首页 > 最新文献

Defence Technology(防务技术)最新文献

英文 中文
A review of extreme condition effects on solder joint reliability: Understanding failure mechanisms 回顾极端条件对焊点可靠性的影响:了解失效机制
IF 5 Q1 ENGINEERING, MULTIDISCIPLINARY Pub Date : 2024-11-01 DOI: 10.1016/j.dt.2024.05.013
Norliza Ismail , Wan Yusmawati Wan Yusoff , Azuraida Amat , Nor Azlian Abdul Manaf , Nurazlin Ahmad
Solder joint, crucial component in electronic systems, face significant challenges when exposed to extreme conditions during applications. The solder joint reliability involving microstructure and mechanical properties will be affected by extreme conditions. Understanding the behaviour of solder joints under extreme conditions is vital to determine the durability and reliability of solder joint. This review paper aims to comprehensively explore the underlying failure mechanism affecting solder joint reliability under extreme conditions. This study covers an in-depth analysis of effect extreme temperature, mechanical stress, and radiation conditions towards solder joint. Impact of each condition to the microstructure including solder matrix and intermetallic compound layer, and mechanical properties such as fatigue, shear strength, creep, and hardness was thoroughly discussed. The failure mechanisms were illustrated in graphical diagrams to ensure clarity and understanding. Furthermore, the paper highlighted mitigation strategies that enhancing solder joint reliability under challenging operating conditions. The findings offer valuable guidance for researchers, engineers, and practitioners involved in electronics, engineering, and related fields, fostering advancements in solder joint reliability and performance.
焊点是电子系统中的关键部件,在应用过程中暴露于极端条件下会面临重大挑战。焊点的可靠性涉及微观结构和机械性能,会受到极端条件的影响。了解焊点在极端条件下的行为对于确定焊点的耐用性和可靠性至关重要。本文旨在全面探讨极端条件下影响焊点可靠性的潜在失效机制。本研究深入分析了极端温度、机械应力和辐射条件对焊点的影响。深入讨论了各种条件对微观结构(包括焊料基体和金属间化合物层)以及机械性能(如疲劳、剪切强度、蠕变和硬度)的影响。为确保清晰和易懂,还通过图表对失效机制进行了说明。此外,论文还强调了在具有挑战性的操作条件下提高焊点可靠性的缓解策略。研究结果为电子、工程和相关领域的研究人员、工程师和从业人员提供了宝贵的指导,促进了焊点可靠性和性能的提高。
{"title":"A review of extreme condition effects on solder joint reliability: Understanding failure mechanisms","authors":"Norliza Ismail ,&nbsp;Wan Yusmawati Wan Yusoff ,&nbsp;Azuraida Amat ,&nbsp;Nor Azlian Abdul Manaf ,&nbsp;Nurazlin Ahmad","doi":"10.1016/j.dt.2024.05.013","DOIUrl":"10.1016/j.dt.2024.05.013","url":null,"abstract":"<div><div>Solder joint, crucial component in electronic systems, face significant challenges when exposed to extreme conditions during applications. The solder joint reliability involving microstructure and mechanical properties will be affected by extreme conditions. Understanding the behaviour of solder joints under extreme conditions is vital to determine the durability and reliability of solder joint. This review paper aims to comprehensively explore the underlying failure mechanism affecting solder joint reliability under extreme conditions. This study covers an in-depth analysis of effect extreme temperature, mechanical stress, and radiation conditions towards solder joint. Impact of each condition to the microstructure including solder matrix and intermetallic compound layer, and mechanical properties such as fatigue, shear strength, creep, and hardness was thoroughly discussed. The failure mechanisms were illustrated in graphical diagrams to ensure clarity and understanding. Furthermore, the paper highlighted mitigation strategies that enhancing solder joint reliability under challenging operating conditions. The findings offer valuable guidance for researchers, engineers, and practitioners involved in electronics, engineering, and related fields, fostering advancements in solder joint reliability and performance.</div></div>","PeriodicalId":58209,"journal":{"name":"Defence Technology(防务技术)","volume":"41 ","pages":"Pages 134-158"},"PeriodicalIF":5.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141508323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An equivalent target plate damage probability calculation mathematics model and damage evaluation method 等效靶板损伤概率计算数学模型和损伤评估方法
IF 5 Q1 ENGINEERING, MULTIDISCIPLINARY Pub Date : 2024-11-01 DOI: 10.1016/j.dt.2024.06.006
Hanshan Li, Xiaoqian Zhang
Aiming at the requirement of damage testing and evaluation of equivalent target plate based on the explosion of intelligent ammunition, this paper proposes a novel method for damage testing and evaluation method of circumferential equivalent target plate. Leveraging the dispersion characteristics parameters of fragment, we establish a calculation model of the fragment power situation and the damage calculation model under the condition of fragment ultimate penetration equivalent target plate. The damage model of equivalent target plate involves the fragment dispersion density, the local perforation damage criterion, the tearing damage model, and the damage probability. We use the camera to obtain the image of the equivalent target plate with fragment perforation, and research the algorithm of fragment distribution position recognition and fragment perforation area calculation method on the equivalent target plate by image processing technology. Based on the obtained parameters of the breakdown position and perforation area of fragments on equivalent target plate, we apply to damage calculation model of equivalent target plate, and calculate the damage probability of each equivalent target plate, and use the combined probabilistic damage calculation method to obtain the damage evaluation results of the circumferential equivalent target plate in an intelligent ammunition explosion experiment. Through an experimental testing, we verify the feasibility and rationality of the proposed damage evaluation method by comparison, the calculation results can reflect the actual damage effect of the equivalent target plate.
针对基于智能弹药爆炸的等效靶板损伤测试与评估要求,本文提出了一种新颖的圆周等效靶板损伤测试与评估方法。利用破片的弥散特性参数,建立破片威力情况计算模型和破片极限穿透等效靶板条件下的损伤计算模型。等效靶板损伤模型包括碎片弥散密度、局部穿孔损伤判据、撕裂损伤模型和损伤概率。我们利用相机获取了带破片穿孔的等效靶板图像,并利用图像处理技术研究了等效靶板破片分布位置识别算法和破片穿孔面积计算方法。根据得到的等效靶板上碎片击穿位置和击穿面积参数,应用等效靶板损伤计算模型,计算各等效靶板的损伤概率,并采用概率损伤组合计算方法,得到智能弹药爆炸实验中圆周等效靶板的损伤评估结果。通过实验测试,对比验证了所提损伤评价方法的可行性和合理性,计算结果能够反映等效靶板的实际损伤效果。
{"title":"An equivalent target plate damage probability calculation mathematics model and damage evaluation method","authors":"Hanshan Li,&nbsp;Xiaoqian Zhang","doi":"10.1016/j.dt.2024.06.006","DOIUrl":"10.1016/j.dt.2024.06.006","url":null,"abstract":"<div><div>Aiming at the requirement of damage testing and evaluation of equivalent target plate based on the explosion of intelligent ammunition, this paper proposes a novel method for damage testing and evaluation method of circumferential equivalent target plate. Leveraging the dispersion characteristics parameters of fragment, we establish a calculation model of the fragment power situation and the damage calculation model under the condition of fragment ultimate penetration equivalent target plate. The damage model of equivalent target plate involves the fragment dispersion density, the local perforation damage criterion, the tearing damage model, and the damage probability. We use the camera to obtain the image of the equivalent target plate with fragment perforation, and research the algorithm of fragment distribution position recognition and fragment perforation area calculation method on the equivalent target plate by image processing technology. Based on the obtained parameters of the breakdown position and perforation area of fragments on equivalent target plate, we apply to damage calculation model of equivalent target plate, and calculate the damage probability of each equivalent target plate, and use the combined probabilistic damage calculation method to obtain the damage evaluation results of the circumferential equivalent target plate in an intelligent ammunition explosion experiment. Through an experimental testing, we verify the feasibility and rationality of the proposed damage evaluation method by comparison, the calculation results can reflect the actual damage effect of the equivalent target plate.</div></div>","PeriodicalId":58209,"journal":{"name":"Defence Technology(防务技术)","volume":"41 ","pages":"Pages 82-103"},"PeriodicalIF":5.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141718500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ballistic limit velocity of small caliber projectiles against SS400 steel plates: Live fire experiments and empirical models 小口径射弹对 SS400 钢板的弹道极限速度:实弹实验和经验模型
IF 5 Q1 ENGINEERING, MULTIDISCIPLINARY Pub Date : 2024-11-01 DOI: 10.1016/j.dt.2024.07.008
Jong-Hwan Kim , Seungwon Baik , Jirui Fu , Joon-Hyuk Park
This study presents the ballistic limit velocity of small caliber projectiles against SS400 steel plate derived from live-fire ballistic experiments. Four different small caliber projectiles were tested against SS400 steel plates of 9 mm, 10 mm, and 12 mm thicknesses. The ballistic limit velocity was calculated using two standard methods, MIL-STD-662F and NIJ-STD-0101.06, and additionally using a support vector machine algorithm. The results show a linear relationship between the plate thickness and ballistic limit velocity. Further, the relative penetration performance among five different small caliber projectiles was analyzed using the Penetration Performance Ratio (PPR) introduced in this study, which suggests the potential of PPR to predict the ballistic limit velocity of other untested materials and/or different projectiles.
本研究介绍了实弹弹道实验得出的小口径射弹对 SS400 钢板的弹道极限速度。针对厚度分别为 9 毫米、10 毫米和 12 毫米的 SS400 钢板,测试了四种不同的小口径射弹。弹道极限速度是采用 MIL-STD-662F 和 NIJ-STD-0101.06 两种标准方法以及支持向量机算法计算得出的。结果表明,钢板厚度与弹道极限速度之间存在线性关系。此外,还使用本研究中引入的穿透性能比(PPR)分析了五种不同小口径射弹的相对穿透性能,这表明 PPR 有潜力预测其他未测试材料和/或不同射弹的弹道极限速度。
{"title":"Ballistic limit velocity of small caliber projectiles against SS400 steel plates: Live fire experiments and empirical models","authors":"Jong-Hwan Kim ,&nbsp;Seungwon Baik ,&nbsp;Jirui Fu ,&nbsp;Joon-Hyuk Park","doi":"10.1016/j.dt.2024.07.008","DOIUrl":"10.1016/j.dt.2024.07.008","url":null,"abstract":"<div><div>This study presents the ballistic limit velocity of small caliber projectiles against SS400 steel plate derived from live-fire ballistic experiments. Four different small caliber projectiles were tested against SS400 steel plates of 9 mm, 10 mm, and 12 mm thicknesses. The ballistic limit velocity was calculated using two standard methods, MIL-STD-662F and NIJ-STD-0101.06, and additionally using a support vector machine algorithm. The results show a linear relationship between the plate thickness and ballistic limit velocity. Further, the relative penetration performance among five different small caliber projectiles was analyzed using the Penetration Performance Ratio (PPR) introduced in this study, which suggests the potential of PPR to predict the ballistic limit velocity of other untested materials and/or different projectiles.</div></div>","PeriodicalId":58209,"journal":{"name":"Defence Technology(防务技术)","volume":"41 ","pages":"Pages 22-34"},"PeriodicalIF":5.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141844759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physics-informed machine learning model for prediction of ground reflected wave peak overpressure 预测地面反射波峰值超压的物理信息机器学习模型
IF 5 Q1 ENGINEERING, MULTIDISCIPLINARY Pub Date : 2024-11-01 DOI: 10.1016/j.dt.2024.06.004
Haoyu Zhang , Yuxin Xu , Lihan Xiao , Canjie Zhen
The accurate prediction of peak overpressure of explosion shockwaves is significant in fields such as explosion hazard assessment and structural protection, where explosion shockwaves serve as typical destructive elements. Aiming at the problem of insufficient accuracy of the existing physical models for predicting the peak overpressure of ground reflected waves, two physics-informed machine learning models are constructed. The results demonstrate that the machine learning models, which incorporate physical information by predicting the deviation between the physical model and actual values and adding a physical loss term in the loss function, can accurately predict both the training and out-of-training dataset. Compared to existing physical models, the average relative error in the predicted training domain is reduced from 17.459%–48.588% to 2%, and the proportion of average relative error less than 20% increased from 0% to 59.4% to more than 99%. In addition, the relative average error outside the prediction training set range is reduced from 14.496%–29.389% to 5%, and the proportion of relative average error less than 20% increased from 0% to 71.39% to more than 99%. The inclusion of a physical loss term enforcing monotonicity in the loss function effectively improves the extrapolation performance of machine learning. The findings of this study provide valuable reference for explosion hazard assessment and anti-explosion structural design in various fields.
在爆炸危险评估和结构保护等领域,爆炸冲击波是典型的破坏元素,因此准确预测爆炸冲击波的峰值超压意义重大。针对现有物理模型预测地面反射波峰值超压精度不足的问题,构建了两个物理信息机器学习模型。结果表明,机器学习模型通过预测物理模型与实际值之间的偏差并在损失函数中加入物理损失项,结合了物理信息,可以准确预测训练数据集和训练外数据集。与现有的物理模型相比,预测训练域的平均相对误差从 17.459%-48.588% 降低到 2%,平均相对误差小于 20% 的比例从 0% 至 59.4% 增加到 99% 以上。此外,预测训练集范围外的相对平均误差从 14.496%-29.389% 降至 5%,相对平均误差小于 20% 的比例从 0% 至 71.39% 增加到 99% 以上。在损失函数中加入强制单调性的物理损失项,有效提高了机器学习的外推性能。该研究结果为各领域的爆炸危险评估和防爆结构设计提供了宝贵的参考。
{"title":"Physics-informed machine learning model for prediction of ground reflected wave peak overpressure","authors":"Haoyu Zhang ,&nbsp;Yuxin Xu ,&nbsp;Lihan Xiao ,&nbsp;Canjie Zhen","doi":"10.1016/j.dt.2024.06.004","DOIUrl":"10.1016/j.dt.2024.06.004","url":null,"abstract":"<div><div>The accurate prediction of peak overpressure of explosion shockwaves is significant in fields such as explosion hazard assessment and structural protection, where explosion shockwaves serve as typical destructive elements. Aiming at the problem of insufficient accuracy of the existing physical models for predicting the peak overpressure of ground reflected waves, two physics-informed machine learning models are constructed. The results demonstrate that the machine learning models, which incorporate physical information by predicting the deviation between the physical model and actual values and adding a physical loss term in the loss function, can accurately predict both the training and out-of-training dataset. Compared to existing physical models, the average relative error in the predicted training domain is reduced from 17.459%–48.588% to 2%, and the proportion of average relative error less than 20% increased from 0% to 59.4% to more than 99%. In addition, the relative average error outside the prediction training set range is reduced from 14.496%–29.389% to 5%, and the proportion of relative average error less than 20% increased from 0% to 71.39% to more than 99%. The inclusion of a physical loss term enforcing monotonicity in the loss function effectively improves the extrapolation performance of machine learning. The findings of this study provide valuable reference for explosion hazard assessment and anti-explosion structural design in various fields.</div></div>","PeriodicalId":58209,"journal":{"name":"Defence Technology(防务技术)","volume":"41 ","pages":"Pages 119-133"},"PeriodicalIF":5.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141416463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis model for damage of reinforced bars in RC beams under contact explosion 接触爆炸下钢筋混凝土梁中钢筋损坏的分析模型
IF 5 Q1 ENGINEERING, MULTIDISCIPLINARY Pub Date : 2024-11-01 DOI: 10.1016/j.dt.2024.03.003
Chaozhi Yang , Zhengxiang Huang , Xin Jia , Wei Shang , Jian Zhang
The load-bearing capacity of reinforced concrete (RC) beams primarily relies on internal reinforced bars. However, limited research has been conducted on the dynamic response of these bars. To address this gap, this study has established an analytical model using dimensional analysis for calculating the deformation of reinforced bars within RC beams subjected to contact explosion. Comparison with experimental data reveals that the model has a relative error of 5.22%, effectively reflecting the deformation of reinforced bars. Additionally, based on this model, the study found that while concrete does influence the deformation of reinforced bars, this influence can be disregarded in comparison to the material properties of the bars themselves. The findings of this study have implications for calculating the residual load-bearing capacity of damaged RC beams, evaluating the extent of damage to RC beams after blast loading, and providing guidance for the blast-resistant design of RC structures.
钢筋混凝土(RC)梁的承载能力主要依靠内部钢筋。然而,有关这些钢筋动态响应的研究却十分有限。针对这一空白,本研究利用尺寸分析建立了一个分析模型,用于计算钢筋混凝土梁内部钢筋在接触爆炸情况下的变形。与实验数据对比发现,该模型的相对误差为 5.22%,能有效反映钢筋的变形情况。此外,根据该模型,研究发现虽然混凝土确实会影响钢筋的变形,但与钢筋本身的材料特性相比,这种影响可以忽略不计。本研究的结果对计算受损钢筋混凝土梁的剩余承载力、评估钢筋混凝土梁在爆炸荷载后的受损程度以及指导钢筋混凝土结构的抗爆设计具有重要意义。
{"title":"Analysis model for damage of reinforced bars in RC beams under contact explosion","authors":"Chaozhi Yang ,&nbsp;Zhengxiang Huang ,&nbsp;Xin Jia ,&nbsp;Wei Shang ,&nbsp;Jian Zhang","doi":"10.1016/j.dt.2024.03.003","DOIUrl":"10.1016/j.dt.2024.03.003","url":null,"abstract":"<div><div>The load-bearing capacity of reinforced concrete (RC) beams primarily relies on internal reinforced bars. However, limited research has been conducted on the dynamic response of these bars. To address this gap, this study has established an analytical model using dimensional analysis for calculating the deformation of reinforced bars within RC beams subjected to contact explosion. Comparison with experimental data reveals that the model has a relative error of 5.22%, effectively reflecting the deformation of reinforced bars. Additionally, based on this model, the study found that while concrete does influence the deformation of reinforced bars, this influence can be disregarded in comparison to the material properties of the bars themselves. The findings of this study have implications for calculating the residual load-bearing capacity of damaged RC beams, evaluating the extent of damage to RC beams after blast loading, and providing guidance for the blast-resistant design of RC structures.</div></div>","PeriodicalId":58209,"journal":{"name":"Defence Technology(防务技术)","volume":"41 ","pages":"Pages 104-118"},"PeriodicalIF":5.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140791696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Composite armor philosophy (CAP): Holistic design methodology of multi-layered composite protection systems for armored vehicles 复合装甲理念(CAP):装甲车辆多层复合防护系统的整体设计方法
IF 5 Q1 ENGINEERING, MULTIDISCIPLINARY Pub Date : 2024-11-01 DOI: 10.1016/j.dt.2024.07.009
Evangelos Ch. Tsirogiannis , Foivos Psarommatis , Alexandros Prospathopoulos , Georgios Savaidis
A philosophy for the design of novel, lightweight, multi-layered armor, referred to as Composite Armor Philosophy (CAP), which can adapt to the passive protection of light-, medium-, and heavy-armored vehicles, is presented in this study. CAP can serve as a guiding principle to assist designers in comprehending the distinct roles fulfilled by each component. The CAP proposal comprises four functional layers, organized in a suggested hierarchy of materials. Particularly notable is the inclusion of a ceramic-composite principle, representing an advanced and innovative solution in the field of armor design. This paper showcases real-world defense industry applications, offering case studies that demonstrate the effectiveness of this advanced approach. CAP represents a significant milestone in the history of passive protection, marking an evolutionary leap in the field. This philosophical approach provides designers with a powerful toolset with which to enhance the protection capabilities of military vehicles, making them more resilient and better equipped to meet the challenges of modern warfare.
