones and environmental factors. Taken together, we showed that a novel senescence-related factor CsS40 negatively regulates TCS1 and represses caffeine accumulation in tea cultivar 'Fuding Dabai'. The study provides new insights into caffeine biosynthesis regulation by a plant-specific senescence regulator in tea plants in connection to leaf senescence and hormone signaling.
{"title":"The transcription factor CsS40 negatively regulates <i>TCS1</i> expression and caffeine biosynthesis in connection to leaf senescence in <i>Camellia sinensis</i>.","authors":"Xinzhuan Yao, Hufang Chen, Antao Ai, Fen Wang, Shanshan Lian, Hu Tang, Yihe Jiang, Yujie Jiao, Yumei He, Tong Li, Litang Lu","doi":"10.1093/hr/uhad162","DOIUrl":"https://doi.org/10.1093/hr/uhad162","url":null,"abstract":"<p><p>Caffeine is considered as one of the most important bioactive components in the popular plant beverages tea, cacao, and coffee, but as a wide-spread plant secondary metabolite its biosynthetic regulation at transcription level remains largely unclear. Here, we report a novel transcription factor <i>Camellia sinensis Senescnece 40</i> (<i>CsS40</i>) as a caffeine biosynthesis regulator, which was discovered during screening a yeast expression library constructed from tea leaf cDNAs for activation of tea caffeine synthase (<i>TCS1</i>) promoter. Besides multiple hits of the non-self-activation CsS40 clones that bound to and activated <i>TCS1</i> promoter in yeast-one-hybrid assays, a split-luciferase complementation assay demonstrated that <i>CsS40</i> acts as a transcription factor to activate the <i>CsTCS1</i> gene and EMSA assay also demonstrated that CsS40 bound to the <i>TCS1</i> gene promoter. Consistently, immunofluorescence data indicated that CsS40-GFP fusion was localized in the nuclei of tobacco epidermal cells. The expression pattern of <i>CsS40</i> in 'Fuding Dabai' developing leaves was opposite to that of <i>TCS1</i>; and knockdown and overexpression of <i>CsS40</i> in tea leaf calli significantly increased and decreased <i>TCS1</i> expression levels, respectively. The expression levels of <i>CsS40</i> were also negatively correlated to caffeine accumulation in developing leaves and transgenic calli of 'Fuding Dabai'. Furthermore, overexpression of <i>CsS40</i> reduced the accumulation of xanthine and hypoxanthine in tobacco plants, meanwhile, increased their susceptibility to aging. <i>CsS40</i> expression in tea leaves was also induced by senescence-promoting hormones and environmental factors. Taken together, we showed that a novel senescence-related factor CsS40 negatively regulates <i>TCS1</i> and represses caffeine accumulation in tea cultivar 'Fuding Dabai'. The study provides new insights into caffeine biosynthesis regulation by a plant-specific senescence regulator in tea plants in connection to leaf senescence and hormone signaling.</p>","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":"10 9","pages":"uhad162"},"PeriodicalIF":0.0,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10508035/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41142973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-31eCollection Date: 2023-07-01DOI: 10.1093/hr/uhad111
Bi Ma, Honghong Wang, Jingchun Liu, Lin Chen, Xiaoyu Xia, Wuqi Wei, Zhen Yang, Jianglian Yuan, Yiwei Luo, Ningjia He
Mulberry is a fundamental component of the global sericulture industry, and its positive impact on our health and the environment cannot be overstated. However, the mulberry reference genomes reported previously remained unassembled or unplaced sequences. Here, we report the assembly and analysis of the telomere-to-telomere gap-free reference genome of the mulberry species, Morus notabilis, which has emerged as an important reference in mulberry gene function research and genetic improvement. The mulberry gap-free reference genome produced here provides an unprecedented opportunity for us to study the structure and function of centromeres. Our results revealed that all mulberry centromeric regions share conserved centromeric satellite repeats with different copies. Strikingly, we found that M. notabilis is a species with polycentric chromosomes and the only reported polycentric chromosome species up to now. We propose a compelling model that explains the formation mechanism of new centromeres and addresses the unsolved scientific question of the chromosome fusion-fission cycle in mulberry species. Our study sheds light on the functional genomics, chromosome evolution, and genetic improvement of mulberry species.
