首页 > 最新文献

International Journal of Mechanical and Materials Engineering最新文献

英文 中文
Advancements in bandgap engineering: bromide-doped cesium lead perovskite thin films 带隙工程的进展:溴掺杂铯铅过氧化物薄膜
IF 3.4 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-05 DOI: 10.1186/s40712-024-00156-w
Khawla Fradi, Amal Bouich, Yousaf Hameed Khattak, Faisal Baig, Bechir Slimi, Bernabé Marí Soucase, Radhouane Chtourou

Perovskite materials have emerged as promising candidates for next-generation photovoltaic devices due to their unique optoelectronic properties. In this study, we investigate the incorporation of bromine into cesium lead mixed iodide and bromide perovskites (CsPbI3(1-x)Br3x) to enhance their performance. By depositing films with varying bromine concentrations (x = 0, 0.25, 0.5, 0.75), we employ a combination of structural and optical characterization techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), UV–visible spectroscopy, and photoluminescence. Our analysis reveals that introducing bromine leads to structural modifications, influencing the perovskite films’ optical properties and energy gap. Specifically, we observe semiconductor behavior with a tunable energy gap controlled by the intercalation of bromine atoms into the CsPbI3 lattice. Furthermore, heat treatment induces phase transitions in the perovskite films, affecting their optical responses and crystalline quality. SCAPS-1D simulations confirm the improved stability and efficiency of bromine-doped CsPbI3 films compared to undoped counterparts. Our findings demonstrate that bromine incorporation facilitates the formation of highly crystalline perovskite films with reduced trap defects and enhanced carrier transport properties. These results underscore the potential of bromine-doped CsPbI3 perovskites as promising materials for high-performance photovoltaic applications, paving the way for further optimization and device integration.

透镜材料因其独特的光电特性,已成为下一代光伏设备的理想候选材料。在本研究中,我们探讨了将溴掺入铯铅混合碘化物和溴化物包晶(CsPbI3(1-x)Br3x)以提高其性能的问题。通过沉积不同溴浓度(x = 0、0.25、0.5、0.75)的薄膜,我们综合运用了结构和光学表征技术,包括 X 射线衍射 (XRD)、扫描电子显微镜 (SEM)、紫外可见光谱和光致发光。我们的分析表明,溴的引入会导致结构的改变,从而影响包晶体薄膜的光学特性和能隙。具体来说,我们观察到半导体行为,其可调能隙受 CsPbI3 晶格中的溴原子插层控制。此外,热处理会诱导包晶体薄膜发生相变,从而影响其光学响应和结晶质量。SCAPS-1D 模拟证实,与未掺杂的 CsPbI3 薄膜相比,掺溴 CsPbI3 薄膜的稳定性和效率都有所提高。我们的研究结果表明,溴的掺入有助于形成高结晶度的包晶体薄膜,减少阱缺陷,提高载流子传输性能。这些结果凸显了溴掺杂 CsPbI3 包晶石作为高性能光伏应用材料的潜力,为进一步优化和器件集成铺平了道路。
{"title":"Advancements in bandgap engineering: bromide-doped cesium lead perovskite thin films","authors":"Khawla Fradi,&nbsp;Amal Bouich,&nbsp;Yousaf Hameed Khattak,&nbsp;Faisal Baig,&nbsp;Bechir Slimi,&nbsp;Bernabé Marí Soucase,&nbsp;Radhouane Chtourou","doi":"10.1186/s40712-024-00156-w","DOIUrl":"10.1186/s40712-024-00156-w","url":null,"abstract":"<div><p>Perovskite materials have emerged as promising candidates for next-generation photovoltaic devices due to their unique optoelectronic properties. In this study, we investigate the incorporation of bromine into cesium lead mixed iodide and bromide perovskites (CsPbI<sub>3(1-x)</sub>Br<sub>3x</sub>) to enhance their performance. By depositing films with varying bromine concentrations (<i>x</i> = 0, 0.25, 0.5, 0.75), we employ a combination of structural and optical characterization techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), UV–visible spectroscopy, and photoluminescence. Our analysis reveals that introducing bromine leads to structural modifications, influencing the perovskite films’ optical properties and energy gap. Specifically, we observe semiconductor behavior with a tunable energy gap controlled by the intercalation of bromine atoms into the CsPbI<sub>3</sub> lattice. Furthermore, heat treatment induces phase transitions in the perovskite films, affecting their optical responses and crystalline quality. SCAPS-1D simulations confirm the improved stability and efficiency of bromine-doped CsPbI<sub>3</sub> films compared to undoped counterparts. Our findings demonstrate that bromine incorporation facilitates the formation of highly crystalline perovskite films with reduced trap defects and enhanced carrier transport properties. These results underscore the potential of bromine-doped CsPbI<sub>3</sub> perovskites as promising materials for high-performance photovoltaic applications, paving the way for further optimization and device integration.</p></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"19 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-024-00156-w","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141945541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sustainable machining of AISI4140 steel: a Taguchi-ANN perspective on eco-friendly metal cutting parameters AISI4140 钢的可持续加工:从 Taguchi-ANN 角度看生态友好型金属切削参数
IF 3.4 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-02 DOI: 10.1186/s40712-024-00154-y
Pankaj Krishnath Jadhav, R. S. N. Sahai