本研究提出了一种新型、轻质、多层装甲的设计理念,即复合装甲理念(CAP),它能适应轻型、中型和重型装甲车辆的被动防护。CAP 可作为一项指导原则,帮助设计人员理解每个组件所发挥的不同作用。CAP 方案包括四个功能层,按照建议的材料层次进行组织。尤其值得注意的是,其中包含了陶瓷复合材料原理,这代表了装甲设计领域的先进和创新解决方案。本文展示了国防工业的实际应用,通过案例研究证明了这种先进方法的有效性。CAP 是被动防护史上的一个重要里程碑,标志着该领域的一次飞跃。这种哲学方法为设计人员提供了一个强大的工具集,可用于增强军用车辆的防护能力,使其更有弹性,更好地应对现代战争的挑战。
{"title":"Composite armor philosophy (CAP): Holistic design methodology of multi-layered composite protection systems for armored vehicles","authors":"Evangelos Ch. Tsirogiannis ,&nbsp;Foivos Psarommatis ,&nbsp;Alexandros Prospathopoulos ,&nbsp;Georgios Savaidis","doi":"10.1016/j.dt.2024.07.009","DOIUrl":"10.1016/j.dt.2024.07.009","url":null,"abstract":"<div><div>A philosophy for the design of novel, lightweight, multi-layered armor, referred to as Composite Armor Philosophy (CAP), which can adapt to the passive protection of light-, medium-, and heavy-armored vehicles, is presented in this study. CAP can serve as a guiding principle to assist designers in comprehending the distinct roles fulfilled by each component. The CAP proposal comprises four functional layers, organized in a suggested hierarchy of materials. Particularly notable is the inclusion of a ceramic-composite principle, representing an advanced and innovative solution in the field of armor design. This paper showcases real-world defense industry applications, offering case studies that demonstrate the effectiveness of this advanced approach. CAP represents a significant milestone in the history of passive protection, marking an evolutionary leap in the field. This philosophical approach provides designers with a powerful toolset with which to enhance the protection capabilities of military vehicles, making them more resilient and better equipped to meet the challenges of modern warfare.</div></div>","PeriodicalId":58209,"journal":{"name":"Defence Technology(防务技术)","volume":"41 ","pages":"Pages 181-197"},"PeriodicalIF":5.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141851970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A tensile wearable SHF antenna with efficient communication in defense beacon technology 在国防信标技术中实现高效通信的拉伸可穿戴式 SHF 天线
IF 5 Q1 ENGINEERING, MULTIDISCIPLINARY Pub Date : 2024-11-01 DOI: 10.1016/j.dt.2024.05.005
Pooja Naresh Bhatt , Rashmi Pandhare
The study projects a flexible and compact wearable pear-shaped Super High Frequency (SHF) antenna that can provide detailed location recognition and tracking applicable to defense beacon technology. This mini aperture with electrical dimensions of 0.12λ0 × 0.22λ0 × 0.01λ0 attains a vast bandwidth over 3.1–34.5 GHz Super High Frequency (SHF) frequency band at S11 ≤ −10 dB, peak gain of 7.14 dBi and proportionately homogeneous radiation pattern. The fractional bandwidth (% BW) acquired is 168% that envelopes diversified frequency spectrum inclusive of X band specifically targeted to all kinds of defense and military operations. The proposed antenna can be worn on a soldier's uniform and hence the Specific Absorption Rate simulation is accomplished. The Peak SAR Value over 1 g of tissue is 1.48 W/kg and for 10 g of tissue is 0.27 W/kg well under the safety standards. The flexibility is proven by analyzing the full electromagnetic simulations for various bending conditions. Time response analysis is attained with its Fidelity Factor and Group Delay. Communication excellence is determined using Link Budget Analysis and it is seen that margin at 100 Mbps is 62 m and at 200 Mbps is 59 m. Prototype is fabricated along with experimental validation. All the results show harmony in shaping the antenna to provide critical situational awareness and data sharing capabilities required in defense beacon technology for location identification.
该研究预测了一种灵活紧凑的可穿戴梨形超高频(SHF)天线,可提供适用于国防信标技术的详细位置识别和跟踪。这种微型孔径的电气尺寸为 0.12λ0 × 0.22λ0 × 0.01λ0,可在 3.1-34.5 GHz 超高频(SHF)频段上获得巨大的带宽,S11 ≤ -10 dB,峰值增益为 7.14 dBi,辐射模式比例均匀。获得的分数带宽(% BW)为 168%,可覆盖包括 X 波段在内的多样化频谱,专门针对各种国防和军事行动。拟议的天线可以佩戴在士兵的制服上,因此可以完成比吸收率模拟。1 克组织的峰值 SAR 值为 1.48 W/kg,10 克组织的峰值 SAR 值为 0.27 W/kg,远低于安全标准。通过分析各种弯曲条件下的全电磁模拟,证明了其灵活性。通过保真系数和群延迟进行时间响应分析。利用链路预算分析确定了通信性能的优劣,100 Mbps 的裕度为 62 米,200 Mbps 的裕度为 59 米。所有结果表明,该天线的形状与国防信标识别技术所需的关键态势感知和数据共享功能相吻合。