{"title":"The gap-free genome of mulberry elucidates the architecture and evolution of polycentric chromosomes.","authors":"Bi Ma, Honghong Wang, Jingchun Liu, Lin Chen, Xiaoyu Xia, Wuqi Wei, Zhen Yang, Jianglian Yuan, Yiwei Luo, Ningjia He","doi":"10.1093/hr/uhad111","DOIUrl":"https://doi.org/10.1093/hr/uhad111","url":null,"abstract":"<p><p>Mulberry is a fundamental component of the global sericulture industry, and its positive impact on our health and the environment cannot be overstated. However, the mulberry reference genomes reported previously remained unassembled or unplaced sequences. Here, we report the assembly and analysis of the telomere-to-telomere gap-free reference genome of the mulberry species, <i>Morus notabilis</i>, which has emerged as an important reference in mulberry gene function research and genetic improvement. The mulberry gap-free reference genome produced here provides an unprecedented opportunity for us to study the structure and function of centromeres. Our results revealed that all mulberry centromeric regions share conserved centromeric satellite repeats with different copies. Strikingly, we found that <i>M. notabilis</i> is a species with polycentric chromosomes and the only reported polycentric chromosome species up to now. We propose a compelling model that explains the formation mechanism of new centromeres and addresses the unsolved scientific question of the chromosome fusion-fission cycle in mulberry species. Our study sheds light on the functional genomics, chromosome evolution, and genetic improvement of mulberry species.</p>","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":"10 7","pages":"uhad111"},"PeriodicalIF":0.0,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10541557/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41122974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-31eCollection Date: 2023-07-01DOI: 10.1093/hr/uhad116
Wandi Liu, Chaohui Yan, Ruimin Li, Guanyu Chen, Xinqi Wang, Yingqiang Wen, Chaohong Zhang, Xiping Wang, Yan Xu, Yuejin Wang
Grapevine powdery mildew is caused by Erysiphe necator, which seriously harms grape production in the world. Stilbene synthase makes phytoalexins that contribute to the resistance of grapevine against powdery mildew. A novel VqNSTS3 was identified and cloned from Chinese wild Vitis quinquangularis accession Danfeng-2. The novel VqNSTS3 was transferred into susceptible 'Thompson Seedless' by Agrobacterium-mediated transformation. The transgenic plants showed resistance to the disease and activated other resistance-related genes. VqNSTS3 expression in grapevine is regulated by VqWRKY33, and which binds to TTGACC in the VqNSTS3 promoter. Furthermore, VqWRKY33 was phosphorylated by VqMAPK3/VqMAPK6 and thus led to enhanced signal transduction and increased VqNSTS3 expression. ProVqNSTS3::VqNSTS3-GFP of transgenic VqNSTS3 in Arabidopsis thaliana was observed to move to and wrap the pathogen's haustoria and block invasion by Golovinomyces cichoracearum. These results demonstrate that stilbene accumulation of novel VqNSTS3 of the Chinese wild Vitis quinquangularis accession Danfeng-2 prevented pathogen invasion and enhanced resistance to powdery mildew. Therefore, VqNSTS3 can be used in generating powdery mildew-resistant grapevines.