This work explores environmentally conscious machining practices for AISI4140 steel through Taguchi analysis. The study employs a design of experiments (DOE) approach, focusing on cutting speed, depth of cut, and coolant type as parameters. Taguchi’s L9 orthogonal array facilitates systematic experimentation, and the results are analyzed using MINITAB 17 software. Signal-to-noise ratios (SNR) are utilized to establish optimum operating conditions, evaluate individual parameter influences, and create linear regression models. The experiments reveal neem oil with graphene coolant as an eco-friendly solution, addressing health and environmental concerns. Main effects plots visually represent the impact of parameters on machining quality. Additionally, regression and artificial neural network (ANN) models are compared for surface roughness prediction, with ANN showing superior performance. The findings advocate for optimized cutting conditions, emphasizing material conservation, enhanced productivity, and eco-friendly practices in AISI4140 steel machining. This research contributes valuable insights for industries seeking sustainable machining solutions.

本研究通过田口分析法探讨了 AISI4140 钢的环保型加工方法。研究采用了实验设计(DOE)方法,重点关注切削速度、切削深度和冷却液类型等参数。田口 L9 正交阵列有助于进行系统实验,实验结果使用 MINITAB 17 软件进行分析。利用信噪比(SNR)确定最佳操作条件,评估各个参数的影响,并建立线性回归模型。实验表明,楝树油与石墨烯冷却剂是一种生态友好型解决方案,可解决健康和环境问题。主效应图直观地显示了参数对加工质量的影响。此外,还比较了回归模型和人工神经网络(ANN)模型对表面粗糙度的预测,其中人工神经网络显示出更优越的性能。研究结果提倡在 AISI4140 钢加工中优化切削条件,强调节约材料、提高生产率和环保实践。这项研究为寻求可持续加工解决方案的行业提供了宝贵的见解。
{"title":"Sustainable machining of AISI4140 steel: a Taguchi-ANN perspective on eco-friendly metal cutting parameters","authors":"Pankaj Krishnath Jadhav,&nbsp;R. S. N. Sahai","doi":"10.1186/s40712-024-00154-y","DOIUrl":"10.1186/s40712-024-00154-y","url":null,"abstract":"<div><p>This work explores environmentally conscious machining practices for AISI4140 steel through Taguchi analysis. The study employs a design of experiments (DOE) approach, focusing on cutting speed, depth of cut, and coolant type as parameters. Taguchi’s L9 orthogonal array facilitates systematic experimentation, and the results are analyzed using MINITAB 17 software. Signal-to-noise ratios (SNR) are utilized to establish optimum operating conditions, evaluate individual parameter influences, and create linear regression models. The experiments reveal neem oil with graphene coolant as an eco-friendly solution, addressing health and environmental concerns. Main effects plots visually represent the impact of parameters on machining quality. Additionally, regression and artificial neural network (ANN) models are compared for surface roughness prediction, with ANN showing superior performance. The findings advocate for optimized cutting conditions, emphasizing material conservation, enhanced productivity, and eco-friendly practices in AISI4140 steel machining. This research contributes valuable insights for industries seeking sustainable machining solutions.</p></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"19 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-024-00154-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141886769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of an opto-electrochemical sensor for the detection of malathion using manganese metal–organic framework (Mn-MOF) 利用锰金属有机框架(Mn-MOF)开发用于检测马拉硫磷的光电化学传感器
IF 3.4 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-07-29 DOI: 10.1186/s40712-024-00157-9
Lakshya Sankhla, Himmat Singh Kushwaha

This paper presents a new method for detecting malathion pesticides using a modified screen-printed electrode (SPE) with a fluorescence quenching technique. The manganese-based MOF was synthesized using the solvothermal method. The synthesized MOFs were characterized by transmission electron microscopy (TEM), x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and Raman spectroscopy. The material’s electrocatalytic properties were assessed via electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). Within the concentration range of 0.89 µM to 5.95 µM, the material’s response to malathion was analyzed with square wave voltammetry (SWV), giving rise to a detection limit of 39.097 nM. Fluorescence quenching studies have been carried out between 0.039 and 0.56 µM, with a lower detection limit of 62.03 nM. A sensor with good anti-interference properties was tested for selectivity and practicability in detecting malathion in real samples, proving its potential use in this area.