{"title":"A tensile wearable SHF antenna with efficient communication in defense beacon technology","authors":"Pooja Naresh Bhatt ,&nbsp;Rashmi Pandhare","doi":"10.1016/j.dt.2024.05.005","DOIUrl":"10.1016/j.dt.2024.05.005","url":null,"abstract":"<div><div>The study projects a flexible and compact wearable pear-shaped Super High Frequency (SHF) antenna that can provide detailed location recognition and tracking applicable to defense beacon technology. This mini aperture with electrical dimensions of 0.12<em>λ</em><sub>0</sub> × 0.22<em>λ</em><sub>0</sub> × 0.01<em>λ</em><sub>0</sub> attains a vast bandwidth over 3.1–34.5 GHz Super High Frequency (SHF) frequency band at S<sub>11</sub> ≤ −10 dB, peak gain of 7.14 dBi and proportionately homogeneous radiation pattern. The fractional bandwidth (% BW) acquired is 168% that envelopes diversified frequency spectrum inclusive of X band specifically targeted to all kinds of defense and military operations. The proposed antenna can be worn on a soldier's uniform and hence the Specific Absorption Rate simulation is accomplished. The Peak SAR Value over 1 g of tissue is 1.48 W/kg and for 10 g of tissue is 0.27 W/kg well under the safety standards. The flexibility is proven by analyzing the full electromagnetic simulations for various bending conditions. Time response analysis is attained with its Fidelity Factor and Group Delay. Communication excellence is determined using Link Budget Analysis and it is seen that margin at 100 Mbps is 62 m and at 200 Mbps is 59 m. Prototype is fabricated along with experimental validation. All the results show harmony in shaping the antenna to provide critical situational awareness and data sharing capabilities required in defense beacon technology for location identification.</div></div>","PeriodicalId":58209,"journal":{"name":"Defence Technology(防务技术)","volume":"41 ","pages":"Pages 198-210"},"PeriodicalIF":5.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141032947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of silica fume and glass powder for enhanced impact resistance in GGBFS-based ultra high-performance geopolymer fibrous concrete: An experimental and statistical analysis 硅灰和玻璃粉对增强基于 GGBFS 的超高性能土工聚合物纤维混凝土抗冲击性的影响:实验和统计分析
IF 5 Q1 ENGINEERING, MULTIDISCIPLINARY Pub Date : 2024-11-01 DOI: 10.1016/j.dt.2024.05.015
G. Murali , Anoop Kallamalayil Nassar , Madhumitha Swaminathan , Parthiban Kathirvel , Leong Sing Wong
Solid waste recycling is an economically sound strategy for preserving the environment, safeguarding natural resources, and diminishing the reliance on raw material consumption. Geopolymer technology offers a significant advantage by enabling the reuse and recycling of diverse materials. This research assesses how including silica fume and glass powder enhances the impact resistance of ultra-high-performance geopolymer concrete (UHPGC). In total, 18 distinct mixtures were formulated by substituting ground granulated blast furnace slag with varying proportions of silica fume and glass powder, ranging from 10% to 40%. Similarly, for each of the mixtures above, steel fibre was added at a dosage of 1.5% to address the inherent brittleness of UHPGC. The mixtures were activated by combining sodium hydroxide and sodium silicate solution to generate geopolymer binders. The specimens were subjected to drop-weight impact testing, wherein an examination was carried out to evaluate various parameters, including flowability, density at fresh and hardened state, compressive strength, impact numbers indicative of cracking and failure occurrences, ductility index, and analysis of failure modes. Additionally, the variations in the impact test outcomes were analyzed using the Weibull distribution, and the findings corresponding to survival probability were offered. Furthermore, the microstructure of UHPGC was scrutinized through scanning electron microscopy. Findings reveal that the specimens incorporating glass powder exhibited lower cracking impact number values than those utilizing silica fume, with reductions ranging from 18.63% to 34.31%. Similarly, failure impact number values decreased from 8.26% to 28.46% across glass powder contents. The maximum compressive and impact strength was recorded in UHPGC, comprising 10% silica fume with fibres.
固体废物回收利用是一项经济合理的战略,有利于保护环境、保护自然资源和减少对原材料消耗的依赖。土工聚合物技术可实现多种材料的再利用和再循环,具有显著优势。本研究评估了硅灰和玻璃粉如何增强超高性能土工聚合物混凝土(UHPGC)的抗冲击性。通过用不同比例的硅灰和玻璃粉(10% 至 40%)替代磨细高炉矿渣,共配制出 18 种不同的混合物。同样,针对 UHPGC 固有的脆性,上述每种混合物都添加了 1.5% 的钢纤维。混合物通过氢氧化钠和硅酸钠溶液进行活化,生成土工聚合物粘结剂。对试样进行落重冲击试验,以评估各种参数,包括流动性、新鲜和硬化状态下的密度、抗压强度、表明开裂和失效发生的冲击次数、延展性指数和失效模式分析。此外,还利用威布尔分布分析了冲击试验结果的变化,并提供了与存活概率相对应的结论。此外,还通过扫描电子显微镜仔细观察了 UHPGC 的微观结构。研究结果表明,与使用硅灰的试样相比,使用玻璃粉的试样显示出较低的开裂冲击数值,降低幅度为 18.63% 至 34.31%。同样,不同玻璃粉含量的破坏冲击数值也从 8.26% 降至 28.46%。含有 10%硅灰和纤维的 UHPGC 的抗压强度和冲击强度最大。
{"title":"Effect of silica fume and glass powder for enhanced impact resistance in GGBFS-based ultra high-performance geopolymer fibrous concrete: An experimental and statistical analysis","authors":"G. Murali ,&nbsp;Anoop Kallamalayil Nassar ,&nbsp;Madhumitha Swaminathan ,&nbsp;Parthiban Kathirvel ,&nbsp;Leong Sing Wong","doi":"10.1016/j.dt.2024.05.015","DOIUrl":"10.1016/j.dt.2024.05.015","url":null,"abstract":"<div><div>Solid waste recycling is an economically sound strategy for preserving the environment, safeguarding natural resources, and diminishing the reliance on raw material consumption. Geopolymer technology offers a significant advantage by enabling the reuse and recycling of diverse materials. This research assesses