{"title":"VqMAPK3/VqMAPK6, VqWRKY33, and <i>VqNSTS3</i> constitute a regulatory node in enhancing resistance to powdery mildew in grapevine.","authors":"Wandi Liu, Chaohui Yan, Ruimin Li, Guanyu Chen, Xinqi Wang, Yingqiang Wen, Chaohong Zhang, Xiping Wang, Yan Xu, Yuejin Wang","doi":"10.1093/hr/uhad116","DOIUrl":"https://doi.org/10.1093/hr/uhad116","url":null,"abstract":"<p><p>Grapevine powdery mildew is caused by <i>Erysiphe necator</i>, which seriously harms grape production in the world. Stilbene synthase makes phytoalexins that contribute to the resistance of grapevine against powdery mildew. A novel <i>VqNSTS3</i> was identified and cloned from Chinese wild <i>Vitis quinquangularis</i> accession Danfeng-2. The novel <i>VqNSTS3</i> was transferred into susceptible 'Thompson Seedless' by <i>Agrobacterium</i>-mediated transformation. The transgenic plants showed resistance to the disease and activated other resistance-related genes. <i>VqNSTS3</i> expression in grapevine is regulated by VqWRKY33, and which binds to TTGACC in the <i>VqNSTS3</i> promoter. Furthermore, VqWRKY33 was phosphorylated by VqMAPK3/VqMAPK6 and thus led to enhanced signal transduction and increased <i>VqNSTS3</i> expression. <i>Pro</i><i>VqNSTS3::VqNSTS3</i>-GFP of transgenic <i>VqNSTS3</i> in <i>Arabidopsis thaliana</i> was observed to move to and wrap the pathogen's haustoria and block invasion by <i>Golovinomyces cichoracearum</i>. These results demonstrate that stilbene accumulation of novel <i>VqNSTS3</i> of the Chinese wild <i>Vitis quinquangularis</i> accession Danfeng-2 prevented pathogen invasion and enhanced resistance to powdery mildew. Therefore, <i>VqNSTS3</i> can be used in generating powdery mildew-resistant grapevines.</p>","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":"10 7","pages":"uhad116"},"PeriodicalIF":0.0,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10541564/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41180496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-16eCollection Date: 2023-07-01DOI: 10.1093/hr/uhad102
Jugou Liao, Xuemei Wei, Keliang Tao, Gang Deng, Jie Shu, Qin Qiao, Gonglin Chen, Zhuo Wei, Meihui Fan, Shah Saud, Shah Fahad, Suiyun Chen
Phenolics are vital for the adaptation of plants to terrestrial habitats and for species diversity. Phenoloxidases (catechol oxidases, COs, and laccases, LACs) are responsible for the oxidation and polymerization of phenolics. However, their origin, evolution, and differential roles during plant development and land colonization are unclear. We performed the phylogeny, domain, amino acids, compositional biases, and intron analyses to clarify the origin and evolution of COs and LACs, and analysed the structure, selective pressure, and chloroplast targeting to understand the species-dependent distribution of COs. We found that Streptophyta COs were not homologous to the Chlorophyta tyrosinases (TYRs), and might have been acquired by horizontal gene transfer from bacteria. COs expanded in bryophytes. Structural-functionality and selective pressure were partially responsible for the species-dependent retention of COs in embryophytes. LACs emerged in Zygnemaphyceae, having evolved from ascorbate oxidases (AAOs), and prevailed in the vascular plants and strongly expanded in seed plants. COs and LACs coevolved with the phenolic metabolism pathway genes. These results suggested that TYRs and AAOs were the first-stage phenoloxidases in Chlorophyta. COs might be the second key for the early land colonization. LACs were the third one (dominating in the vascular plants) and might be advantageous for diversified phenol substrates and the erect growth of plants. This work provided new insights into how phenoloxidases evolved and were devoted to plant evolution.
{"title":"Phenoloxidases: catechol oxidase - the temporary employer and laccase - the rising star of vascular plants.","authors":"Jugou Liao, Xuemei Wei, Keliang Tao, Gang Deng, Jie Shu, Qin Qiao, Gonglin Chen, Zhuo Wei, Meihui Fan, Shah Saud, Shah Fahad, Suiyun Chen","doi":"10.1093/hr/uhad102","DOIUrl":"https://doi.org/10.1093/hr/uhad102","url":null,"abstract":"<p><p>Phenolics are vital for the adaptation of plants to terrestrial habitats and for species diversity. Phenoloxidases (catechol oxidases, COs, and laccases, LACs) are responsible for the oxidation and polymerization of phenolics. However, their origin, evolution, and differential roles during plant development and land colonization are unclear. We performed the phylogeny, domain, amino acids, compositional biases, and intron analyses to clarify the origin and evolution of COs and LACs, and analysed the structure, selective pressure, and chloroplast targeting to understand the species-dependent distribution of COs. We found that Streptophyta COs were not homologous to the Chlorophyta tyrosinases (TYRs), and might have been acquired by horizontal gene transfer from bacteria. COs expanded in bryophytes. Structural-functionality and selective pressure were partially responsible for the species-dependent retention of COs in embryophytes. LACs emerged in Zygnemaphyceae, having evolved from ascorbate oxidases (AAOs), and prevailed in the vascular plants and strongly expanded in seed plants. COs and LACs coevolved with the phenolic metabolism pathway genes. These results suggested that TYRs and AAOs were the first-stage phenoloxidases in Chlorophyta. COs might be the second key for the early land colonization. LACs were the third one (dominating in the vascular plants) and might be advantageous for diversified phenol substrates and the erect growth of plants. This work provided new insights into how phenoloxidases evolved and were devoted to plant evolution.