本文介绍了一种利用荧光淬灭技术的改良丝网印刷电极(SPE)检测马拉硫磷农药的新方法。本文采用溶热法合成了锰基 MOF。透射电子显微镜(TEM)、X 射线衍射(XRD)、傅立叶变换红外光谱(FT-IR)和拉曼光谱对合成的 MOFs 进行了表征。该材料的电催化特性通过电化学阻抗光谱法(EIS)和循环伏安法(CV)进行了评估。在 0.89 µM 至 5.95 µM 的浓度范围内,用方波伏安法(SWV)分析了材料对马拉硫磷的反应,检测限为 39.097 nM。在 0.039 至 0.56 µM 之间进行了荧光淬灭研究,检测下限为 62.03 nM。对具有良好抗干扰性能的传感器进行了选择性和实用性测试,以检测真实样品中的马拉硫磷,从而证明其在这一领域的潜在用途。
{"title":"Development of an opto-electrochemical sensor for the detection of malathion using manganese metal–organic framework (Mn-MOF)","authors":"Lakshya Sankhla,&nbsp;Himmat Singh Kushwaha","doi":"10.1186/s40712-024-00157-9","DOIUrl":"10.1186/s40712-024-00157-9","url":null,"abstract":"<div><p>This paper presents a new method for detecting malathion pesticides using a modified screen-printed electrode (SPE) with a fluorescence quenching technique. The manganese-based MOF was synthesized using the solvothermal method. The synthesized MOFs were characterized by transmission electron microscopy (TEM), x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and Raman spectroscopy. The material’s electrocatalytic properties were assessed via electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). Within the concentration range of 0.89 µM to 5.95 µM, the material’s response to malathion was analyzed with square wave voltammetry (SWV), giving rise to a detection limit of 39.097 nM. Fluorescence quenching studies have been carried out between 0.039 and 0.56 µM, with a lower detection limit of 62.03 nM. A sensor with good anti-interference properties was tested for selectivity and practicability in detecting malathion in real samples, proving its potential use in this area.</p></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"19 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-024-00157-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141867569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Concentration modulated microstructure and rheological properties of nanofibrous hydrogels derived from decellularized human amniotic membrane for 3D cell culture 用于三维细胞培养的脱细胞人羊膜纳米纤维水凝胶的浓度调节微结构和流变特性
IF 3.4 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-07-29 DOI: 10.1186/s40712-024-00153-z
Golara Kafili, Elnaz Tamjid, Hassan Niknejad, Abdolreza Simchi

Decellularized amnion (dAM)-derived hydrogels have been extensively exploited for versatile medical and therapeutical applications, particularly for soft tissue engineering of skin, vascular graft, and endometrium. In contrast to polyacrylamide-based hydrogels, which have been extensively employed as a 3D cell culture platform, the cell response of dAM hydrogel is yet to be understood. In this study, we have prepared hydrogels containing different concentrations of dAM and systematically investigated their microstructural features, gelation kinetics, and rheological properties. The results show that dAM hydrogels possess a network of fibers with an average diameter of 56 ± 5 nm at 1% dAM, which increases to 110 ± 14 nm at 3% dAM. The enhanced intermolecular crosslinking between the microfibrillar units increases the gelation rate in the growth phase of the self-assembly process. Moreover, increasing the concentration of dAM in the hydrogel formulation (from 1 to 3%w/v) enhances the dynamic mechanical moduli of the derived hydrogels by about two orders of magnitude (from 41.8 ± 2.5 to 896.2 ± 72.3 Pa). It is shown that the variation in the hydrogel stiffness significantly affects the morphology of dermal fibroblast cells cultured in the hydrogels. It is shown that the hydrogels containing up to 2%w/v dAM provide a suitable microenvironment for embedded fibroblast cells with spindle-like morphology. Nevertheless, at the higher concentration, an adverse effect on the proliferation and morphology of fibroblast cells is noticed due to stiffness-induced phenotype transformation of cells. Concentration-modulated properties of dAM hydrogels offer an in vitro platform to study cell-related responses, disease modeling, and drug studies.

Graphical abstract

脱细胞羊膜(dAM)衍生水凝胶已被广泛应用于多种医疗和治疗领域,特别是皮肤软组织工程、血管移植和子宫内膜。与已被广泛用作三维细胞培养平台的聚丙烯酰胺基水凝胶相比,dAM 水凝胶的细胞反应尚待了解。在这项研究中,我们制备了含有不同浓度 dAM 的水凝胶,并系统地研究了它们的微观结构特征、凝胶化动力学和流变特性。结果表明,dAM 水凝胶具有平均直径为 56 ± 5 nm(1% dAM)的纤维网,3% dAM 时纤维网的平均直径增加到 110 ± 14 nm。微纤维单元之间分子间交联的增强提高了自组装过程生长阶段的凝胶化率。此外,提高水凝胶配方中 dAM 的浓度(从 1% 到 3%w/v)可将衍生水凝胶的动态机械模量提高约两个数量级(从 41.8 ± 2.5 到 896.2 ± 72.3 Pa)。研究表明,水凝胶硬度的变化会显著影响在水凝胶中培养的真皮成纤维细胞的形态。结果表明,含高达 2%w/v dAM 的水凝胶可为具有纺锤形形态的嵌入成纤维细胞提供合适的微环境。然而,当浓度较高时,成纤维细胞的增殖和形态会受到不利影响,原因是僵硬会导致细胞表型的转变。dAM 水凝胶的浓度调节特性为研究细胞相关反应、疾病建模和药物研究提供了一个体外平台。
{"title":"Concentration modulated microstructure and rheological properties of nanofibrous hydrogels derived from decellularized human amniotic membrane for 3D cell culture","authors":"Golara Kafili,&nbsp;Elnaz Tamjid,&nbsp;Hassan Niknejad,&nbsp;Abdolreza Simchi","doi":"10.1186/s40712-024-00153-z","DOIUrl":"10.1186/s40712-024-00153-z","url":null,"abstract":"<div><p>Decellularized amnion (dAM)-derived hydrogels have been extensively exploited for versatile medical and therapeutical applications, particularly for soft tissue engineering of skin, vascular graft, and endometrium. In contrast to polyacrylamide-based hydrogels, which have been extensively employed as a 3D cell culture platform, the cell response of dAM hydrogel is yet to be understood. In this study, we have prepared hydrogels containing different concentrations of dAM and systematically investigated their microstructural features, gelation kinetics, and rheological properties. The results show that dAM hydrogels possess a network of fibers with an average diameter of 56 ± 5 nm at 1% dAM, which increases to 110 ± 14 nm at 3% dAM. The enhanced intermolecular crosslinking between the microfibrillar units increases the gelation rate in the growth phase of the self-assembly process. Moreover, increasing the concentration of dAM in the hydrogel formulation (from 1 to 3%w/v) enhances the dynamic mechanical moduli of the derived hydrogels by about two orders of magnitude (from 41.8 ± 2.5 to 896.2 ± 72.3 Pa). It is shown that the variation in the hydrogel stiffness significantly affects the morphology of dermal fibroblast cells cultured in the hydrogels. It is shown that the hydrogels containing up to 2%w/v dAM provide a suitable microenvironment for embedded fibroblast cells with spindle-like morphology. Nevertheless, at the higher concentration, an adverse effect on the proliferation and morphology of fibroblast cells is noticed due to stiffness-induced phenotype transformation of cells. Concentration-modulated properties of dAM hydrogels offer an in vitro platform to study cell-related responses, disease modeling, and drug studies.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"19 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-024-00153-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141867568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of temperature on the compression properties of expanded thermoplastic polyurethane (ETPU) 温度对发泡热塑性聚氨酯(ETPU)压缩性能的影响
IF 3.4 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-07-16 DOI: 10.1186/s40712-024-00149-9
Johannes Meuchelböck, Carlo Peiffer, Lena Walter, Marcel Dippold, Peter Munro, Holger Ruckdäschel