how including silica fume and glass powder enhances the impact resistance of ultra-high-performance geopolymer concrete (UHPGC). In total, 18 distinct mixtures were formulated by substituting ground granulated blast furnace slag with varying proportions of silica fume and glass powder, ranging from 10% to 40%. Similarly, for each of the mixtures above, steel fibre was added at a dosage of 1.5% to address the inherent brittleness of UHPGC. The mixtures were activated by combining sodium hydroxide and sodium silicate solution to generate geopolymer binders. The specimens were subjected to drop-weight impact testing, wherein an examination was carried out to evaluate various parameters, including flowability, density at fresh and hardened state, compressive strength, impact numbers indicative of cracking and failure occurrences, ductility index, and analysis of failure modes. Additionally, the variations in the impact test outcomes were analyzed using the Weibull distribution, and the findings corresponding to survival probability were offered. Furthermore, the microstructure of UHPGC was scrutinized through scanning electron microscopy. Findings reveal that the specimens incorporating glass powder exhibited lower cracking impact number values than those utilizing silica fume, with reductions ranging from 18.63% to 34.31%. Similarly, failure impact number values decreased from 8.26% to 28.46% across glass powder contents. The maximum compressive and impact strength was recorded in UHPGC, comprising 10% silica fume with fibres.</div></div>","PeriodicalId":58209,"journal":{"name":"Defence Technology(防务技术)","volume":"41 ","pages":"Pages 59-81"},"PeriodicalIF":5.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141508136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Properties of high cis-1,4 content hydroxyl-terminated polybutadiene and its application in composite solid propellants 高顺式-1,4 含量羟基封端聚丁二烯的性能及其在复合固体推进剂中的应用
IF 5 Q1 ENGINEERING, MULTIDISCIPLINARY Pub Date : 2024-10-01 DOI: 10.1016/j.dt.2024.04.014
In this paper, high cis-1,4 content hydroxyl-terminated polybutadiene (cis-HTPB) with different molecular weights was prepared through the oxidative cracking process using cis-butadiene rubber as raw material. Firstly, this article comprehensively compared the differences between cis-HTPB and conventional I-HTPB in terms of molecular weight distribution, functionality, viscosity, molecular polarity, and other physicochemical properties, which provided effective data support for its subsequent application. In addition, the reaction kinetics study showed that cis-HTPB with isocyanate curing agent has high reactivity, allowing it to be rapidly cured at low temperatures, and the cured elastomers had excellent mechanical properties, with tensile strength and elongation up to 1.89 MPa and 1100%, respectively. It was also found that cis-HTPB has extremely excellent low-temperature resistance, and the glass transition temperature (Tg) of its cured elastomer is as low as −101 °C. Based on the above studies, cis-HTPB is applied as a binder in composite solid propellants for the first time to investigate its practical performance, and the results indicated that cis-HTPB-based propellants have excellent process and mechanical properties.
本文以顺丁橡胶为原料,通过氧化裂解工艺制备了不同分子量的高顺式-1,4 含羟基封端聚丁二烯(顺式-HTPB)。首先,本文全面比较了顺式-HTPB 与传统 I-HTPB 在分子量分布、官能度、粘度、分子极性等理化性质方面的差异,为其后续应用提供了有效的数据支持。此外,反应动力学研究表明,顺式-HTPB 与异氰酸酯固化剂的反应活性高,可在低温下快速固化,固化后的弹性体具有优异的机械性能,拉伸强度和伸长率分别高达 1.89 兆帕和 1100%。研究还发现,顺式-HTPB 具有极其优异的耐低温性能,其固化弹性体的玻璃化转变温度(Tg)低至 -101 ℃。在上述研究的基础上,首次将顺式-HTPB 用作复合固体推进剂的粘合剂,研究其实用性能,结果表明顺式-HTPB 基推进剂具有优异的工艺性能和机械性能。
{"title":"Properties of high cis-1,4 content hydroxyl-terminated polybutadiene and its application in composite solid propellants","authors":"","doi":"10.1016/j.dt.2024.04.014","DOIUrl":"10.1016/j.dt.2024.04.014","url":null,"abstract":"<div><div>In this paper, high <em>cis</em>-1,4 content hydroxyl-terminated polybutadiene (<em>cis</em>-HTPB) with different molecular weights was prepared through the oxidative cracking process using <em>cis</em>-butadiene rubber as raw material. Firstly, this article comprehensively compared the differences between <em>cis</em>-HTPB and conventional I-HTPB in terms of molecular weight distribution, functionality, viscosity, molecular polarity, and other physicochemical properties, which provided effective data support for its subsequent application. In addition, the reaction kinetics study showed that <em>cis</em>-HTPB with isocyanate curing agent has high reactivity, allowing it to be rapidly cured at low temperatures, and the cured elastomers had excellent mechanical properties, with tensile strength and elongation up to 1.89 MPa and 1100%, respectively. It was also found that <em>cis</em>-HTPB has extremely excellent low-temperature resistance, and the glass transition temperature (<em>T</em><sub>g</sub>) of its cured elastomer is as low as −101 °C. Based on the above studies, <em>cis</em>-HTPB is applied as a binder in composite solid propellants for the first time to investigate its practical performance, and the results indicated that <em>cis</em>-HTPB-based propellants have excellent process and mechanical properties.</div></div>","PeriodicalId":58209,"journal":{"name":"Defence Technology(防务技术)","volume":"40 ","pages":"Pages 199-209"},"PeriodicalIF":5.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140765286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel framework to intercept GPS-denied, bomb-carrying, non-military, kamikaze drones: Towards protecting critical infrastructures 拦截不使用 GPS、携带炸弹的非军事神风特攻队无人机的新型框架:保护关键基础设施
IF 5 Q1 ENGINEERING, MULTIDISCIPLINARY Pub Date : 2024-10-01 DOI: 10.1016/j.dt.2024.05.001
Protection of urban critical infrastructures (CIs) from GPS-denied, bomb-carrying kamikaze drones (G-B-KDs) is very challenging. Previous approaches based on drone jamming, spoofing, communication interruption and hijacking cannot be applied in the case under examination, since G-B-KDs are uncontrolled. On the other hand, drone capturing schemes and electromagnetic pulse (EMP) weapons seem to be effective. However, again, existing approaches present various limitations, while most of them do not examine the case of G-B-KDs. This paper, focuses on the aforementioned under-researched field, where the G-B-KD is confronted by two defensive drones. The first neutralizes and captures the kamikaze drone, while the second captures the bomb. Both defensive drones are equipped with a net-gun and an innovative algorithm, which, among others, estimates the locations of interception, using a real-world trajectory model. Additionally, one of the defensive drones is also equipped with an EMP weapon to damage the electronics equipment of the kamikaze drone and reduce the capturing time and the overall risk. Extensive simulated experiments and comparisons to state-of-art methods, reveal the advantages and limitations of the proposed approach. More specifically, compared to state-of-art, the proposed approach improves: (a) time to neutralize the target by at least 6.89%, (b) maximum number of missions by at least 1.27% and (c) total cost by at least 5.15%.
保护城市关键基础设施(CIs)免受全球定位系统失效、携带炸弹的神风特攻队无人机(G-B-KDs)的攻击非常具有挑战性。以往基于无人机干扰、欺骗、通信中断和劫持的方法无法应用于本案例,因为 G-B-KD 不受控制。另一方面,无人机捕获方案和电磁脉冲(EMP)武器似乎是有效的。然而,现有方法同样存在各种局限性,而且大多数方法都没有研究 G-B-KDs 的情况。本文重点关注上述研究不足的领域,即 G-B-KD 与两架防御型无人机的对抗。第一架无人机将神风特攻队无人机化解并捕获,而第二架无人机则捕获炸弹。两架防御型无人机都配备了网炮和创新算法,其中包括利用真实世界的轨迹模型估算拦截位置。此外,其中一架防御型无人机还配备了电磁脉冲武器,以破坏神风特攻队无人机的电子设备,减少捕获时间和总体风险。广泛的模拟实验以及与最先进方法的比较揭示了所提方法的优势和局限性。更具体地说,与最先进的方法相比,建议的方法在以下方面有所改进:(a)使目标失效的时间至少缩短了 6.89%;(b)最大任务次数至少减少了 1.27%;(c)总成本至少减少了 5.15%。
{"title":"A novel framework to intercept GPS-denied, bomb-carrying, non-military, kamikaze drones: Towards protecting critical infrastructures","authors":"","doi":"10.1016/j.dt.2024.05.001","DOIUrl":"10.1016/j.dt.2024.05.001","url":null,"abstract":"<div><div>Protection of urban critical infrastructures (CIs) from GPS-denied, bomb-carrying kamikaze drones (G-B-KDs) is very challenging. Previous approaches based on drone jamming, spoofing, communication interruption and hijacking cannot be applied in the case under examination, since G-B-KDs are uncontrolled. On the other hand, drone capturing schemes and electromagnetic pulse (EMP) weapons seem to be effective. However, again, existing approaches present various limitations, while most of them do not examine the case of G-B-KDs. This paper, focuses on the aforementioned under-researched field, where the G-B-KD is confronted by two defensive drones. The first neutralizes and captures the kamikaze drone, while the second captures the bomb. Both defensive drones are equipped with a net-gun and an innovative algorithm, which, among others, estimates the locations of interception, using a real-world trajectory model. Additionally, one of the defensive drones is also equipped with an EMP weapon to damage the electronics equipment of the kamikaze drone and reduce the capturing time and the overall risk. Extensive simulated experiments and comparisons to state-of-art methods, reveal the advantages and limitations of the proposed approach. More specifically, compared to state-of-art, the proposed approach improves: (a) time to neutralize the target by at least 6.89%, (b) maximum number of missions by at least 1.27% and (c) total cost by at least 5.15%.</div></div>","PeriodicalId":58209,"journal":{"name":"Defence Technology(防务技术)","volume":"40 ","pages":"Pages 225-241"},"PeriodicalIF":5.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141038220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Defence Technology(防务技术)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1