</p>","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":"10 7","pages":"uhad102"},"PeriodicalIF":0.0,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10541563/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41145241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carrot (Daucus carota) is an Apiaceae plant with multi-colored fleshy roots that provides a model system for carotenoid research. In this study, we assembled a 430.40 Mb high-quality gapless genome to the telomere-to-telomere (T2T) level of "Kurodagosun" carrot. In total, 36 268 genes were identified and 34 961 of them were functionally annotated. The proportion of repeat sequences in the genome was 55.3%, mainly long terminal repeats. Depending on the coverage of the repeats, 14 telomeres and 9 centromeric regions on the chromosomes were predicted. A phylogenetic analysis showed that carrots evolved early in the family Apiaceae. Based on the T2T genome, we reconstructed the carotenoid metabolic pathway and identified the structural genes that regulate carotenoid biosynthesis. Among the 65 genes that were screened, 9 were newly identified. Additionally, some gene sequences overlapped with transposons, suggesting replication and functional differentiation of carotenoid-related genes during carrot evolution. Given that some gene copies were barely expressed during development, they might be functionally redundant. Comparison of 24 cytochrome P450 genes associated with carotenoid biosynthesis revealed the tandem or proximal duplication resulting in expansion of CYP gene family. These results provided molecular information for carrot carotenoid accumulation and contributed to a new genetic resource.
{"title":"Telomere-to-telomere carrot (<i>Daucus carota</i>) genome assembly reveals carotenoid characteristics.","authors":"Ya-Hui Wang, Pei-Zhuo Liu, Hui Liu, Rong-Rong Zhang, Yi Liang, Zhi-Sheng Xu, Xiao-Jie Li, Qing Luo, Guo-Fei Tan, Guang-Long Wang, Ai-Sheng Xiong","doi":"10.1093/hr/uhad103","DOIUrl":"10.1093/hr/uhad103","url":null,"abstract":"<p><p>Carrot (<i>Daucus carota</i>) is an Apiaceae plant with multi-colored fleshy roots that provides a model system for carotenoid research. In this study, we assembled a 430.40 Mb high-quality gapless genome to the telomere-to-telomere (T2T) level of \"Kurodagosun\" carrot. In total, 36 268 genes were identified and 34 961 of them were functionally annotated. The proportion of repeat sequences in the genome was 55.3%, mainly long terminal repeats. Depending on the coverage of the repeats, 14 telomeres and 9 centromeric regions on the chromosomes were predicted. A phylogenetic analysis showed that carrots evolved early in the family Apiaceae. Based on the T2T genome, we reconstructed the carotenoid metabolic pathway and identified the structural genes that regulate carotenoid biosynthesis. Among the 65 genes that were screened, 9 were newly identified. Additionally, some gene sequences overlapped with transposons, suggesting replication and functional differentiation of carotenoid-related genes during carrot evolution. Given that some gene copies were barely expressed during development, they might be functionally redundant. Comparison of 24 cytochrome P450 genes associated with carotenoid biosynthesis revealed the tandem or proximal duplication resulting in expansion of <i>CYP</i> gene family. These results provided molecular information for carrot carotenoid accumulation and contributed to a new genetic resource.</p>","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":"10 7","pages":"uhad103"},"PeriodicalIF":7.6,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10541555/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41175219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Walnut anthracnose induced by Colletotrichum gloeosporioides is a disastrous disease that severely restricts the development of the walnut industry in China. Long non-coding RNAs (lncRNAs) are involved in adaptive responses to disease, but their roles in the regulation of walnut anthracnose resistance response are not well defined. In this study, transcriptome analysis demonstrated that a C. gloeosporioides-induced lncRNA, lncRNA109897, located upstream from the target gene JrCCR4, upregulated the expression of JrCCR4. JrCCR4 interacted with JrTLP1b and promoted its transcriptional activity. In turn, JrTLP1b induced the transcription of lncRNA109897 to promote its expression. Meanwhile, transient expression in walnut leaves and stable transformation of Arabidopsis thaliana further proved that lncRNA, JrCCR4, and JrTLP1b improve the resistance of C. gloeosporioides. Collectively, these findings provide insights into the mechanism by which the lncRNA109897-JrCCR4-JrTLP1b transcriptional cascade regulates the resistance of walnut to anthracnose.
