The purpose of this work is to develop a computational tool for the analysis of ice fracture. A new numerical approach to simulate the crushing and spalling behavior of ice using the Material Point Method (MPM) is presented. Ice behavior under general triaxial load involves complex processes such as pressure softening, crack formation, fragmentation, and large deformations of crushed particles, which are challenging to capture with traditional simulation methods. The new approach leverages MPM’s ability to handle large strains and complex failure mechanisms without the mesh entanglement issues common in Finite Element Methods. The elliptical failure surface model for ice is used, accommodating both tensile and compressive failure criteria within a unified framework. This model allows for an accurate representation of ice behavior under a variety of loading conditions and supports the simulation of spalling and crushing phenomena. We validate our numerical model against experimental data obtained in large-scale indentation tests, demonstrating its efficacy in replicating the observed variability in oscillations, load ranges, and average load values. The results indicate that MPM is a promising tool for numerical investigation of ice failure, capturing key features such as fragmentation patterns and load response more effectively than conventional methods. The presented methodology offers significant potential for advancing the modeling of ice behavior, with implications for engineering applications in cold regions and ice-structure interactions.
扫码关注我们
求助内容:
应助结果提醒方式:
