Pub Date : 2024-05-29DOI: 10.1007/s10704-024-00798-z
Marek Romanowicz, Maciej Grygorczuk
The fracture resistance of pinewood under mode I loading is investigated experimentally for different crack plane orientations and the crack propagation direction parallel to longitudinal cells. Experiments are conducted on double cantilever beams using a digital image correlation system to evaluate the crack tip opening displacement. The compliance based beam method is used to determine the energy release rate at various crack lengths. The decomposition of crack propagation into the pre-peak and post-peak propagations is proposed to find the fracture energy contributions from individual toughening mechanisms in pinewood. The cohesive strengths measured in the experiments are confirmed by comparison with the tensile strengths obtained from separate tests performed on pinewood. An analytical model for evaluating the fracture process zone is used to validate the experimental results. The difference between the fracture energy values in different crack propagation systems is explained by using X-ray microtomography images of the fracture surfaces.
通过实验研究了松木在模式 I 载荷作用下的抗断裂性能,包括不同的裂纹平面方向和平行于纵向单元的裂纹扩展方向。使用数字图像相关系统对双悬臂梁进行了实验,以评估裂纹尖端张开位移。基于顺应性的梁法用于确定不同裂缝长度下的能量释放率。提出了将裂纹扩展分解为前峰和后峰扩展的方法,以找出松木中各个增韧机制的断裂能量贡献。实验中测得的内聚强度通过与松木单独测试获得的拉伸强度进行比较得到了证实。评估断裂过程区的分析模型用于验证实验结果。通过断裂表面的 X 射线显微层析成像,解释了不同裂纹扩展系统中断裂能量值之间的差异。
{"title":"The effect of crack orientation on the mode I fracture resistance of pinewood","authors":"Marek Romanowicz, Maciej Grygorczuk","doi":"10.1007/s10704-024-00798-z","DOIUrl":"10.1007/s10704-024-00798-z","url":null,"abstract":"<div><p>The fracture resistance of pinewood under mode I loading is investigated experimentally for different crack plane orientations and the crack propagation direction parallel to longitudinal cells. Experiments are conducted on double cantilever beams using a digital image correlation system to evaluate the crack tip opening displacement. The compliance based beam method is used to determine the energy release rate at various crack lengths. The decomposition of crack propagation into the pre-peak and post-peak propagations is proposed to find the fracture energy contributions from individual toughening mechanisms in pinewood. The cohesive strengths measured in the experiments are confirmed by comparison with the tensile strengths obtained from separate tests performed on pinewood. An analytical model for evaluating the fracture process zone is used to validate the experimental results. The difference between the fracture energy values in different crack propagation systems is explained by using X-ray microtomography images of the fracture surfaces.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"248 1-3","pages":"27 - 48"},"PeriodicalIF":2.2,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10704-024-00798-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141171579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-17DOI: 10.1007/s10704-024-00781-8
Pierrick François, Tom Petit, Quentin Auzoux, David Le Boulch, Isabela Zarpellon Nascimento, Jacques Besson
Delayed hydride cracking (DHC) is a hydrogen embrittlement phenomenon that may potentially occur in Zircaloy-4 fuel claddings during dry storage conditions. An experimental procedure has been developed to measure the toughness of this material in the presence of DHC by allowing crack propagation through the thickness of a fuel cladding. Notched C-ring specimens, charged with 100 wppm of hydrogen, were used and pre-cracked by brittle fracture of a hydrided zone at the notch root at room temperature. The length of the pre-crack was measured on the fracture surface or cross-sections. Additionally, a finite element model was developed to determine the stress intensity factor as a function of the crack length for a given loading. Two types of tests were conducted independently to determine the fracture toughness with and without DHC, (K_{I_text {DHC}}) and (K_{I_text {C}}), respectively: (i) constant load tests at 150 (^{circ })C, 200 (^{circ })C, and 250 (^{circ })C; (ii) monotonic tests at 25 (^{circ })C, 200 (^{circ })C, and 250 (^{circ })C. The results indicate the following: (1) there is no temperature influence on the DHC toughness of Zircaloy-4 between 150 and 250 (^{circ })C ((K_{I_text {DHC}} in left[ 7.2;9.2right] ) MPa(sqrt{text {m}})), (2) within this temperature range, the fracture toughness of Zircaloy-4 is halved by DHC ((K_{I_text {C}} in left[ 16.9;19.7 right] ) MPa(sqrt{text {m}})), (3) the crack propagation rate decreases with decreasing temperature and (4) the time before crack propagation increases as the temperature and loading decrease.
延迟氢化物开裂(DHC)是一种氢脆现象,在干燥储存条件下可能发生在锆合金-4 燃料包壳中。我们开发了一种实验程序,通过允许裂纹在燃料包层厚度上扩展来测量这种材料在出现 DHC 时的韧性。使用带凹口的 C 型环试样,充入 100 wppm 的氢气,在室温下通过在凹口根部的水化物区的脆性断裂预裂纹。在断裂表面或横截面上测量预裂纹的长度。此外,还开发了一个有限元模型,以确定在给定加载条件下应力强度因子与裂纹长度的函数关系。为了确定有 DHC 和无 DHC 时的断裂韧性,分别进行了两种类型的测试,即 (K_{I_text {DHC}}) 和 (K_{I_text {C}})(i) 150 C、200 C 和 250 C 的恒载试验;(ii) 25 C、200 C 和 250 C 的单调试验。结果表明(1) 在 150 和 250 (^{circ })C 之间,温度对 Zircaloy-4 的 DHC 韧性没有影响((K_{I_text {DHC}} in left[ 7.2;9.2right] ) MPa(sqrttext {m}})), (2) 在这个温度范围内,Zircaloy-4 的断裂韧性被 DHC 减半 ((K_{I_text {C}} in left[ 16.9;19.7(右))MPa((sqrttext {m}})),(3)裂纹扩展速率随温度的降低而降低,(4)裂纹扩展前的时间随温度和载荷的降低而增加。
{"title":"Assessing the fracture toughness of Zircaloy-4 fuel rod cladding tubes: impact of delayed hydride cracking","authors":"Pierrick François, Tom Petit, Quentin Auzoux, David Le Boulch, Isabela Zarpellon Nascimento, Jacques Besson","doi":"10.1007/s10704-024-00781-8","DOIUrl":"10.1007/s10704-024-00781-8","url":null,"abstract":"<div><p>Delayed hydride cracking (DHC) is a hydrogen embrittlement phenomenon that may potentially occur in Zircaloy-4 fuel claddings during dry storage conditions. An experimental procedure has been developed to measure the toughness of this material in the presence of DHC by allowing crack propagation through the thickness of a fuel cladding. Notched C-ring specimens, charged with 100 wppm of hydrogen, were used and pre-cracked by brittle fracture of a hydrided zone at the notch root at room temperature. The length of the pre-crack was measured on the fracture surface or cross-sections. Additionally, a finite element model was developed to determine the stress intensity factor as a function of the crack length for a given loading. Two types of tests were conducted independently to determine the fracture toughness with and without DHC, <span>(K_{I_text {DHC}})</span> and <span>(K_{I_text {C}})</span>, respectively: (i) constant load tests at 150 <span>(^{circ })</span>C, 200 <span>(^{circ })</span>C, and 250 <span>(^{circ })</span>C; (ii) monotonic tests at 25 <span>(^{circ })</span>C, 200 <span>(^{circ })</span>C, and 250 <span>(^{circ })</span>C. The results indicate the following: (1) there is no temperature influence on the DHC toughness of Zircaloy-4 between 150 and 250 <span>(^{circ })</span>C (<span>(K_{I_text {DHC}} in left[ 7.2;9.2right] )</span> MPa<span>(sqrt{text {m}})</span>), (2) within this temperature range, the fracture toughness of Zircaloy-4 is halved by DHC (<span>(K_{I_text {C}} in left[ 16.9;19.7 right] )</span> MPa<span>(sqrt{text {m}})</span>), (3) the crack propagation rate decreases with decreasing temperature and (4) the time before crack propagation increases as the temperature and loading decrease.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"247 1","pages":"51 - 72"},"PeriodicalIF":2.2,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140964526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Introduction to the special issue on failure mechanism in advanced materials and structures","authors":"Zengtao Chen, Minghao Zhao, Cunfa Gao, Efstathios Theotokoglou","doi":"10.1007/s10704-024-00793-4","DOIUrl":"10.1007/s10704-024-00793-4","url":null,"abstract":"","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"246 2-3","pages":"101 - 102"},"PeriodicalIF":2.2,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140963377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-17DOI: 10.1007/s10704-024-00794-3
Sharanagouda G. Malipatil, N. Nagarajappa, Ramesh Bojja, N. Jagannathan, Anuradha N. Majila, D. Chandru Fernando, M. Manjuprasad, C. M. Manjunatha
In this investigation, the growth behavior of a crack in a nickel-based superalloy under a turbine standard load sequence was determined by experimental, analytical, and computational methods. In the first experimental approach, ASTM standard compact tension (CT) test specimens were fabricated and fatigue crack growth (FCG) tests were conducted in a universal test machine under cold-TURBISTAN, a turbine standard spectrum load sequence. In the second analytical method, after rain-flow cycle counting of the cold-TURBISTAN sequence, the crack growth was estimated for each counted cycle from the crack growth law. The accumulated crack extension for each block of loading was thus estimated to determine the FCG behavior. In the third computational approach, a CT specimen containing an initial crack was modeled and the FCG behavior was predicted under cold-TURBISTAN spectrum load sequence using FRANC3D. The FCG trend predicted by analytical and computational methods was almost similar to the observed experimental behavior. The predicted FCG life was conservative with a life ratio ranging from 0.9 to 0.95.
{"title":"Fatigue crack growth behavior of a nickel-based superalloy under turbine standard spectrum loads","authors":"Sharanagouda G. Malipatil, N. Nagarajappa, Ramesh Bojja, N. Jagannathan, Anuradha N. Majila, D. Chandru Fernando, M. Manjuprasad, C. M. Manjunatha","doi":"10.1007/s10704-024-00794-3","DOIUrl":"10.1007/s10704-024-00794-3","url":null,"abstract":"<div><p>In this investigation, the growth behavior of a crack in a nickel-based superalloy under a turbine standard load sequence was determined by experimental, analytical, and computational methods. In the first experimental approach, ASTM standard compact tension (CT) test specimens were fabricated and fatigue crack growth (FCG) tests were conducted in a universal test machine under cold-TURBISTAN, a turbine standard spectrum load sequence. In the second analytical method, after rain-flow cycle counting of the cold-TURBISTAN sequence, the crack growth was estimated for each counted cycle from the crack growth law. The accumulated crack extension for each block of loading was thus estimated to determine the FCG behavior. In the third computational approach, a CT specimen containing an initial crack was modeled and the FCG behavior was predicted under cold-TURBISTAN spectrum load sequence using FRANC3D. The FCG trend predicted by analytical and computational methods was almost similar to the observed experimental behavior. The predicted FCG life was conservative with a life ratio ranging from 0.9 to 0.95.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"247 2","pages":"253 - 264"},"PeriodicalIF":2.2,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140963629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-16DOI: 10.1007/s10704-024-00785-4
A. P. Chaves, R. G. Peixoto, R. P. Silva
Damage and failure in quasi-brittle materials such as rocks, concrete, and ceramics, have a complex non-linear behavior due to their heterogeneous character and the development of a fracture process zone (FPZ), formed by micro-cracking around the tip of an induced or pre-existing flaw. A softening behavior is observed in the FPZ, and the linear elastic fracture mechanic (LEFM) cannot correctly reproduce the stress field ahead of the crack tip. The existence of the FPZ may be the intrinsic cause of the size effect. An appropriate modeling of this process zone is mandatory to reproduce accurately the failure propagation and consequently, the structural behavior. Different from most of the domain numerical techniques, the boundary element method (BEM) requires (besides the boundary division into elements) only the discretization of a small region where dissipative effects occur. Cells with embedded continuum strong discontinuity approach (CSDA), placed in the region where the crack is supposed to occur, are capable of capturing the transition of regimes in the failure zone. Numerical bifurcation analysis, based on the singularity of the localization tensor, is used to determine the end of the continuum regime. Weak and strong discontinuity regimes are associated with diffuse micro-cracks (strain discontinuity) and macro-crack (displacement discontinuity). A variable bandwidth model is used during the weak discontinuity regime to represent the advance of micro-cracks density and their coalescence. Continuum and discrete cohesive isotropic damage models are used to describe the softening behavior. Analysis of three-dimensional problems with single crack in standard and mixed fracture modes, using this transitional approach and the BEM cells is firstly presented in this work. Experimental reference results are used to attest the capability of the approach in reproducing the structural behavior during crack propagation. Some necessary advances required for its applications for general complex structural problems are pointed out.
岩石、混凝土和陶瓷等准脆性材料的损伤和破坏具有复杂的非线性行为,这是因为它们具有异质性,而且在诱发或预先存在的缺陷尖端周围会产生微裂纹,从而形成断裂加工区(FPZ)。在 FPZ 中可观察到软化行为,线性弹性断裂力学(LEFM)无法正确再现裂纹尖端前方的应力场。FPZ 的存在可能是尺寸效应的内在原因。为了准确再现失效扩展,进而再现结构行为,必须对这一过程区进行适当建模。与大多数域数值技术不同,边界元法(BEM)只需要对发生耗散效应的一小块区域进行离散化(除了将边界划分为单元外)。嵌入式连续体强不连续方法(CSDA)的单元被放置在裂纹应该出现的区域,能够捕捉到失效区的过渡状态。基于局部张量奇异性的数值分岔分析被用来确定连续状态的终点。弱不连续和强不连续状态与弥散微裂缝(应变不连续)和宏观裂缝(位移不连续)有关。在弱不连续状态下,使用可变带宽模型来表示微裂缝密度的增加及其凝聚。连续和离散内聚各向同性损伤模型用于描述软化行为。本研究首次采用这种过渡方法和 BEM 单元,分析了标准和混合断裂模式下单个裂缝的三维问题。实验参考结果证明了该方法在裂纹扩展过程中再现结构行为的能力。同时还指出了该方法应用于一般复杂结构问题所需的一些必要改进。
{"title":"Boundary element method: cells with embedded discontinuity modeling the fracture process zone in 3D failure analysis","authors":"A. P. Chaves, R. G. Peixoto, R. P. Silva","doi":"10.1007/s10704-024-00785-4","DOIUrl":"10.1007/s10704-024-00785-4","url":null,"abstract":"<div><p>Damage and failure in quasi-brittle materials such as rocks, concrete, and ceramics, have a complex non-linear behavior due to their heterogeneous character and the development of a fracture process zone (FPZ), formed by micro-cracking around the tip of an induced or pre-existing flaw. A softening behavior is observed in the FPZ, and the linear elastic fracture mechanic (LEFM) cannot correctly reproduce the stress field ahead of the crack tip. The existence of the FPZ may be the intrinsic cause of the size effect. An appropriate modeling of this process zone is mandatory to reproduce accurately the failure propagation and consequently, the structural behavior. Different from most of the domain numerical techniques, the boundary element method (BEM) requires (besides the boundary division into elements) only the discretization of a small region where dissipative effects occur. Cells with embedded continuum strong discontinuity approach (CSDA), placed in the region where the crack is supposed to occur, are capable of capturing the transition of regimes in the failure zone. Numerical bifurcation analysis, based on the singularity of the localization tensor, is used to determine the end of the continuum regime. Weak and strong discontinuity regimes are associated with diffuse micro-cracks (strain discontinuity) and macro-crack (displacement discontinuity). A variable bandwidth model is used during the weak discontinuity regime to represent the advance of micro-cracks density and their coalescence. Continuum and discrete cohesive isotropic damage models are used to describe the softening behavior. Analysis of three-dimensional problems with single crack in standard and mixed fracture modes, using this transitional approach and the BEM cells is firstly presented in this work. Experimental reference results are used to attest the capability of the approach in reproducing the structural behavior during crack propagation. Some necessary advances required for its applications for general complex structural problems are pointed out.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"247 1","pages":"107 - 132"},"PeriodicalIF":2.2,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140968091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The study of the mechanical action between a punch and a cracked substrate has some theoretical guidance for the material protection. So the coupling problem of a cracked semi-infinite harmonic substrate under the action of a rigid flat punch is studied. The mixed boundary value problem is transformed into the Riemann-Hilbert boundary value problem by applying the complex-variable method, and then converted into singular integral equation for a numerical solution. The stress intensity factors at the contact ends and crack tips and the Piola stresses of whole harmonic material can be expressed as complex functions. The results indicate that the stressed state of harmonic solid near the crack tip and contact ends have similar features as those in linear elastic solids. The crack causes an obvious impact on the stress distributions near the contact region. The study provides theoretical guidance for analyzing the damaged problems of some soft materials under small deformation.