This study explores how expanded thermoplastic polyurethane (ETPU) responds to temperature and compression at various temperatures. Dynamic mechanical thermal analysis (DMTA) was used to understand the temperature influence at small deformations. To investigate the deformation behavior at different compression stages we employed in-situ CT measurements and 3D strain mapping. Through quasi-static compression tests at temperatures from − 50 to 120 °C, we determined the influence of temperature on compression modulus, elastic stress, stress at 50% deformation, densification, and energy absorption. Remarkably, ETPU demonstrates robust recovery after compression, particularly within the − 50 to 60 °C temperature range. Subsequent compression tests show consistent or even slightly increased compression properties, such as a 10% increase in energy absorption for samples previously tested at − 40 °C, indicating that ETPU can withstand prior exposure to different temperatures.

本研究探讨了发泡热塑性聚氨酯(ETPU)在不同温度下对温度和压缩的反应。我们使用动态机械热分析(DMTA)来了解小变形时的温度影响。为了研究不同压缩阶段的变形行为,我们采用了原位 CT 测量和三维应变绘图。通过在 - 50 至 120 °C 温度范围内进行准静态压缩试验,我们确定了温度对压缩模量、弹性应力、50% 变形时的应力、致密化和能量吸收的影响。值得注意的是,ETPU 在压缩后表现出强劲的恢复能力,尤其是在 - 50 至 60 °C 的温度范围内。随后的压缩测试表明,ETPU 的压缩性能保持一致,甚至略有提高,例如之前在 - 40 °C 下测试的样品的能量吸收率提高了 10%,这表明 ETPU 可以承受之前暴露在不同温度下的情况。
{"title":"Influence of temperature on the compression properties of expanded thermoplastic polyurethane (ETPU)","authors":"Johannes Meuchelböck,&nbsp;Carlo Peiffer,&nbsp;Lena Walter,&nbsp;Marcel Dippold,&nbsp;Peter Munro,&nbsp;Holger Ruckdäschel","doi":"10.1186/s40712-024-00149-9","DOIUrl":"10.1186/s40712-024-00149-9","url":null,"abstract":"<div><p>This study explores how expanded thermoplastic polyurethane (ETPU) responds to temperature and compression at various temperatures. Dynamic mechanical thermal analysis (DMTA) was used to understand the temperature influence at small deformations. To investigate the deformation behavior at different compression stages we employed in-situ CT measurements and 3D strain mapping. Through quasi-static compression tests at temperatures from − 50 to 120 °C, we determined the influence of temperature on compression modulus, elastic stress, stress at 50% deformation, densification, and energy absorption. Remarkably, ETPU demonstrates robust recovery after compression, particularly within the − 50 to 60 °C temperature range. Subsequent compression tests show consistent or even slightly increased compression properties, such as a 10% increase in energy absorption for samples previously tested at − 40 °C, indicating that ETPU can withstand prior exposure to different temperatures.</p></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"19 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-024-00149-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141631106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative efficacy of citric acid/tartaric acid/malic acid additive-based polyvinyl alcohol-starch composite films 基于柠檬酸/酒石酸/苹果酸添加剂的聚乙烯醇-淀粉复合薄膜的功效比较
IF 3.4 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-07-15 DOI: 10.1186/s40712-024-00151-1
Aritra Das, Muktashree Saha, Manish Kumar Gupta, Latha Rangan, Ramagopal Uppaluri, Chandan Das

