Pub Date : 2018-05-09DOI: 10.4236/JEMAA.2018.105006
V. Cooray, G. Cooray
In a recent paper, we have studied the nature of the electromagnetic energy radiated over a single period of oscillation by an antenna working in frequency domain under ideal conditions and without losses when the oscillating charge in the antenna is reduced to the elementary charge. Here we extend and expand that study. The energy radiated by an oscillating current in an antenna occurs in bursts of duration T/2, where T is the period of oscillation. The results obtained here, based purely on classical electrodynamics, can be summarized by the inequality U ≥hv→q0 ≥e where U is the energy radiated in a single burst of duration T/2, h is the Planck constant, ν is the frequency of oscillation and q0 is the magnitude of the oscillating charge associated with the current. The condition U=hv→q0=e is obtained when the length of the antenna is equal to the ultimate Hubble radius of the universe (i.e. the maximum value of the antenna length allowed by nature) and the wavelength is equal to the Bohr radius (resulting from the smallest possible radius of the conductor allowed by nature). The ultimate Hubble radius is directly related to the vacuum energy density. The inequality obtained here is in general agreement with the one obtained in the previous study. One novel feature of this extended analysis is the discovery of an expression, in terms of the elementary charge and other atomic constants, for the vacuum energy density of the universe. This expression predicts the vacuum energy density to be about 4×10-10 J/m3 which is in reasonable agreement with the measured value of 6×10-10 J/m3.
{"title":"Remarkable Predictions of Classical Electrodynamics on Elementary Charge and the Energy Density of Vacuum","authors":"V. Cooray, G. Cooray","doi":"10.4236/JEMAA.2018.105006","DOIUrl":"https://doi.org/10.4236/JEMAA.2018.105006","url":null,"abstract":"In a recent paper, we have studied the nature of the electromagnetic energy radiated over a single period of oscillation by an antenna working in frequency domain under ideal conditions and without losses when the oscillating charge in the antenna is reduced to the elementary charge. Here we extend and expand that study. The energy radiated by an oscillating current in an antenna occurs in bursts of duration T/2, where T is the period of oscillation. The results obtained here, based purely on classical electrodynamics, can be summarized by the inequality U ≥hv→q0 ≥e where U is the energy radiated in a single burst of duration T/2, h is the Planck constant, ν is the frequency of oscillation and q0 is the magnitude of the oscillating charge associated with the current. The condition U=hv→q0=e is obtained when the length of the antenna is equal to the ultimate Hubble radius of the universe (i.e. the maximum value of the antenna length allowed by nature) and the wavelength is equal to the Bohr radius (resulting from the smallest possible radius of the conductor allowed by nature). The ultimate Hubble radius is directly related to the vacuum energy density. The inequality obtained here is in general agreement with the one obtained in the previous study. One novel feature of this extended analysis is the discovery of an expression, in terms of the elementary charge and other atomic constants, for the vacuum energy density of the universe. This expression predicts the vacuum energy density to be about 4×10-10 J/m3 which is in reasonable agreement with the measured value of 6×10-10 J/m3.","PeriodicalId":58231,"journal":{"name":"电磁分析与应用期刊(英文)","volume":"10 1","pages":"77-87"},"PeriodicalIF":0.0,"publicationDate":"2018-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45055550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-05-09DOI: 10.4236/jemaa.2018.105007
H. Nagarathnamma, A. Pavithra, C. Nanjundappa, S. Suma
Penetrative Benard-Maranagoni convection in micropolar ferromagnetic fluid layer in the presence of a uniform vertical magnetic field has been investigated via internal heating model. The lower boundary is considered to be rigid at constant temperature, while the upper boundary free open to the atmosphere is flat and subject to a convective surface boundary condition. The resulting eigenvalue problem is solved numerically by Galerkin method. The stability of the system is found to be dependent on the dimensionless internal heat source strength Ns, magnetic parameter M1, the non-linearity of magnetization parameter M3, coupling parameter N1, spin diffusion parameter N3 and micropolar heat conduction parameter N5. The results show that the onset of ferroconvection is delayed with an increase in N1 and N5 but hastens the onset of ferroconvection with an increase in M1, M3, N3 and Ns. The dimension of ferroconvection cells increases when there is an increase in M3, N1, N5 and Ns and decrease in M1 and N3.
{"title":"Penetrative Bénard-Marangoni Convection in a Micropolar Ferrofluid Layer via Internal Heating and Submitted to a Robin Thermal Boundary Conditions","authors":"H. Nagarathnamma, A. Pavithra, C. Nanjundappa, S. Suma","doi":"10.4236/jemaa.2018.105007","DOIUrl":"https://doi.org/10.4236/jemaa.2018.105007","url":null,"abstract":"Penetrative Benard-Maranagoni convection in micropolar ferromagnetic fluid layer in the presence of a uniform vertical magnetic field has been investigated via internal heating model. The lower boundary is considered to be rigid at constant temperature, while the upper boundary free open to the atmosphere is flat and subject to a convective surface boundary condition. The resulting eigenvalue problem is solved numerically by Galerkin method. The stability of the system is found to be dependent on the dimensionless internal heat source strength Ns, magnetic parameter M1, the non-linearity of magnetization parameter M3, coupling parameter N1, spin diffusion parameter N3 and micropolar heat conduction parameter N5. The results show that the onset of ferroconvection is delayed with an increase in N1 and N5 but hastens the onset of ferroconvection with an increase in M1, M3, N3 and Ns. The dimension of ferroconvection cells increases when there is an increase in M3, N1, N5 and Ns and decrease in M1 and N3.","PeriodicalId":58231,"journal":{"name":"电磁分析与应用期刊(英文)","volume":"10 1","pages":"88-105"},"PeriodicalIF":0.0,"publicationDate":"2018-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45624265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-05-09DOI: 10.4236/JEMAA.2018.105008
B. Lehnert
A revised quantum electrodynamic theory by the author is reconsidered, in respect to the basic concepts established by M. Planck and H.B.G. Casimir on the Zero Point Energy (ZPE) and by A. Einstein on Special Relativity. Attention is given to the new properties of its field equations and their applications. These equations include results not being available from conventional theory and the Standard Model. This concerns the internal structure of elementary particles, such as the photon, the electron, muon and tauon, the Z boson, and the so called Higgs particle detected in the experiments at the laboratory of CERN. A possible unification of electrodynamics and the strong nuclear force is further provided by the theory. Finally, there are aspects on the expanding universe represented by a new interpretation of dark matter and dark energy in terms of the ZPE.
{"title":"Impacts of Revised Quantum Electrodynamics on Fundamental Physics","authors":"B. Lehnert","doi":"10.4236/JEMAA.2018.105008","DOIUrl":"https://doi.org/10.4236/JEMAA.2018.105008","url":null,"abstract":"A revised quantum electrodynamic theory by the author is reconsidered, in respect to the basic concepts established by M. Planck and H.B.G. Casimir on the Zero Point Energy (ZPE) and by A. Einstein on Special Relativity. Attention is given to the new properties of its field equations and their applications. These equations include results not being available from conventional theory and the Standard Model. This concerns the internal structure of elementary particles, such as the photon, the electron, muon and tauon, the Z boson, and the so called Higgs particle detected in the experiments at the laboratory of CERN. A possible unification of electrodynamics and the strong nuclear force is further provided by the theory. Finally, there are aspects on the expanding universe represented by a new interpretation of dark matter and dark energy in terms of the ZPE.","PeriodicalId":58231,"journal":{"name":"电磁分析与应用期刊(英文)","volume":"10 1","pages":"106-118"},"PeriodicalIF":0.0,"publicationDate":"2018-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46400585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-04-30DOI: 10.4236/jemaa.2018.104005
Bo Chen, Sai Wu, Rui Wang, Changlei Liu, Jindong Lu, Kui Deng, L. Ge
With the continuous development of industrial technology, the weak current plays an increasingly important role in all fields of life. In order to facilitate the user to carry, the study of contactless weak current measurement technology is also emerging. This article’s design idea is based on two-dimensional reluctance sensor device built non-contact weak current detection system. The system uses the reluctance sensor HMC1002 to collect the current signal and the temperature sensor DS18B20 to compensate the temperature. The signals collected by the reluctance sensor and the temperature sensor are extremely weak. After being amplified by the amplifying circuit, the signal is conducive to subsequent detection and processing. Filter circuit can filter out interference signals to achieve the goal of improving accuracy. After the corresponding algorithm of the microcontroller will convert the signal voltage, easy to read and store, thus designing a non-contact current measurement capable of detecting weak currents and achieving higher accuracy.
{"title":"Research on Non-Contact Weak Current Detection Technology","authors":"Bo Chen, Sai Wu, Rui Wang, Changlei Liu, Jindong Lu, Kui Deng, L. Ge","doi":"10.4236/jemaa.2018.104005","DOIUrl":"https://doi.org/10.4236/jemaa.2018.104005","url":null,"abstract":"With the continuous development of industrial technology, the weak current plays an increasingly important role in all fields of life. In order to facilitate the user to carry, the study of contactless weak current measurement technology is also emerging. This article’s design idea is based on two-dimensional reluctance sensor device built non-contact weak current detection system. The system uses the reluctance sensor HMC1002 to collect the current signal and the temperature sensor DS18B20 to compensate the temperature. The signals collected by the reluctance sensor and the temperature sensor are extremely weak. After being amplified by the amplifying circuit, the signal is conducive to subsequent detection and processing. Filter circuit can filter out interference signals to achieve the goal of improving accuracy. After the corresponding algorithm of the microcontroller will convert the signal voltage, easy to read and store, thus designing a non-contact current measurement capable of detecting weak currents and achieving higher accuracy.","PeriodicalId":58231,"journal":{"name":"电磁分析与应用期刊(英文)","volume":"10 1","pages":"67-75"},"PeriodicalIF":0.0,"publicationDate":"2018-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41548500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-03-20DOI: 10.4236/JEMAA.2018.103004
K. Maabong, Kgakgamatso Marvel Mphale, Douglas Letsholathebe, S. Chimidza
A significant number of fire-induced power disruptions are observed in several countries every year. The faults are normally phase-to-phase short circuiting or conductor-to-ground discharges at mid-span region of the high-voltage transmission system. In any case, the wildfire plumes provide a conductive path. The electrical conductivity is due to intense heat in combustion zone of the fire which creates ion and electrons from flame inherent particulates. Increase in the ion concentration increases the electrical conductivity of the fire plume. The main purpose of this study was to measure dielectric breakdown electric field for vegetation and hydrocarbon flames. The experimental data is needed for validation of simulation schemes which are necessary for evaluation of power grid systems reliability under extreme wildfire weather conditions. In this study, hydrocarbon and vegetation fuels were ignited in a cylindrically shaped steel burner which was fitted with type-K thermocouples to measure flame temperature. The fuels consisted of dried weeping wattle (Peltophorum africanum) litter, butane gas and candle wax. Two pinned copper electrodes supported by retort stands were mounted to the burner and energized to a high voltage. This generated a strong electric field sufficient to initiate dielectric breakdown in the flames. Breakdown electric field strength (Ecrit) obtained from the experiment decreased from 10.5 to 6.9 kV/cm for the flames with temperature range of 1003 to 1410 K, respectively.
{"title":"Measurement of Breakdown Electric Field Strength for Vegetation and Hydrocarbon Flames","authors":"K. Maabong, Kgakgamatso Marvel Mphale, Douglas Letsholathebe, S. Chimidza","doi":"10.4236/JEMAA.2018.103004","DOIUrl":"https://doi.org/10.4236/JEMAA.2018.103004","url":null,"abstract":"A significant number of fire-induced power disruptions are observed in several countries every year. The faults are normally phase-to-phase short circuiting or conductor-to-ground discharges at mid-span region of the high-voltage transmission system. In any case, the wildfire plumes provide a conductive path. The electrical conductivity is due to intense heat in combustion zone of the fire which creates ion and electrons from flame inherent particulates. Increase in the ion concentration increases the electrical conductivity of the fire plume. The main purpose of this study was to measure dielectric breakdown electric field for vegetation and hydrocarbon flames. The experimental data is needed for validation of simulation schemes which are necessary for evaluation of power grid systems reliability under extreme wildfire weather conditions. In this study, hydrocarbon and vegetation fuels were ignited in a cylindrically shaped steel burner which was fitted with type-K thermocouples to measure flame temperature. The fuels consisted of dried weeping wattle (Peltophorum africanum) litter, butane gas and candle wax. Two pinned copper electrodes supported by retort stands were mounted to the burner and energized to a high voltage. This generated a strong electric field sufficient to initiate dielectric breakdown in the flames. Breakdown electric field strength (Ecrit) obtained from the experiment decreased from 10.5 to 6.9 kV/cm for the flames with temperature range of 1003 to 1410 K, respectively.","PeriodicalId":58231,"journal":{"name":"电磁分析与应用期刊(英文)","volume":"10 1","pages":"53-66"},"PeriodicalIF":0.0,"publicationDate":"2018-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42466698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-02-08DOI: 10.4236/JEMAA.2018.102002
N. N. Grinchik, V. G. Andrejev, G. Zayats, Yu. N. Grinchik
A coordinated physicomathematical model for the propagation of a soliton-like electromagnetic pulse in a heterogeneous medium is developed in the presence of strong discontinuities in the electromagnetic field. The model is based on the reduction of Maxwell’s equations to the well-studied wave equation. When the electromagnetic pulse was specified, its amplitude modulation was taken into account, as was the nonstationary broadening of the spectral line. Conditions for matching the momentum for the first initial boundary-value problem are obtained. The time dispersion of the electrical induction is taken into account in terms of the function of signal conditioning which takes account of the broadening of its spectral line and integration over the continuous spectrum. With this approach, it is not necessary to neglect spatial derivatives, and also to use spatial nonlocal relations to take account of the effect of surface charge, surface current, and spatial dispersion of electrical induction at the interfaces of adjacent media.
{"title":"Non-Monochromatic Electromagnetic Radiation of Inhomogeneous Media","authors":"N. N. Grinchik, V. G. Andrejev, G. Zayats, Yu. N. Grinchik","doi":"10.4236/JEMAA.2018.102002","DOIUrl":"https://doi.org/10.4236/JEMAA.2018.102002","url":null,"abstract":"A coordinated physicomathematical model for the propagation of a soliton-like electromagnetic pulse in a heterogeneous medium is developed in the presence of strong discontinuities in the electromagnetic field. The model is based on the reduction of Maxwell’s equations to the well-studied wave equation. When the electromagnetic pulse was specified, its amplitude modulation was taken into account, as was the nonstationary broadening of the spectral line. Conditions for matching the momentum for the first initial boundary-value problem are obtained. The time dispersion of the electrical induction is taken into account in terms of the function of signal conditioning which takes account of the broadening of its spectral line and integration over the continuous spectrum. With this approach, it is not necessary to neglect spatial derivatives, and also to use spatial nonlocal relations to take account of the effect of surface charge, surface current, and spatial dispersion of electrical induction at the interfaces of adjacent media.","PeriodicalId":58231,"journal":{"name":"电磁分析与应用期刊(英文)","volume":"10 1","pages":"13-33"},"PeriodicalIF":0.0,"publicationDate":"2018-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49161372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-01-31DOI: 10.4236/JEMAA.2018.101001
Y. Khraisat
Microstrip patch antenna (MPA) is widely implemented in different communication systems. One of the main disadvantages of MPA which limits its applications is its narrow bandwidth. In this paper I enhanced the bandwidth of MPA by inserting multiple slots in its ground plane. I used FR-4 substrate to design this antenna. The dimensions of this antenna are 59 mm and 79 mm. The dielectric constant is 4.4 and the height is 1.6 mm. I inserted up to 15 slots in ground plane with 1mm width. The spacing between slots is 3 mm. I investigated two designs. In the first design, slots were arranged in parallel to the feeding line. In the second one, slots were arranged horizontally to the feeding line. The main objective of this paper is to design and simulate MPA suitable for wide number of applications. Antenna bandwidth improvement is 18%. All the simulations were obtained by using HFSS simulator.
