Pub Date : 2024-06-22DOI: 10.1007/s10704-024-00801-7
Pei Chen, Shaowei Li, Rui Pan, Senyu Tu, Fei Qin
The existing mechanical dicing process of single crystalline Silicon Carbide (SiC) is one of the main factors limiting the development of semiconductor process, which could be replaced by laser scribing potentially. To achieve efficient and low-damage SiC separation, the cracking behavior of SiC after laser grooving should be well understood and controllable. Since the laser grooving including thermal ablation and meltage solidification, the cracking behavior of the scribed SiC would be different to the original single crystal SiC. In this paper, cohesive zone model (CZM) is used to quantitively represent the cracking behavior of the nano-laser scribed SiC. The separation after scribing was conducted in a three-point bending (3 PB) fixture to characterize the cracking behavior. Therefore, by inverting the load–displacement curves of 3 PB with CZM embedded finite element model, the cohesive behavior is characterized by bilinear traction–separation law, which illustrated the whole cracking process numerically. The methodology established in current paper gives way to understand the SiC scribing and cracking process with quantitative cohesive parameters.
现有的单晶碳化硅(SiC)机械切割工艺是限制半导体工艺发展的主要因素之一,而激光划槽有可能取代这一工艺。为实现高效、低损伤的碳化硅分离,应充分了解和控制激光划槽后碳化硅的开裂行为。由于激光划槽包括热烧蚀和熔融凝固,因此划线后的碳化硅的开裂行为将不同于原始单晶碳化硅。本文采用内聚区模型(CZM)来定量表示纳米激光划线碳化硅的开裂行为。划线后的分离在三点弯曲(3 PB)夹具中进行,以表征开裂行为。因此,通过用 CZM 嵌入式有限元模型反演三点弯曲的载荷-位移曲线,用双线性牵引-分离定律来表征内聚行为,从而用数值说明了整个开裂过程。本文所建立的方法有助于理解具有定量内聚参数的 SiC 划线和开裂过程。
{"title":"Cohesive behavior of single crystalline silicon carbide scribing by nanosecond laser","authors":"Pei Chen, Shaowei Li, Rui Pan, Senyu Tu, Fei Qin","doi":"10.1007/s10704-024-00801-7","DOIUrl":"10.1007/s10704-024-00801-7","url":null,"abstract":"<div><p>The existing mechanical dicing process of single crystalline Silicon Carbide (SiC) is one of the main factors limiting the development of semiconductor process, which could be replaced by laser scribing potentially. To achieve efficient and low-damage SiC separation, the cracking behavior of SiC after laser grooving should be well understood and controllable. Since the laser grooving including thermal ablation and meltage solidification, the cracking behavior of the scribed SiC would be different to the original single crystal SiC. In this paper, cohesive zone model (CZM) is used to quantitively represent the cracking behavior of the nano-laser scribed SiC. The separation after scribing was conducted in a three-point bending (3 PB) fixture to characterize the cracking behavior. Therefore, by inverting the load–displacement curves of 3 PB with CZM embedded finite element model, the cohesive behavior is characterized by bilinear traction–separation law, which illustrated the whole cracking process numerically. The methodology established in current paper gives way to understand the SiC scribing and cracking process with quantitative cohesive parameters.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"248 1-3","pages":"67 - 80"},"PeriodicalIF":2.2,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141503350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-13DOI: 10.1007/s10704-024-00800-8
R. Sunder
Construction of the Kitagawa–Takahashi (K–T) diagram requires inputs of two material properties, namely, endurance limit and threshold stress intensity range, ΔKth. Both are sensitive to applied stress ratio. The effect of stress ratio on endurance limit is well known. Unfortunately, crack closure, associated with the nature of conventional testing practice obscures the effect of stress ratio on intrinsic, closure free ΔKth that would apply to natural crack like defects and short cracks. This study was made possible by the development of a new test method to characterize closure free threshold conditions under controlled near-tip residual stress conditions that essentially determine near-tip stress ratio at threshold. A procedure is described to construct the K–T diagram, using ΔKth values corrected for stress ratio and applicable to pre-existing defects and short cracks at notches that are unlikely to see closure. As a case study, a K–T diagram valid for different applied stress ratios is constructed for titanium alloy Ti-6Al-4V.