{"title":"LncRNA109897-JrCCR4-JrTLP1b forms a positive feedback loop to regulate walnut resistance against anthracnose caused by <i>Colletotrichum gloeosporioides</i>.","authors":"Rui Zhou, Yuhui Dong, Changxi Wang, Jianning Liu, Qiang Liang, Xiaoye Meng, Xinya Lang, Shengyi Xu, Wenjun Liu, Shuhui Zhang, Nan Wang, Ke Qiang Yang, Hongcheng Fang","doi":"10.1093/hr/uhad086","DOIUrl":"https://doi.org/10.1093/hr/uhad086","url":null,"abstract":"<p><p>Walnut anthracnose induced by <i>Colletotrichum gloeosporioides</i> is a disastrous disease that severely restricts the development of the walnut industry in China. Long non-coding RNAs (lncRNAs) are involved in adaptive responses to disease, but their roles in the regulation of walnut anthracnose resistance response are not well defined. In this study, transcriptome analysis demonstrated that a <i>C. gloeosporioides</i>-induced lncRNA, lncRNA109897, located upstream from the target gene <i>JrCCR4</i>, upregulated the expression of <i>JrCCR4</i>. JrCCR4 interacted with JrTLP1b and promoted its transcriptional activity. In turn, JrTLP1b induced the transcription of <i>lncRNA109897</i> to promote its expression. Meanwhile, transient expression in walnut leaves and stable transformation of <i>Arabidopsis thaliana</i> further proved that lncRNA, JrCCR4, and JrTLP1b improve the resistance of <i>C. gloeosporioides</i>. Collectively, these findings provide insights into the mechanism by which the lncRNA109897-JrCCR4-JrTLP1b transcriptional cascade regulates the resistance of walnut to anthracnose.</p>","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":"10 6","pages":"uhad086"},"PeriodicalIF":0.0,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10541558/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41124189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-15eCollection Date: 2023-05-01DOI: 10.1093/hr/uhad048
Giovanni Battista Tornielli, Marco Sandri, Marianna Fasoli, Alessandra Amato, Mario Pezzotti, Paola Zuccolotto, Sara Zenoni
Fruit growth and development consist of a continuous succession of physical, biochemical, and physiological changes driven by a genetic program that dynamically responds to environmental cues. Establishing recognizable stages over the whole fruit lifetime represents a fundamental requirement for research and fruit crop cultivation. This is especially relevant in perennial crops like grapevine (Vitis vinifera L.) to scale the development of its fruit across genotypes and growing conditions. In this work, molecular-based information from several grape berry transcriptomic datasets was exploited to build a molecular phenology scale (MPhS) and to map the ontogenic development of the fruit. The proposed statistical pipeline consisted of an unsupervised learning procedure yielding an innovative combination of semiparametric, smoothing, and dimensionality reduction tools. The transcriptomic distance between fruit samples was precisely quantified by means of the MPhS that also enabled to highlight the complex dynamics of the transcriptional program over berry development through the calculation of the rate of variation of MPhS stages by time. The MPhS allowed the alignment of time-series fruit samples proving to be a complementary method for mapping the progression of grape berry development with higher detail compared to classic time- or phenotype-based approaches.