{"title":"Increasing Microstrip Patch Antenna Bandwidth by Inserting Ground Slots","authors":"Y. Khraisat","doi":"10.4236/JEMAA.2018.101001","DOIUrl":"https://doi.org/10.4236/JEMAA.2018.101001","url":null,"abstract":"Microstrip patch antenna (MPA) is widely implemented in different communication systems. One of the main disadvantages of MPA which limits its applications is its narrow bandwidth. In this paper I enhanced the bandwidth of MPA by inserting multiple slots in its ground plane. I used FR-4 substrate to design this antenna. The dimensions of this antenna are 59 mm and 79 mm. The dielectric constant is 4.4 and the height is 1.6 mm. I inserted up to 15 slots in ground plane with 1mm width. The spacing between slots is 3 mm. I investigated two designs. In the first design, slots were arranged in parallel to the feeding line. In the second one, slots were arranged horizontally to the feeding line. The main objective of this paper is to design and simulate MPA suitable for wide number of applications. Antenna bandwidth improvement is 18%. All the simulations were obtained by using HFSS simulator.","PeriodicalId":58231,"journal":{"name":"电磁分析与应用期刊(英文)","volume":"10 1","pages":"1-11"},"PeriodicalIF":0.0,"publicationDate":"2018-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48644330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-12-28DOI: 10.4236/JEMAA.2017.912017
Ignacio Campos-Flores, José-Luis Jiménez-Ramírez, J. Roa-Neri
We give theoretical foundation to torque densities proposed in the past, like the one used by Beth to study experimentally the action of circularly polarized radiation on a birefringent material, or that proposed by Mansuripur to resolve a seeming paradox concerning the Lorentz force law and relativity. Our results provide new insights into electromagnetic theory, since they provide a unified and general treatment of the balance of lineal and angular momentum that permits a better assessment of some torques. Thus in this work we extend the derivations we have made of balance equations for electromagnetic linear momentum to balance equations for electromagnetic angular momentum. These balance equations are derived from the macroscopic Maxwell equations by means of vector and tensor identities and from the different ways in which these equations are written in terms of fields E, D, B, and H, as well as polarizations P, and M. Therefore these balance equations are as sound as the macroscopic Maxwell equations, with the limitations of the constitutive relations.
{"title":"Balance Equations of Electromagnetic Angular Momentum","authors":"Ignacio Campos-Flores, José-Luis Jiménez-Ramírez, J. Roa-Neri","doi":"10.4236/JEMAA.2017.912017","DOIUrl":"https://doi.org/10.4236/JEMAA.2017.912017","url":null,"abstract":"We give theoretical foundation to torque densities proposed in the past, like the one used by Beth to study experimentally the action of circularly polarized radiation on a birefringent material, or that proposed by Mansuripur to resolve a seeming paradox concerning the Lorentz force law and relativity. Our results provide new insights into electromagnetic theory, since they provide a unified and general treatment of the balance of lineal and angular momentum that permits a better assessment of some torques. Thus in this work we extend the derivations we have made of balance equations for electromagnetic linear momentum to balance equations for electromagnetic angular momentum. These balance equations are derived from the macroscopic Maxwell equations by means of vector and tensor identities and from the different ways in which these equations are written in terms of fields E, D, B, and H, as well as polarizations P, and M. Therefore these balance equations are as sound as the macroscopic Maxwell equations, with the limitations of the constitutive relations.","PeriodicalId":58231,"journal":{"name":"电磁分析与应用期刊(英文)","volume":"9 1","pages":"203-217"},"PeriodicalIF":0.0,"publicationDate":"2017-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46258837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-11-15DOI: 10.4236/JEMAA.2017.911014
A. Lonappan, E. Dallé, T. Afullo, W. M. Daniels
This communication presents a new method of detecting the behaviour pattern in Sprague-Dawley (SD) rats based on the measurement of the dielectric properties of blood plasma at microwave frequencies at different periods of time. The microwave measurements were performed by rectangular cavity perturbation method in the S-band of microwave frequency with the blood plasma collected from normal rats (Controls) as well as chemically induced rats (Aβ). A change is observed in the dielectric properties of the Aβ samples but not the controls samples at the extended period of time. This measurement technique is simple and the collection of blood from the rats is nonsurgical in nature. These results prove a new method of diagnosing Alzheimer’s Disease (AD) using microwave techniques.
{"title":"Analysis of Behaviour Pattern in Sprague-Dawley Rats Using Microwave Techniques","authors":"A. Lonappan, E. Dallé, T. Afullo, W. M. Daniels","doi":"10.4236/JEMAA.2017.911014","DOIUrl":"https://doi.org/10.4236/JEMAA.2017.911014","url":null,"abstract":"This communication presents a new method of detecting the behaviour pattern in Sprague-Dawley (SD) rats based on the measurement of the dielectric properties of blood plasma at microwave frequencies at different periods of time. The microwave measurements were performed by rectangular cavity perturbation method in the S-band of microwave frequency with the blood plasma collected from normal rats (Controls) as well as chemically induced rats (Aβ). A change is observed in the dielectric properties of the Aβ samples but not the controls samples at the extended period of time. This measurement technique is simple and the collection of blood from the rats is nonsurgical in nature. These results prove a new method of diagnosing Alzheimer’s Disease (AD) using microwave techniques.","PeriodicalId":58231,"journal":{"name":"电磁分析与应用期刊(英文)","volume":"09 1","pages":"155-166"},"PeriodicalIF":0.0,"publicationDate":"2017-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48091830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-11-15DOI: 10.4236/JEMAA.2017.911016
Antônio Flavio Licarião Nogueira, V. Costa, R. Weinert
The paper describes an approach to teaching mutually-coupled circuits CAD techniques to undergraduate students pursuing a degree course in electrical engineering or physics, and explains how a series of simulated experiments may be incorporated into the existing subjects. The simulated experiments make use of a two-dimensional open-access software based on the finite-element method. At the laboratory meetings, the students learn how to set up field problems for solution, and how to examine the results. Simulation tasks based on three axisymmetric open-boundary problems are used to introduce different numeric techniques to compute inductance and magnetic forces. The paper takes the reader to a step-by-step simulation journey, and provides all the basic elements required for further exploration of axially-symmetric systems.
{"title":"Simulated Experiments for Teaching Mutually-Coupled Circuits CAD Techniques Using Analytic and Finite Element Solutions","authors":"Antônio Flavio Licarião Nogueira, V. Costa, R. Weinert","doi":"10.4236/JEMAA.2017.911016","DOIUrl":"https://doi.org/10.4236/JEMAA.2017.911016","url":null,"abstract":"The paper describes an approach to teaching mutually-coupled circuits CAD techniques to undergraduate students pursuing a degree course in electrical engineering or physics, and explains how a series of simulated experiments may be incorporated into the existing subjects. The simulated experiments make use of a two-dimensional open-access software based on the finite-element method. At the laboratory meetings, the students learn how to set up field problems for solution, and how to examine the results. Simulation tasks based on three axisymmetric open-boundary problems are used to introduce different numeric techniques to compute inductance and magnetic forces. The paper takes the reader to a step-by-step simulation journey, and provides all the basic elements required for further exploration of axially-symmetric systems.","PeriodicalId":58231,"journal":{"name":"电磁分析与应用期刊(英文)","volume":"09 1","pages":"183-202"},"PeriodicalIF":0.0,"publicationDate":"2017-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42965583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}