{"title":"Construction of Kitagawa–Takahashi diagrams as a function of applied stress ratio","authors":"R. Sunder","doi":"10.1007/s10704-024-00800-8","DOIUrl":"10.1007/s10704-024-00800-8","url":null,"abstract":"<div><p>Construction of the Kitagawa–Takahashi (K–T) diagram requires inputs of two material properties, namely, endurance limit and threshold stress intensity range, <i>ΔK</i><sub><i>th</i></sub>. Both are sensitive to applied stress ratio. The effect of stress ratio on endurance limit is well known. Unfortunately, crack closure, associated with the nature of conventional testing practice obscures the effect of stress ratio on intrinsic, closure free <i>ΔK</i><sub><i>th</i></sub> that would apply to natural crack like defects and short cracks. This study was made possible by the development of a new test method to characterize closure free threshold conditions under controlled near-tip residual stress conditions that essentially determine near-tip stress ratio at threshold. A procedure is described to construct the K–T diagram, using <i>ΔK</i><sub><i>th</i></sub> values corrected for stress ratio and applicable to pre-existing defects and short cracks at notches that are unlikely to see closure. As a case study, a K–T diagram valid for different applied stress ratios is constructed for titanium alloy Ti-6Al-4V.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"247 2","pages":"285 - 290"},"PeriodicalIF":2.2,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141503351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-13DOI: 10.1007/s10704-024-00799-y
Ondřej Peter, Martin Stěnička, Gert Heinrich, Christopher G. Robertson, Jakub Pawlas, Radek Stoček, Jan Ondrík
The global rubber industry is seeking alternatives to the widely-used antiozonant, N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine (6PPD), due to its environmental toxicity concerns when used in automobile tires. These substantial research and development efforts on new antiozonants for rubber are hindered by a general inability to characterize the fundamental physical parameter of ozone-induced tearing energy threshold for crack growth, which underlies the practical ozone resistance of rubber products. Therefore, this paper presents, for the first time, a novel experimental–numerical combined approach to determine the tearing energy threshold in rubber exposed to ozone, which is a key criterion for assessing the resistance of rubber to ozone crack growth. The approach is based on in-situ optical analysis of ozone crack growth on the rubber surface and the determination of the crack growth rate when the rubber is stretched. Subsequently, the growth rates form the basis for calculating the energy release rates at the crack tips using the finite element method in Ansys software. By comparing the calculated energy release rates and experimentally measured crack growth rates, the energy release rate interval corresponding to the threshold tearing energy is determined. Based on this approach, the tearing energy threshold for carbon black reinforced natural rubber exposed to ozone was found to be a maximum of 2.12 J/m2. This value is 96% lower than the threshold for the non-ozone-exposed specimens. In conclusion, this novel methodology was able to determine the ozone threshold tearing energy and represents a powerful, unique tool for an efficient future development of environmentally friendly antiozonants.