To ascertain upon the ideal configuration of physico-mechanical qualities, efficient processing techniques, and network stability of the prepared bio-composite films in real-world applications, the polymeric materials shall be subjected to a careful manipulation. Such bio-composite films have outstanding combinations of biocompatibility and toxicity-associated safety qualities. Such research interventions will be beneficial for the packaging, pharmaceutical, and biomedical industries that wish to target and adopt them for commercial applications. In this article, three alternate organic acids, i.e., citric acid (CA), tartaric acid (TA), and malic acid (MA), are blended separately into polyvinyl alcohol (PVA)-starch (St)-glycerol (Gl) composite films and for the targeted purpose of enhanced crosslinking, plasticizing, and antibacterial capability of the polymer network. The organic acid-based bio-composite polymeric films were assessed in terms of swelling index (SI), in vitro degradation, tensile strength (TS), percentage elongation (%E), antibacterial activity, and cytotoxicity attributes. Among these, the MA-based PVA composite films outperformed the CA-based PVA composite film in terms of absorbency (SI 739.29%), mechanical strength (TS 4.88 MPa), and elasticity (%E 103.68%). Furthermore, following a 24-h incubation period, the MA-based films exhibited the highest proliferative effect of 215.59% for the HEK cells. In conclusion, the MA has been inferred to be the most relevant organic acid for the desired optimality of film composition, physical and biological properties, and cost.

为了确定制备的生物复合膜在实际应用中的物理机械质量、高效加工技术和网络稳定性的理想配置,必须对聚合物材料进行精心处理。这种生物复合薄膜具有出色的生物相容性和毒性相关安全性。这些研究措施将有利于包装、制药和生物医学行业将其作为商业应用的目标并加以采用。本文将柠檬酸(CA)、酒石酸(TA)和苹果酸(MA)这三种交替有机酸分别混入聚乙烯醇(PVA)-淀粉(St)-甘油(Gl)复合薄膜中,目的是增强聚合物网络的交联、塑化和抗菌能力。对有机酸基生物复合聚合物薄膜的溶胀指数(SI)、体外降解、拉伸强度(TS)、伸长率(%E)、抗菌活性和细胞毒性属性进行了评估。其中,基于 MA 的 PVA 复合薄膜在吸收性(SI 739.29%)、机械强度(TS 4.88 兆帕)和弹性(%E 103.68%)方面均优于基于 CA 的 PVA 复合薄膜。此外,在 24 小时的培养期后,基于 MA 的薄膜对 HEK 细胞的增殖效果最高,达到 215.59%。总之,MA 被推断为最适合实现薄膜成分、物理和生物特性以及成本最优化的有机酸。
{"title":"Comparative efficacy of citric acid/tartaric acid/malic acid additive-based polyvinyl alcohol-starch composite films","authors":"Aritra Das,&nbsp;Muktashree Saha,&nbsp;Manish Kumar Gupta,&nbsp;Latha Rangan,&nbsp;Ramagopal Uppaluri,&nbsp;Chandan Das","doi":"10.1186/s40712-024-00151-1","DOIUrl":"10.1186/s40712-024-00151-1","url":null,"abstract":"<div><p>To ascertain upon the ideal configuration of physico-mechanical qualities, efficient processing techniques, and network stability of the prepared bio-composite films in real-world applications, the polymeric materials shall be subjected to a careful manipulation. Such bio-composite films have outstanding combinations of biocompatibility and toxicity-associated safety qualities. Such research interventions will be beneficial for the packaging, pharmaceutical, and biomedical industries that wish to target and adopt them for commercial applications. In this article, three alternate organic acids, i.e., citric acid (CA), tartaric acid (TA), and malic acid (MA), are blended separately into polyvinyl alcohol (PVA)-starch (St)-glycerol (Gl) composite films and for the targeted purpose of enhanced crosslinking, plasticizing, and antibacterial capability of the polymer network. The organic acid-based bio-composite polymeric films were assessed in terms of swelling index (SI), in vitro degradation, tensile strength (TS), percentage elongation (%E), antibacterial activity, and cytotoxicity attributes. Among these, the MA-based PVA composite films outperformed the CA-based PVA composite film in terms of absorbency (SI 739.29%), mechanical strength (TS 4.88 MPa), and elasticity (%E 103.68%). Furthermore, following a 24-h incubation period, the MA-based films exhibited the highest proliferative effect of 215.59% for the HEK cells. In conclusion, the MA has been inferred to be the most relevant organic acid for the desired optimality of film composition, physical and biological properties, and cost.</p></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"19 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-024-00151-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141618158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Iron-based smart alloys for critical applications: a review on processing, properties, phase transformations, and current trends 用于关键应用的铁基智能合金:加工、性能、相变和当前趋势综述
IF 3.4 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-07-14 DOI: 10.1186/s40712-024-00150-2
S. Santosh, M. Pavithran

On account of their unique shape memory effect (SME), pseudoelasticity, and biomedical applications, shape memory alloys (SMAs) have gained significant acceptance in the industrial trade and biomedical applications over the past few decades. Due to their affordable constituent parts and the availability of large-scale methods that are commonly employed for the manufacturing of stainless steels, Fe-based shape memory alloys offer benefits in commercial production, owing to their low cost compared to NiTi. The increasing insistence on stronger, lighter, and more functional materials paved the way for active materials. SMAs are a distinct grade of active materials. They exhibit attractive attributes like the potential to provide considerable recoverable strain while mechanical loading (superelasticity), shape recovery during heating (shape memory effect), and biocompatibility, which ultimately prove them to be one of the appropriate actuators for applications in the biomedical industry. This paper gives a review of the Martensitic transformation of some of the compositions of Fe-based SMAs, their potential to be used in civil structures as strengthening materials, their applications, and future research needs. This paper also focuses on the application of iron-based SMAs in different fields and the necessity to work on this SMA in the future since results show that Fe-based SMAs have shown good potential and can serve as an apt alternative to Ni-based shape memory alloys, which on the other hand has quite a lot of disadvantages, the key one being costly. Fe-based SMAs are comparatively lower in cost and have a greater scope to work with in the near future.

过去几十年来,形状记忆合金(SMA)凭借其独特的形状记忆效应(SME)、假弹性和生物医学应用,在工业贸易和生物医学应用中获得了广泛认可。与镍钛相比,铁基形状记忆合金的成本较低,因此在商业生产中具有优势。人们对强度更高、重量更轻、功能更强的材料的要求越来越高,这为活性材料的发展铺平了道路。SMA 是一种独特的活性材料。它们表现出极具吸引力的特性,如在机械加载(超弹性)、加热过程中的形状恢复(形状记忆效应)和生物兼容性过程中可提供相当大的可恢复应变,这些特性最终证明它们是生物医学行业应用的合适致动器之一。本文综述了一些铁基 SMA 成分的马氏体转变、它们在民用结构中用作增强材料的潜力、它们的应用以及未来的研究需求。本文还重点介绍了铁基 SMA 在不同领域的应用,以及未来对这种 SMA 进行研究的必要性,因为研究结果表明,铁基 SMA 具有良好的潜力,可以作为镍基形状记忆合金的理想替代品,而镍基形状记忆合金有很多缺点,其中最主要的是成本高昂。铁基 SMA 的成本相对较低,在不久的将来有更大的应用空间。
{"title":"Iron-based smart alloys for critical applications: a review on processing, properties, phase transformations, and current trends","authors":"S. Santosh,&nbsp;M. Pavithran","doi":"10.1186/s40712-024-00150-2","DOIUrl":"10.1186/s40712-024-00150-2","url":null,"abstract":"<div><p>On account of their unique shape memory effect (SME), pseudoelasticity, and biomedical applications, shape memory alloys (SMAs) have gained significant acceptance in the industrial trade and biomedical applications over the past few decades. Due to their affordable constituent parts and the availability of large-scale methods that are commonly employed for the manufacturing of stainless steels, Fe-based shape memory alloys offer benefits in commercial production, owing to their low cost compared to NiTi. The increasing insistence on stronger, lighter, and more functional materials paved the way for active materials. SMAs are a distinct grade of active materials. They exhibit attractive attributes like the potential to provide considerable recoverable strain while mechanical loading (superelasticity), shape recovery during heating (shape memory effect), and biocompatibility, which ultimately prove them to be one of the appropriate actuators for applications in the biomedical industry. This paper gives a review of the Martensitic transformation of some of the compositions of Fe-based SMAs, their potential to be used in civil structures as strengthening materials, their applications, and future research needs. This paper also focuses on the application of iron-based SMAs in different fields and the necessity to work on this SMA in the future since results show that Fe-based SMAs have shown good potential and can serve as an apt alternative to Ni-based shape memory alloys, which on the other hand has quite a lot of disadvantages, the key one being costly. Fe-based SMAs are comparatively lower in cost and have a greater scope to work with in the near future.</p></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"19 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-024-00150-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141618156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CuMn2O4 spinel electrodes: effect of the hydrothermal treatment duration on electrochemical performance 铜锰氧化物尖晶石电极:水热处理持续时间对电化学性能的影响
IF 3.4 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-07-11 DOI: 10.1186/s40712-024-00152-0
Souha Aouini, Afrah Bardaoui, Ana M. Ferraria, Radhouane Chtourou, Diogo M. F. Santos

CuMn2O4 (CMO) thin films are produced using a simple hydrothermal method. The influence of reaction duration on the electrodes’ electrochemical performance is investigated. XRD data shows improved crystal structure after 24-h reaction time, with a crystallite size of 12.17 nm. Distinct vibrational peaks associated with Cu–O and Mn–O are observed in the ATR-FTIR spectra, corroborating the spinel formation after 24 h. XPS analysis shows a compositional shift over time, starting with copper hydroxide at 12 h, evolving into a mix of copper and manganese oxides, hydroxides, and oxyhydroxides by 18 h, and achieving the desired spinel composition by 24 h. Microscopic analysis reveals CMO is arranged as small sheet structures, with 4.95 ± 2.92 µm in length after 24-h reaction. The CMO24h electrode displays a maximum specific capacitance of 1187.50 Fg−1 at a scan rate of 1 mVs−1 in 1 M Na2SO4 electrolyte. The electrochemical performance of the synthesized CMO electrodes reveals a high potential for energy storage applications.