{"title":"Analysis of a cracked harmonic substrate under a rigid punch","authors":"Hailiang Ma, Yueting Zhou, Xu Wang, Xing Li, Shenghu Ding","doi":"10.1007/s10704-024-00782-7","DOIUrl":"10.1007/s10704-024-00782-7","url":null,"abstract":"<div><p>The study of the mechanical action between a punch and a cracked substrate has some theoretical guidance for the material protection. So the coupling problem of a cracked semi-infinite harmonic substrate under the action of a rigid flat punch is studied. The mixed boundary value problem is transformed into the Riemann-Hilbert boundary value problem by applying the complex-variable method, and then converted into singular integral equation for a numerical solution. The stress intensity factors at the contact ends and crack tips and the Piola stresses of whole harmonic material can be expressed as complex functions. The results indicate that the stressed state of harmonic solid near the crack tip and contact ends have similar features as those in linear elastic solids. The crack causes an obvious impact on the stress distributions near the contact region. The study provides theoretical guidance for analyzing the damaged problems of some soft materials under small deformation.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"247 1","pages":"73 - 86"},"PeriodicalIF":2.2,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140933068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper investigates the fatigue behaviour of laser powder bed fusion (LPBF) processed Ti6Al4V samples under three build orientations. The post-heat treatment (PHT-1050 °C) was carried out. The microstructural characterization was performed using optical microscopy, X-ray diffraction SEM and EDS techniques. The tensile test and high cycle fatigue tests were performed. The PHT performed at 1050 °C exhibited Widmanstatten microstructure consisting of a higher volume fraction of elongated β and a small amount of α. PHT samples’ ductility was ~ 67%, 40% and 177% higher than the as-printed samples under horizontal, inclined and vertical orientations. Interestingly, the fatigue lives of PHT samples at higher stress levels were higher and nearly isotropic in all three build orientations than the as-printed samples due to enhanced ductility and fewer critical pores. Further strong correlation between PHT samples and ductility was established. Moreover, there was a marginal improvement in fatigue limit due to PHT at 1050 °C compared to as-printed samples.
{"title":"Influence of post-heat treatment with super β transus temperature on the fatigue behaviour of LPBF processed Ti6Al4V","authors":"Akshay Pathania, Anand Kumar Subramaniyan, Nagesha Bommanahalli Kenchappa","doi":"10.1007/s10704-024-00784-5","DOIUrl":"10.1007/s10704-024-00784-5","url":null,"abstract":"<div><p>This paper investigates the fatigue behaviour of laser powder bed fusion (LPBF) processed Ti6Al4V samples under three build orientations. The post-heat treatment (PHT-1050 °C) was carried out. The microstructural characterization was performed using optical microscopy, X-ray diffraction SEM and EDS techniques. The tensile test and high cycle fatigue tests were performed. The PHT performed at 1050 °C exhibited Widmanstatten microstructure consisting of a higher volume fraction of elongated β and a small amount of α. PHT samples’ ductility was ~ 67%, 40% and 177% higher than the as-printed samples under horizontal, inclined and vertical orientations. Interestingly, the fatigue lives of PHT samples at higher stress levels were higher and nearly isotropic in all three build orientations than the as-printed samples due to enhanced ductility and fewer critical pores. Further strong correlation between PHT samples and ductility was established. Moreover, there was a marginal improvement in fatigue limit due to PHT at 1050 °C compared to as-printed samples.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"246 2-3","pages":"345 - 361"},"PeriodicalIF":2.2,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140932929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-06DOI: 10.1007/s10704-024-00792-5
G. G. Goviazin, B. Vizan
A controlled fragmentation method, by deep laser melting, for a multi-purpose projectile (penetrator) is presented, using a full-sized projectile with 1100 mm long, 148 mm diameter, and 17.8 mm wall thickness. Effects on penetration and fragmentation performance, for various laser melting parameters, are explored through penetration and fragmentation field tests. It is shown that it is possible to attain an optimal local microstructure, in the melted regions, that ensures a pre-defined fragmentation pattern upon explosion without compromising on the penetration capabilities.