{"title":"The tearing energy threshold of crack growth in rubber exposed to ozone: an experimental–numerical approach","authors":"Ondřej Peter, Martin Stěnička, Gert Heinrich, Christopher G. Robertson, Jakub Pawlas, Radek Stoček, Jan Ondrík","doi":"10.1007/s10704-024-00799-y","DOIUrl":"10.1007/s10704-024-00799-y","url":null,"abstract":"<div><p>The global rubber industry is seeking alternatives to the widely-used antiozonant, <i>N</i>-(1,3-dimethylbutyl)-<i>N</i>′-phenyl-<i>p</i>-phenylenediamine (6PPD), due to its environmental toxicity concerns when used in automobile tires. These substantial research and development efforts on new antiozonants for rubber are hindered by a general inability to characterize the fundamental physical parameter of ozone-induced tearing energy threshold for crack growth, which underlies the practical ozone resistance of rubber products. Therefore, this paper presents, for the first time, a novel experimental–numerical combined approach to determine the tearing energy threshold in rubber exposed to ozone, which is a key criterion for assessing the resistance of rubber to ozone crack growth. The approach is based on in-situ optical analysis of ozone crack growth on the rubber surface and the determination of the crack growth rate when the rubber is stretched. Subsequently, the growth rates form the basis for calculating the energy release rates at the crack tips using the finite element method in Ansys software. By comparing the calculated energy release rates and experimentally measured crack growth rates, the energy release rate interval corresponding to the threshold tearing energy is determined. Based on this approach, the tearing energy threshold for carbon black reinforced natural rubber exposed to ozone was found to be a maximum of 2.12 J/m<sup>2</sup>. This value is 96% lower than the threshold for the non-ozone-exposed specimens. In conclusion, this novel methodology was able to determine the ozone threshold tearing energy and represents a powerful, unique tool for an efficient future development of environmentally friendly antiozonants.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"248 1-3","pages":"49 - 66"},"PeriodicalIF":2.2,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10704-024-00799-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141347528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-12DOI: 10.1007/s10704-024-00796-1
Yinan Xie, Xiaoli Hao, Zumin Wang, Yuan Huang
This research utilizes both single crystal and polycrystalline models to probe the fatigue crack propagation mechanism in pure silver via molecular dynamics (MD) simulations. A comprehensive validation approach at both micro and macro scales, incorporating transmission electron microscopy (TEM), electron backscatter diffraction (EBSD), and compact tension (CT) specimen fatigue testing, is developed to verify the reliability of simulation models and results. Simulation findings indicate that the initial crack orientation significantly influences crack propagation. As the crack advances within the crystal, two primary crack propagation mechanisms are discerned: (1) nano-voids appear at the crack tip, and the crack propagates by continuously aggregating with the nano-voids ahead; (2) the formation of Stair-rod dislocations and V-shape stacking faults due to dislocation reactions and slip band movements impedes crack propagation, accompanied by the dislocation reaction of Shockley partial dislocations ((tfrac{1}{6}) <112>) generating Hirth dislocations ((tfrac{1}{6}) <110>). The dislocation reaction is verified through the dislocation analysis of the crack tip area of the CT specimen after fatigue experiment by using TEM. In addition, the results of this study show that the angle between the direction of crack propagation and the grain boundary affects the fatigue crack propagation, e.g. when the angle is less than 60°, the crack rapidly propagates along the grain boundary. The orientation distribution function (ODF) results of EBSD can verify that the polycrystalline model containing 30 grains is a reliable model for the MD simulation of behavior of the crack tip of CT specimen. Lastly, the Paris law constants for pure silver are determined as m = 3.72 and lg C = − 10.77, providing a reference for the fatigue analysis and life prediction of silver components or silver soldering pots in engineering applications.
本研究利用单晶和多晶模型,通过分子动力学(MD)模拟探究纯银的疲劳裂纹扩展机制。研究开发了一种微观和宏观尺度的综合验证方法,结合了透射电子显微镜(TEM)、电子反向散射衍射(EBSD)和紧密拉伸(CT)试样疲劳测试,以验证模拟模型和结果的可靠性。模拟结果表明,初始裂纹取向对裂纹扩展有很大影响。随着裂纹在晶体内的扩展,可发现两种主要的裂纹扩展机制:(1) 在裂纹尖端出现纳米空洞,裂纹通过不断与前方的纳米空洞聚集而扩展;(2)由于位错反应和滑移带运动形成的Stair-rod位错和V形堆叠断层阻碍了裂纹的扩展,同时伴随着Shockley部分位错的位错反应((tfrac{1}{6} <112>)产生了Hirth位错((tfrac{1}{6} <110>)。通过使用 TEM 对疲劳实验后 CT 试样的裂纹尖端区域进行位错分析,验证了位错反应。此外,研究结果表明,裂纹扩展方向与晶界之间的夹角会影响疲劳裂纹的扩展,例如当夹角小于 60°时,裂纹会沿着晶界迅速扩展。EBSD 的取向分布函数(ODF)结果可以验证包含 30 个晶粒的多晶模型是对 CT 试样裂纹尖端行为进行 MD 模拟的可靠模型。最后,确定了纯银的帕里斯定律常数为 m = 3.72 和 lg C = - 10.77,为工程应用中银元件或银焊锅的疲劳分析和寿命预测提供了参考。
{"title":"Integrating atomistics and experiments in gaining deeper insights into fatigue crack propagation in silver","authors":"Yinan Xie, Xiaoli Hao, Zumin Wang, Yuan Huang","doi":"10.1007/s10704-024-00796-1","DOIUrl":"10.1007/s10704-024-00796-1","url":null,"abstract":"<div><p>This research utilizes both single crystal and polycrystalline models to probe the fatigue crack propagation mechanism in pure silver via molecular dynamics (MD) simulations. A comprehensive validation approach at both micro and macro scales, incorporating transmission electron microscopy (TEM), electron backscatter diffraction (EBSD), and compact tension (CT) specimen fatigue testing, is developed to verify the reliability of simulation models and results. Simulation findings indicate that the initial crack orientation significantly influences crack propagation. As the crack advances within the crystal, two primary crack propagation mechanisms are discerned: (1) nano-voids appear at the crack tip, and the crack propagates by continuously aggregating with the nano-voids ahead; (2) the formation of Stair-rod dislocations and V-shape stacking faults due to dislocation reactions and slip band movements impedes crack propagation, accompanied by the dislocation reaction of Shockley partial dislocations (<span>(tfrac{1}{6})</span> <112>) generating Hirth dislocations (<span>(tfrac{1}{6})</span> <110>). The dislocation reaction is verified through the dislocation analysis of the crack tip area of the CT specimen after fatigue experiment by using TEM. In addition, the results of this study show that the angle between the direction of crack propagation and the grain boundary affects the fatigue crack propagation, e.g. when the angle is less than 60°, the crack rapidly propagates along the grain boundary. The orientation distribution function (ODF) results of EBSD can verify that the polycrystalline model containing 30 grains is a reliable model for the MD simulation of behavior of the crack tip of CT specimen. Lastly, the Paris law constants for pure silver are determined as <i>m</i> = 3.72 and lg <i>C</i> = − 10.77, providing a reference for the fatigue analysis and life prediction of silver components or silver soldering pots in engineering applications.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"247 3","pages":"383 - 411"},"PeriodicalIF":2.2,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141350746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-05DOI: 10.1007/s10704-024-00797-0
Matej Šodan, Andjelka Stanić, Mijo Nikolić
This article presents a novel two-dimensional quadrilateral solid finite element model, enhanced by incompatible modes and embedded strong discontinuity for simulation of localized failure in quasi-brittle heterogeneous multi-phase materials. The focus of interest lies in the development of discontinuities and cracks induced by both tensile and compressive loads, considering mesoscale material constituents and very complex meshes. Multiple cracks are initiated within elements using local Gauss-point criteria for crack initiation. Rankine and Maximum shear stress criteria control the crack initiation, location, and orientation depending solely on the stress state within the finite element. The model identifies distinct clusters of cracked elements and merges them into continuous cracks. A tracking algorithm ensures crack continuity, eliminating spurious cracks ahead of the crack tip to prevent crack arrest and stress locking. This approach ensures the formation of various types of cracks within the constituents of composite materials and their spontaneous coalescence forming the final failure mechanisms. The constitutive model for the crack representation is the damage softening model, which accounts for opening and sliding behavior. The efficacy of the proposed model is demonstrated through numerical simulations of heterogeneous 3-phase and 4-phase composites subjected to both tensile and compressive load cases.