{"title":"A molecular phenology scale of grape berry development.","authors":"Giovanni Battista Tornielli, Marco Sandri, Marianna Fasoli, Alessandra Amato, Mario Pezzotti, Paola Zuccolotto, Sara Zenoni","doi":"10.1093/hr/uhad048","DOIUrl":"https://doi.org/10.1093/hr/uhad048","url":null,"abstract":"<p><p>Fruit growth and development consist of a continuous succession of physical, biochemical, and physiological changes driven by a genetic program that dynamically responds to environmental cues. Establishing recognizable stages over the whole fruit lifetime represents a fundamental requirement for research and fruit crop cultivation. This is especially relevant in perennial crops like grapevine (<i>Vitis vinifera</i> L.) to scale the development of its fruit across genotypes and growing conditions. In this work, molecular-based information from several grape berry transcriptomic datasets was exploited to build a molecular phenology scale (MPhS) and to map the ontogenic development of the fruit. The proposed statistical pipeline consisted of an unsupervised learning procedure yielding an innovative combination of semiparametric, smoothing, and dimensionality reduction tools. The transcriptomic distance between fruit samples was precisely quantified by means of the MPhS that also enabled to highlight the complex dynamics of the transcriptional program over berry development through the calculation of the rate of variation of MPhS stages by time. The MPhS allowed the alignment of time-series fruit samples proving to be a complementary method for mapping the progression of grape berry development with higher detail compared to classic time- or phenotype-based approaches.</p>","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":"10 5","pages":"uhad048"},"PeriodicalIF":0.0,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10541565/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41107235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tree peony bud endodormancy is a common survival strategy similar to many perennial woody plants in winter, and the activation of the GA signaling pathway is the key to breaking endodormancy. GA signal transduction is involved in many physiological processes. Although the GA-GID1-DELLA regulatory module is conserved in many plants, it has a set of specific components that add complexity to the GA response mechanism. DELLA proteins are key switches in GA signaling. Therefore, there is an urgent need to identify the key DELLA proteins involved in tree peony bud dormancy release. In this study, the prolonged chilling increased the content of endogenously active gibberellins. PsRGL1 among three DELLA proteins was significantly downregulated during chilling- and exogenous GA3-induced bud dormancy release by cell-free degradation assay, and a high level of polyubiquitination was detected. Silencing PsRGL1 accelerated bud dormancy release by increasing the expression of the genes associated with dormancy release, including PsCYCD, PsEBB1, PsEBB3, PsBG6, and PsBG9. Three F-box protein family members responded to chilling and GA3 treatments, resulting in PsF-box1 induction. Yeast two-hybrid and BiFC assays indicated that only PsF-box1 could bind to PsRGL1, and the binding site was in the C-terminal domain. PsF-box1 overexpression promoted dormancy release and upregulated the expression of the dormancy-related genes. In addition, yeast two-hybrid and pull-down assays showed that PsF-box1 also interacted with PsSKP1 to form an E3 ubiquitin ligase. These findings enriched the molecular mechanism of the GA signaling pathway during dormancy release, and enhanced the understanding of tree peony bud endodormancy.
{"title":"PsRGL1 negatively regulates chilling- and gibberellin-induced dormancy release by PsF-box1-mediated targeting for proteolytic degradation in tree peony.","authors":"Linqiang Gao, Demei Niu, Tianyu Chi, Yanchao Yuan, Chunying Liu, Shupeng Gai, Yuxi Zhang","doi":"10.1093/hr/uhad044","DOIUrl":"https://doi.org/10.1093/hr/uhad044","url":null,"abstract":"<p><p>Tree peony bud endodormancy is a common survival strategy similar to many perennial woody plants in winter, and the activation of the GA signaling pathway is the key to breaking endodormancy. GA signal transduction is involved in many physiological processes. Although the GA-GID1-DELLA regulatory module is conserved in many plants, it has a set of specific components that add complexity to the GA response mechanism. DELLA proteins are key switches in GA signaling. Therefore, there is an urgent need to identify the key DELLA proteins involved in tree peony bud dormancy release. In this study, the prolonged chilling increased the content of endogenously active gibberellins. PsRGL1 among three DELLA proteins was significantly downregulated during chilling- and exogenous GA<sub>3</sub>-induced bud dormancy release by cell-free degradation assay, and a high level of polyubiquitination was detected. Silencing <i>PsRGL1</i> accelerated bud dormancy release by increasing the expression of the genes associated with dormancy release, including <i>PsCYCD, PsEBB1</i>, <i>PsEBB3</i>, <i>PsBG6</i>, and <i>PsBG9</i>. Three F-box protein family members responded to chilling and GA<sub>3</sub> treatments, resulting in <i>PsF-box1</i> induction. Yeast two-hybrid and BiFC assays indicated that only PsF-box1 could bind to PsRGL1, and the binding site was in the C-terminal domain. <i>PsF-box1</i> overexpression promoted dormancy release and upregulated the expression of the dormancy-related genes. In addition, yeast two-hybrid and pull-down assays showed that PsF-box1 also interacted with PsSKP1 to form an E3 ubiquitin ligase. These findings enriched the molecular mechanism of the GA signaling pathway during dormancy release, and enhanced the understanding of tree peony bud endodormancy.</p>","PeriodicalId":57479,"journal":{"name":"园艺研究(英文)","volume":"10 5","pages":"uhad044"},"PeriodicalIF":0.0,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10541556/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41122975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}