{"title":"Deep laser melting as controlled fragmentation method for multi-purpose projectiles","authors":"G. G. Goviazin, B. Vizan","doi":"10.1007/s10704-024-00792-5","DOIUrl":"10.1007/s10704-024-00792-5","url":null,"abstract":"<div><p>A controlled fragmentation method, by deep laser melting, for a multi-purpose projectile (penetrator) is presented, using a full-sized projectile with 1100 mm long, 148 mm diameter, and 17.8 mm wall thickness. Effects on penetration and fragmentation performance, for various laser melting parameters, are explored through penetration and fragmentation field tests. It is shown that it is possible to attain an optimal local microstructure, in the melted regions, that ensures a pre-defined fragmentation pattern upon explosion without compromising on the penetration capabilities.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"247 3","pages":"369 - 381"},"PeriodicalIF":2.2,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10704-024-00792-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140889650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-04DOI: 10.1007/s10704-024-00790-7
Frank W. DelRio, Todd Huber, Rex K. Jaramillo, E. David Reedy Jr., Scott J. Grutzik
In this letter, we present interfacial fracture toughness data for a polymer-metal interface where tests were conducted at various test temperatures T and loading rates (dot{delta }). An adhesively bonded asymmetric double cantilever beam (ADCB) specimen was utilized to measure toughness. ADCB specimens were created by bonding a thinner, upper adherend to a thicker, lower adherend (both 6061 T6 aluminum) using a thin layer of epoxy adhesive, such that the crack propagated along the interface between the thinner adherend and the epoxy layer. The specimens were tested at T from 25 to 65 °C and (dot{delta }) from 0.002 to 0.2 mm/s. The measured interfacial toughness Γ increased as both T and (dot{delta }) increased. For an ADCB specimen loaded at a constant (dot{delta }), the energy release rate G increases as the crack length a increases. For this reason, we defined rate effects in terms of the rate of change in the energy release rate (dot{G}). Although not rigorously correct, a formal application of time–temperature superposition (TTS) analysis to the Γ data provided useful insights on the observed dependencies. In the TTS-shifted data, Γ decreased and then increased for monotonically increasing (dot{G}). Thus, the TTS analysis suggests that there is a minimum value of Γ. This minimum value could be used to define a lower bound in Γ when designing critical engineering applications that are subjected to T and (dot{delta }) excursions.
{"title":"Interpreting test temperature and loading rate effects on the fracture toughness of polymer-metal interfaces via time–temperature superposition","authors":"Frank W. DelRio, Todd Huber, Rex K. Jaramillo, E. David Reedy Jr., Scott J. Grutzik","doi":"10.1007/s10704-024-00790-7","DOIUrl":"10.1007/s10704-024-00790-7","url":null,"abstract":"<div><p>In this letter, we present interfacial fracture toughness data for a polymer-metal interface where tests were conducted at various test temperatures <i>T</i> and loading rates <span>(dot{delta })</span>. An adhesively bonded asymmetric double cantilever beam (ADCB) specimen was utilized to measure toughness. ADCB specimens were created by bonding a thinner, upper adherend to a thicker, lower adherend (both 6061 T6 aluminum) using a thin layer of epoxy adhesive, such that the crack propagated along the interface between the thinner adherend and the epoxy layer. The specimens were tested at <i>T</i> from 25 to 65 °C and <span>(dot{delta })</span> from 0.002 to 0.2 mm/s. The measured interfacial toughness Γ increased as both <i>T</i> and <span>(dot{delta })</span> increased. For an ADCB specimen loaded at a constant <span>(dot{delta })</span>, the energy release rate <i>G</i> increases as the crack length <i>a</i> increases. For this reason, we defined rate effects in terms of the rate of change in the energy release rate <span>(dot{G})</span>. Although not rigorously correct, a formal application of time–temperature superposition (TTS) analysis to the Γ data provided useful insights on the observed dependencies. In the TTS-shifted data, Γ decreased and then increased for monotonically increasing <span>(dot{G})</span><i>.</i> Thus, the TTS analysis suggests that there is a minimum value of Γ<i>.</i> This minimum value could be used to define a lower bound in Γ when designing critical engineering applications that are subjected to <i>T</i> and <span>(dot{delta })</span> excursions.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"247 3","pages":"361 - 367"},"PeriodicalIF":2.2,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140889652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-03DOI: 10.1007/s10704-024-00789-0
Bing Yang, Shuancheng Wang, Jian Li, Shoune Xiao, Tao Zhu, Guangwu Yang
The single-peak overload test based on DIC technology was carried out in this study, and U71MnG steel was used to explore the influence of dislocation motion on crack propagation during overload. The changes in the shape and size of the plastic zone during the overload fatigue cycle are tracked and recorded, and the trends in the stress intensity factors of the Christopher–James–Patterson (CJP) and dislocation correction models are compared. The degree of influence of the dislocation motion on the variation in the stress intensity factors is evaluated, and the variation pattern of the plastic flow factor is derived (the amount of crack tip blunting, ρ). The results showed that the dislocation correction model increased the accuracy of the solution of the coefficient set, and the predicted size of the plastic zone of the correction model was more consistent with the experimental data. A better match with the crack tip was observed in the experimental plastic zone, the dislocation correction model error with the theoretical plastic zone fluctuates within 10%, whereas the CJP model can reach a maximum of 36.75%, demonstrating the insensitivity of the dislocation correction model. The plastic flow factor ρ follows the same pattern as that of the plastic zone area and stress intensity factor amplitude, ρ increases slowly with the increase of crack length before overload, ρ increases significantly after overload and then decreases sharply, and it recovers to be stable with the disappearance of the overload hysteresis effect of crack propagation.
{"title":"Crack growth behavior of U71MnG rail steel under overload conditions described using a dislocation correction model","authors":"Bing Yang, Shuancheng Wang, Jian Li, Shoune Xiao, Tao Zhu, Guangwu Yang","doi":"10.1007/s10704-024-00789-0","DOIUrl":"10.1007/s10704-024-00789-0","url":null,"abstract":"<div><p>The single-peak overload test based on DIC technology was carried out in this study, and U71MnG steel was used to explore the influence of dislocation motion on crack propagation during overload. The changes in the shape and size of the plastic zone during the overload fatigue cycle are tracked and recorded, and the trends in the stress intensity factors of the Christopher–James–Patterson (CJP) and dislocation correction models are compared. The degree of influence of the dislocation motion on the variation in the stress intensity factors is evaluated, and the variation pattern of the plastic flow factor is derived (the amount of crack tip blunting, <i>ρ</i>). The results showed that the dislocation correction model increased the accuracy of the solution of the coefficient set, and the predicted size of the plastic zone of the correction model was more consistent with the experimental data. A better match with the crack tip was observed in the experimental plastic zone, the dislocation correction model error with the theoretical plastic zone fluctuates within 10%, whereas the CJP model can reach a maximum of 36.75%, demonstrating the insensitivity of the dislocation correction model. The plastic flow factor <i>ρ</i> follows the same pattern as that of the plastic zone area and stress intensity factor amplitude, <i>ρ</i> increases slowly with the increase of crack length before overload, <i>ρ</i> increases significantly after overload and then decreases sharply, and it recovers to be stable with the disappearance of the overload hysteresis effect of crack propagation.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"247 3","pages":"345 - 359"},"PeriodicalIF":2.2,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140889640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}