{"title":"Enhanced solid element model with embedded strong discontinuity for representation of mesoscale quasi-brittle failure","authors":"Matej Šodan, Andjelka Stanić, Mijo Nikolić","doi":"10.1007/s10704-024-00797-0","DOIUrl":"10.1007/s10704-024-00797-0","url":null,"abstract":"<div><p>This article presents a novel two-dimensional quadrilateral solid finite element model, enhanced by incompatible modes and embedded strong discontinuity for simulation of localized failure in quasi-brittle heterogeneous multi-phase materials. The focus of interest lies in the development of discontinuities and cracks induced by both tensile and compressive loads, considering mesoscale material constituents and very complex meshes. Multiple cracks are initiated within elements using local Gauss-point criteria for crack initiation. Rankine and Maximum shear stress criteria control the crack initiation, location, and orientation depending solely on the stress state within the finite element. The model identifies distinct clusters of cracked elements and merges them into continuous cracks. A tracking algorithm ensures crack continuity, eliminating spurious cracks ahead of the crack tip to prevent crack arrest and stress locking. This approach ensures the formation of various types of cracks within the constituents of composite materials and their spontaneous coalescence forming the final failure mechanisms. The constitutive model for the crack representation is the damage softening model, which accounts for opening and sliding behavior. The efficacy of the proposed model is demonstrated through numerical simulations of heterogeneous 3-phase and 4-phase composites subjected to both tensile and compressive load cases.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"248 1-3","pages":"1 - 25"},"PeriodicalIF":2.2,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141384025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-29DOI: 10.1007/s10704-024-00795-2
Deepak Sharma, I. V. Singh, Jalaj Kumar, Shahnawaz Ahmed
Accurate fatigue life prediction of polycrystalline materials is crucial for many engineering applications. In polycrystalline materials, a significant portion of life is spent in the crack nucleation phase at the microstructural scale. Hence, the total fatigue life shows high sensitivity to the local microstructure. To predict fatigue life accurately, the microstructure models of polycrystalline material i.e., titanium alloy are virtually generated with the help of the Voronoi tessellation technique. These models incorporate critical microstructural features such as grain size, grain shape, and the volume fraction of different phases within the material. To efficiently predict microstructure sensitive fatigue life, the smooth finite element method (SFEM) is coupled with continuum damage mechanics (CDM). The SFEM provides flexibility in the meshing of complex microstructure geometries as it alleviates the need to use only triangular and quadrilateral elements. Moreover, there is no need of isoparametric mapping and explicit form of shape function derivatives in SFEM, hence it requires less computation time. To obtain the fatigue life (in number of cycles), jump in cycles algorithm is implemented using SFEM-CDM. The numerical results of fatigue life data obtained from simulations are compared with experimental data, which reveals the validity of the present approach. This approach is useful to find out the scatter in fatigue life data of polycrystalline materials along with the source of scatter.
{"title":"Microstructure based fatigue life prediction of polycrystalline materials using SFEM and CDM","authors":"Deepak Sharma, I. V. Singh, Jalaj Kumar, Shahnawaz Ahmed","doi":"10.1007/s10704-024-00795-2","DOIUrl":"10.1007/s10704-024-00795-2","url":null,"abstract":"<div><p>Accurate fatigue life prediction of polycrystalline materials is crucial for many engineering applications. In polycrystalline materials, a significant portion of life is spent in the crack nucleation phase at the microstructural scale. Hence, the total fatigue life shows high sensitivity to the local microstructure. To predict fatigue life accurately, the microstructure models of polycrystalline material i.e., titanium alloy are virtually generated with the help of the Voronoi tessellation technique. These models incorporate critical microstructural features such as grain size, grain shape, and the volume fraction of different phases within the material. To efficiently predict microstructure sensitive fatigue life, the smooth finite element method (SFEM) is coupled with continuum damage mechanics (CDM). The SFEM provides flexibility in the meshing of complex microstructure geometries as it alleviates the need to use only triangular and quadrilateral elements. Moreover, there is no need of isoparametric mapping and explicit form of shape function derivatives in SFEM, hence it requires less computation time. To obtain the fatigue life (in number of cycles), jump in cycles algorithm is implemented using SFEM-CDM. The numerical results of fatigue life data obtained from simulations are compared with experimental data, which reveals the validity of the present approach. This approach is useful to find out the scatter in fatigue life data of polycrystalline materials along with the source of scatter.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"247 2","pages":"265 - 284"},"PeriodicalIF":2.2,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141171582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-29DOI: 10.1007/s10704-024-00798-z
Marek Romanowicz, Maciej Grygorczuk
The fracture resistance of pinewood under mode I loading is investigated experimentally for different crack plane orientations and the crack propagation direction parallel to longitudinal cells. Experiments are conducted on double cantilever beams using a digital image correlation system to evaluate the crack tip opening displacement. The compliance based beam method is used to determine the energy release rate at various crack lengths. The decomposition of crack propagation into the pre-peak and post-peak propagations is proposed to find the fracture energy contributions from individual toughening mechanisms in pinewood. The cohesive strengths measured in the experiments are confirmed by comparison with the tensile strengths obtained from separate tests performed on pinewood. An analytical model for evaluating the fracture process zone is used to validate the experimental results. The difference between the fracture energy values in different crack propagation systems is explained by using X-ray microtomography images of the fracture surfaces.
通过实验研究了松木在模式 I 载荷作用下的抗断裂性能,包括不同的裂纹平面方向和平行于纵向单元的裂纹扩展方向。使用数字图像相关系统对双悬臂梁进行了实验,以评估裂纹尖端张开位移。基于顺应性的梁法用于确定不同裂缝长度下的能量释放率。提出了将裂纹扩展分解为前峰和后峰扩展的方法,以找出松木中各个增韧机制的断裂能量贡献。实验中测得的内聚强度通过与松木单独测试获得的拉伸强度进行比较得到了证实。评估断裂过程区的分析模型用于验证实验结果。通过断裂表面的 X 射线显微层析成像,解释了不同裂纹扩展系统中断裂能量值之间的差异。
{"title":"The effect of crack orientation on the mode I fracture resistance of pinewood","authors":"Marek Romanowicz, Maciej Grygorczuk","doi":"10.1007/s10704-024-00798-z","DOIUrl":"10.1007/s10704-024-00798-z","url":null,"abstract":"<div><p>The fracture resistance of pinewood under mode I loading is investigated experimentally for different crack plane orientations and the crack propagation direction parallel to longitudinal cells. Experiments are conducted on double cantilever beams using a digital image correlation system to evaluate the crack tip opening displacement. The compliance based beam method is used to determine the energy release rate at various crack lengths. The decomposition of crack propagation into the pre-peak and post-peak propagations is proposed to find the fracture energy contributions from individual toughening mechanisms in pinewood. The cohesive strengths measured in the experiments are confirmed by comparison with the tensile strengths obtained from separate tests performed on pinewood. An analytical model for evaluating the fracture process zone is used to validate the experimental results. The difference between the fracture energy values in different crack propagation systems is explained by using X-ray microtomography images of the fracture surfaces.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"248 1-3","pages":"27 - 48"},"PeriodicalIF":2.2,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10704-024-00798-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141171579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-17DOI: 10.1007/s10704-024-00781-8
Pierrick François, Tom Petit, Quentin Auzoux, David Le Boulch, Isabela Zarpellon Nascimento, Jacques Besson
Delayed hydride cracking (DHC) is a hydrogen embrittlement phenomenon that may potentially occur in Zircaloy-4 fuel claddings during dry storage conditions. An experimental procedure has been developed to measure the toughness of this material in the presence of DHC by allowing crack propagation through the thickness of a fuel cladding. Notched C-ring specimens, charged with 100 wppm of hydrogen, were used and pre-cracked by brittle fracture of a hydrided zone at the notch root at room temperature. The length of the pre-crack was measured on the fracture surface or cross-sections. Additionally, a finite element model was developed to determine the stress intensity factor as a function of the crack length for a given loading. Two types of tests were conducted independently to determine the fracture toughness with and without DHC, (K_{I_text {DHC}}) and (K_{I_text {C}}), respectively: (i) constant load tests at 150 (^{circ })C, 200 (^{circ })C, and 250 (^{circ })C; (ii) monotonic tests at 25 (^{circ })C, 200 (^{circ })C, and 250 (^{circ })C. The results indicate the following: (1) there is no temperature influence on the DHC toughness of Zircaloy-4 between 150 and 250 (^{circ })C ((K_{I_text {DHC}} in left[ 7.2;9.2right] ) MPa(sqrt{text {m}})), (2) within this temperature range, the fracture toughness of Zircaloy-4 is halved by DHC ((K_{I_text {C}} in left[ 16.9;19.7 right] ) MPa(sqrt{text {m}})), (3) the crack propagation rate decreases with decreasing temperature and (4) the time before crack propagation increases as the temperature and loading decrease.
延迟氢化物开裂(DHC)是一种氢脆现象,在干燥储存条件下可能发生在锆合金-4 燃料包壳中。我们开发了一种实验程序,通过允许裂纹在燃料包层厚度上扩展来测量这种材料在出现 DHC 时的韧性。使用带凹口的 C 型环试样,充入 100 wppm 的氢气,在室温下通过在凹口根部的水化物区的脆性断裂预裂纹。在断裂表面或横截面上测量预裂纹的长度。此外,还开发了一个有限元模型,以确定在给定加载条件下应力强度因子与裂纹长度的函数关系。为了确定有 DHC 和无 DHC 时的断裂韧性,分别进行了两种类型的测试,即 (K_{I_text {DHC}}) 和 (K_{I_text {C}})(i) 150 C、200 C 和 250 C 的恒载试验;(ii) 25 C、200 C 和 250 C 的单调试验。结果表明(1) 在 150 和 250 (^{circ })C 之间,温度对 Zircaloy-4 的 DHC 韧性没有影响((K_{I_text {DHC}} in left[ 7.2;9.2right] ) MPa(sqrttext {m}})), (2) 在这个温度范围内,Zircaloy-4 的断裂韧性被 DHC 减半 ((K_{I_text {C}} in left[ 16.9;19.7(右))MPa((sqrttext {m}})),(3)裂纹扩展速率随温度的降低而降低,(4)裂纹扩展前的时间随温度和载荷的降低而增加。
{"title":"Assessing the fracture toughness of Zircaloy-4 fuel rod cladding tubes: impact of delayed hydride cracking","authors":"Pierrick François, Tom Petit, Quentin Auzoux, David Le Boulch, Isabela Zarpellon Nascimento, Jacques Besson","doi":"10.1007/s10704-024-00781-8","DOIUrl":"10.1007/s10704-024-00781-8","url":null,"abstract":"<div><p>Delayed hydride cracking (DHC) is a hydrogen embrittlement phenomenon that may potentially occur in Zircaloy-4 fuel claddings during dry storage conditions. An experimental procedure has been developed to measure the toughness of this material in the presence of DHC by allowing crack propagation through the thickness of a fuel cladding. Notched C-ring specimens, charged with 100 wppm of hydrogen, were used and pre-cracked by brittle fracture of a hydrided zone at the notch root at room temperature. The length of the pre-crack was measured on the fracture surface or cross-sections. Additionally, a finite element model was developed to determine the stress intensity factor as a function of the crack length for a given loading. Two types of tests were conducted independently to determine the fracture toughness with and without DHC, <span>(K_{I_text {DHC}})</span> and <span>(K_{I_text {C}})</span>, respectively: (i) constant load tests at 150 <span>(^{circ })</span>C, 200 <span>(^{circ })</span>C, and 250 <span>(^{circ })</span>C; (ii) monotonic tests at 25 <span>(^{circ })</span>C, 200 <span>(^{circ })</span>C, and 250 <span>(^{circ })</span>C. The results indicate the following: (1) there is no temperature influence on the DHC toughness of Zircaloy-4 between 150 and 250 <span>(^{circ })</span>C (<span>(K_{I_text {DHC}} in left[ 7.2;9.2right] )</span> MPa<span>(sqrt{text {m}})</span>), (2) within this temperature range, the fracture toughness of Zircaloy-4 is halved by DHC (<span>(K_{I_text {C}} in left[ 16.9;19.7 right] )</span> MPa<span>(sqrt{text {m}})</span>), (3) the crack propagation rate decreases with decreasing temperature and (4) the time before crack propagation increases as the temperature and loading decrease.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"247 1","pages":"51 - 72"},"PeriodicalIF":2.2,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140964526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Introduction to the special issue on failure mechanism in advanced materials and structures","authors":"Zengtao Chen, Minghao Zhao, Cunfa Gao, Efstathios Theotokoglou","doi":"10.1007/s10704-024-00793-4","DOIUrl":"10.1007/s10704-024-00793-4","url":null,"abstract":"","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"246 2-3","pages":"101 - 102"},"PeriodicalIF":2.2,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140963377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-17DOI: 10.1007/s10704-024-00794-3
Sharanagouda G. Malipatil, N. Nagarajappa, Ramesh Bojja, N. Jagannathan, Anuradha N. Majila, D. Chandru Fernando, M. Manjuprasad, C. M. Manjunatha
In this investigation, the growth behavior of a crack in a nickel-based superalloy under a turbine standard load sequence was determined by experimental, analytical, and computational methods. In the first experimental approach, ASTM standard compact tension (CT) test specimens were fabricated and fatigue crack growth (FCG) tests were conducted in a universal test machine under cold-TURBISTAN, a turbine standard spectrum load sequence. In the second analytical method, after rain-flow cycle counting of the cold-TURBISTAN sequence, the crack growth was estimated for each counted cycle from the crack growth law. The accumulated crack extension for each block of loading was thus estimated to determine the FCG behavior. In the third computational approach, a CT specimen containing an initial crack was modeled and the FCG behavior was predicted under cold-TURBISTAN spectrum load sequence using FRANC3D. The FCG trend predicted by analytical and computational methods was almost similar to the observed experimental behavior. The predicted FCG life was conservative with a life ratio ranging from 0.9 to 0.95.
{"title":"Fatigue crack growth behavior of a nickel-based superalloy under turbine standard spectrum loads","authors":"Sharanagouda G. Malipatil, N. Nagarajappa, Ramesh Bojja, N. Jagannathan, Anuradha N. Majila, D. Chandru Fernando, M. Manjuprasad, C. M. Manjunatha","doi":"10.1007/s10704-024-00794-3","DOIUrl":"10.1007/s10704-024-00794-3","url":null,"abstract":"<div><p>In this investigation, the growth behavior of a crack in a nickel-based superalloy under a turbine standard load sequence was determined by experimental, analytical, and computational methods. In the first experimental approach, ASTM standard compact tension (CT) test specimens were fabricated and fatigue crack growth (FCG) tests were conducted in a universal test machine under cold-TURBISTAN, a turbine standard spectrum load sequence. In the second analytical method, after rain-flow cycle counting of the cold-TURBISTAN sequence, the crack growth was estimated for each counted cycle from the crack growth law. The accumulated crack extension for each block of loading was thus estimated to determine the FCG behavior. In the third computational approach, a CT specimen containing an initial crack was modeled and the FCG behavior was predicted under cold-TURBISTAN spectrum load sequence using FRANC3D. The FCG trend predicted by analytical and computational methods was almost similar to the observed experimental behavior. The predicted FCG life was conservative with a life ratio ranging from 0.9 to 0.95.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"247 2","pages":"253 - 264"},"PeriodicalIF":2.2,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140963629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}