采用简单的水热法制备了铜锰氧化物(CMO)薄膜。研究了反应时间对电极电化学性能的影响。XRD 数据显示,经过 24 小时反应后,晶体结构得到改善,晶粒大小为 12.17 nm。XPS 分析表明,随着时间的推移,成分发生了变化,从 12 小时时的氢氧化铜开始,到 18 小时时演变成铜和锰氧化物、氢氧化物和氧氢氧化物的混合体,到 24 小时时达到了理想的尖晶石成分。显微分析表明,24 小时反应后,CMO 呈小片状结构,长度为 4.95 ± 2.92 µm。CMO24h 电极在 1 M Na2SO4 电解液中以 1 mVs-1 的扫描速率显示出 1187.50 Fg-1 的最大比电容。合成的 CMO 电极的电化学性能揭示了其在储能应用方面的巨大潜力。
{"title":"CuMn2O4 spinel electrodes: effect of the hydrothermal treatment duration on electrochemical performance","authors":"Souha Aouini,&nbsp;Afrah Bardaoui,&nbsp;Ana M. Ferraria,&nbsp;Radhouane Chtourou,&nbsp;Diogo M. F. Santos","doi":"10.1186/s40712-024-00152-0","DOIUrl":"10.1186/s40712-024-00152-0","url":null,"abstract":"<div><p>CuMn<sub>2</sub>O<sub>4</sub> (CMO) thin films are produced using a simple hydrothermal method. The influence of reaction duration on the electrodes’ electrochemical performance is investigated. XRD data shows improved crystal structure after 24-h reaction time, with a crystallite size of 12.17 nm. Distinct vibrational peaks associated with Cu–O and Mn–O are observed in the ATR-FTIR spectra, corroborating the spinel formation after 24 h. XPS analysis shows a compositional shift over time, starting with copper hydroxide at 12 h, evolving into a mix of copper and manganese oxides, hydroxides, and oxyhydroxides by 18 h, and achieving the desired spinel composition by 24 h. Microscopic analysis reveals CMO is arranged as small sheet structures, with 4.95 ± 2.92 µm in length after 24-h reaction. The CMO<sub>24h</sub> electrode displays a maximum specific capacitance of 1187.50 Fg<sup>−1</sup> at a scan rate of 1 mVs<sup>−1</sup> in 1 M Na<sub>2</sub>SO<sub>4</sub> electrolyte. The electrochemical performance of the synthesized CMO electrodes reveals a high potential for energy storage applications.</p></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"19 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-024-00152-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141587070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis of composite films using polymer blends of chitosan and cellulose nanocrystals from marine origin 利用壳聚糖和海洋来源纤维素纳米晶体的聚合物混合物合成复合薄膜
IF 3.4 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-07-08 DOI: 10.1186/s40712-024-00145-z
Rahul Varma, Sugumar Vasudevan

Thin films reinforced with chitosan and cellulose nanocrystals (CNC) were produced using the casting process. In this study, the impact of plasticisers and sizing agents such as glycerol and polyvinyl alcohol (PVA) respectively on morphological, structural, thermal, and mechanical properties was investigated. The results showed the blends of CNC/PVA/glycerol gave better results when compared to films produced by blends of chitosan/PVA/glycerol films and chitosan/CNC/PVA/glycerol films. The UV spectroscopy showed 65% transmittance for chitosan/PVA/glycerol films, while the film of CNC/PVA/glycerol showed transmittance of 40%. The transmittance of chitosan/CNC/PVA/glycerol showed 75%. The films formed by the combination of CNC/PVA/glycerol showed better stress/strain properties than other films. The films of all combinations showed good thermal stability between the range of 350 and 450 °C. The morphological study using SEM revealed smooth texture for all the films. The study suggests that the films produced may be used for the food packaging applications due to its thermal stability and stress/strain properties.

采用浇铸工艺生产了壳聚糖和纤维素纳米晶体(CNC)增强薄膜。在这项研究中,研究了增塑剂和施胶剂(如甘油和聚乙烯醇(PVA))分别对形态、结构、热和机械性能的影响。结果表明,与壳聚糖/PVA/甘油薄膜和壳聚糖/CNC/PVA/甘油薄膜的混合物相比,CNC/PVA/甘油的混合物能产生更好的薄膜。紫外光谱显示,壳聚糖/PVA/甘油薄膜的透射率为 65%,而 CNC/PVA/ 甘油薄膜的透射率为 40%。壳聚糖/CNC/PVA/甘油的透射率为 75%。与其他薄膜相比,CNC/PVA/甘油组合形成的薄膜具有更好的应力/应变特性。所有组合的薄膜在 350 至 450 °C 范围内均表现出良好的热稳定性。使用 SEM 进行的形态研究显示,所有薄膜的纹理都很光滑。研究表明,由于其热稳定性和应力/应变特性,所生产的薄膜可用于食品包装应用。
{"title":"Synthesis of composite films using polymer blends of chitosan and cellulose nanocrystals from marine origin","authors":"Rahul Varma,&nbsp;Sugumar Vasudevan","doi":"10.1186/s40712-024-00145-z","DOIUrl":"10.1186/s40712-024-00145-z","url":null,"abstract":"<div><p>Thin films reinforced with chitosan and cellulose nanocrystals (CNC) were produced using the casting process. In this study, the impact of plasticisers and sizing agents such as glycerol and polyvinyl alcohol (PVA) respectively on morphological, structural, thermal, and mechanical properties was investigated. The results showed the blends of CNC/PVA/glycerol gave better results when compared to films produced by blends of chitosan/PVA/glycerol films and chitosan/CNC/PVA/glycerol films. The UV spectroscopy showed 65% transmittance for chitosan/PVA/glycerol films, while the film of CNC/PVA/glycerol showed transmittance of 40%. The transmittance of chitosan/CNC/PVA/glycerol showed 75%. The films formed by the combination of CNC/PVA/glycerol showed better stress/strain properties than other films. The films of all combinations showed good thermal stability between the range of 350 and 450 °C. The morphological study using SEM revealed smooth texture for all the films. The study suggests that the films produced may be used for the food packaging applications due to its thermal stability and stress/strain properties.</p></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"19 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-024-00145-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141561129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental and statistical investigation on the dielectric breakdown of magneto nanofluids for power applications 用于电力应用的磁性纳米流体介电击穿的实验和统计调查
IF 3.4 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-07-02 DOI: 10.1186/s40712-024-00144-0
Md Rizwan, Suhaib Ahmad Khan, M. Rizwan Khan, Asfar Ali Khan

The insulating oil serves the dual purpose of providing insulation and cooling within transformers. This investigation aims to explore the impact of various nanoparticles on the dielectric breakdown voltage (BDV) of dielectric oils. The study examines the effect of the concentration of magnetic nanoparticles on the dielectric breakdown voltage of insulating oils. Nanoparticles such as iron (II, III) oxide (Fe3O4), cobalt (II, III) oxide (CO3O4), and ferrous phosphide (Fe3P) were utilized to create nanofluids with carrier mediums consisting of mineral oil and synthetic ester oil. BDV determination was conducted using a VDE and S–S electrode system according to IEC 60156 standards. Nanofluid were prepared using a two-step method, and their concentrations ranged from 0.01 g/L, 0.02 g/L, and 0.04 g/L in base oils. Twelve iterations were conducted for each prepared nanofluid, and breakdown voltage measurements were recorded. The results indicate a noteworthy enhancement in the breakdown voltage of nanofluids. The statistical analysis was performed on the dielectric property of nanofluid samples for better breakdown accuracy. The maximum enhancement at specific nanoparticle concentrations was shown by each nanofluid. The results show that under the S–S electrode configuration, the greatest overall enhancement was observed for Fe3P in mineral oil, with an enhancement of 70.05%, and Fe3O4 in synthetic ester oil, with an enhancement of 46.29%.

绝缘油在变压器中具有绝缘和冷却的双重作用。本研究旨在探讨各种纳米粒子对绝缘油介电击穿电压(BDV)的影响。本研究探讨了磁性纳米粒子的浓度对绝缘油介电击穿电压的影响。利用铁(II,III)氧化物(Fe3O4)、钴(II,III)氧化物(CO3O4)和磷化亚铁(Fe3P)等纳米粒子来制造纳米流体,载体介质包括矿物油和合成酯油。根据 IEC 60156 标准,使用 VDE 和 S-S 电极系统进行了 BDV 测定。纳米流体采用两步法制备,其在基础油中的浓度范围为 0.01 g/L、0.02 g/L 和 0.04 g/L。对每种制备的纳米流体进行了 12 次迭代,并记录了击穿电压测量值。结果表明,纳米流体的击穿电压显著提高。为了提高击穿精度,对纳米流体样品的介电性质进行了统计分析。每种纳米流体在特定纳米粒子浓度下都显示出最大的增强效果。结果表明,在 S-S 电极配置下,矿物油中的 Fe3P 和合成酯油中的 Fe3O4 的整体增强效果最大,分别增强了 70.05% 和 46.29%。
{"title":"Experimental and statistical investigation on the dielectric breakdown of magneto nanofluids for power applications","authors":"Md Rizwan,&nbsp;Suhaib Ahmad Khan,&nbsp;M. Rizwan Khan,&nbsp;Asfar Ali Khan","doi":"10.1186/s40712-024-00144-0","DOIUrl":"10.1186/s40712-024-00144-0","url":null,"abstract":"<div><p>The insulating oil serves the dual purpose of providing insulation and cooling within transformers. This investigation aims to explore the impact of various nanoparticles on the dielectric breakdown voltage (BDV) of dielectric oils. The study examines the effect of the concentration of magnetic nanoparticles on the dielectric breakdown voltage of insulating oils. Nanoparticles such as iron (II, III) oxide (Fe<sub>3</sub>O<sub>4</sub>), cobalt (II, III) oxide (CO<sub>3</sub>O<sub>4</sub>), and ferrous phosphide (Fe<sub>3</sub>P) were utilized to create nanofluids with carrier mediums consisting of mineral oil and synthetic ester oil. BDV determination was conducted using a VDE and S–S electrode system according to IEC 60156 standards. Nanofluid were prepared using a two-step method, and their concentrations ranged from 0.01 g/L, 0.02 g/L, and 0.04 g/L in base oils. Twelve iterations were conducted for each prepared nanofluid, and breakdown voltage measurements were recorded. The results indicate a noteworthy enhancement in the breakdown voltage of nanofluids. The statistical analysis was performed on the dielectric property of nanofluid samples for better breakdown accuracy. The maximum enhancement at specific nanoparticle concentrations was shown by each nanofluid. The results show that under the S–S electrode configuration, the greatest overall enhancement was observed for Fe<sub>3</sub>P in mineral oil, with an enhancement of 70.05%, and Fe<sub>3</sub>O<sub>4</sub> in synthetic ester oil, with an enhancement of 46.29%.</p></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"19 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-024-00144-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141495489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Mechanical and Materials Engineering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1