Yu Zhang, Ying Li, Xinyu Chen, Kai Liu, Jie Liu, Yongchun Zeng
Membrane fouling from dispersed droplets during water/oil separation undermines performance and limits long-term use. Additionally, there is an urgent need for flame-retardant fibrous membranes capable of purifying high-temperature polluted oils. Inspired by the binary structure of taro leaves, this study introduces a novel fibrous membrane with both antifouling and flame-retardant properties for water/oil treatment. Eco-friendly cellulose acetate (CA) and multifunctional thermoplastic polyurethane (TPU) were used to construct a microfiber-based substrate membrane via electrospinning. A TPU/ammonium polyphosphate (APP) nanofiber layer with a beads-on-string structure was then electrosprayed onto the substrate as a functional layer. This binary-structured composite membrane leverages the adhesive properties of TPU within both the base microfibers and the functional nanofibers, enhancing stability and structural integrity. The functional layer's re-entrant structure effectively prevents dispersed droplets from adhering under the continuous phase, enabling efficient separation performance in both oil-in-water and water-in-oil emulsions. The membrane demonstrated strong antifouling properties and excellent recyclability, maintaining stable flux and a consistently high separation efficiency (>99.6%) across multiple cycles. Additionally, its flame-retardant properties allowed the membrane to self-extinguish when removed from direct flame. This study presents a novel strategy for fabricating multifunctional separation membranes, with detailed analysis of the underlying mechanisms.
{"title":"Facile Fabrication of Binary-Structured Fibrous Membranes with Antifouling and Flame-Retardant Properties for Durable Water/Oil Separation.","authors":"Yu Zhang, Ying Li, Xinyu Chen, Kai Liu, Jie Liu, Yongchun Zeng","doi":"10.1021/acsami.4c21888","DOIUrl":"https://doi.org/10.1021/acsami.4c21888","url":null,"abstract":"<p><p>Membrane fouling from dispersed droplets during water/oil separation undermines performance and limits long-term use. Additionally, there is an urgent need for flame-retardant fibrous membranes capable of purifying high-temperature polluted oils. Inspired by the binary structure of taro leaves, this study introduces a novel fibrous membrane with both antifouling and flame-retardant properties for water/oil treatment. Eco-friendly cellulose acetate (CA) and multifunctional thermoplastic polyurethane (TPU) were used to construct a microfiber-based substrate membrane via electrospinning. A TPU/ammonium polyphosphate (APP) nanofiber layer with a beads-on-string structure was then electrosprayed onto the substrate as a functional layer. This binary-structured composite membrane leverages the adhesive properties of TPU within both the base microfibers and the functional nanofibers, enhancing stability and structural integrity. The functional layer's re-entrant structure effectively prevents dispersed droplets from adhering under the continuous phase, enabling efficient separation performance in both oil-in-water and water-in-oil emulsions. The membrane demonstrated strong antifouling properties and excellent recyclability, maintaining stable flux and a consistently high separation efficiency (>99.6%) across multiple cycles. Additionally, its flame-retardant properties allowed the membrane to self-extinguish when removed from direct flame. This study presents a novel strategy for fabricating multifunctional separation membranes, with detailed analysis of the underlying mechanisms.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":""},"PeriodicalIF":8.3,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143062128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shin-ichi Ohkoshi, Yuna Tsuzuo, Marie Yoshikiyo, Asuka Namai, Tomu Otake, Kosei Okuzono, Yoshitaka Tanaka, Shingo Katayama
Terahertz waves are gathering attention as carrier waves for next-generation wireless communications such as sixth-generation wireless communication networks and autonomous driving systems. Electromagnetic-wave absorbers for the terahertz-wave region are necessary to ensure information security and avoid interference issues. Herein we report a high-performance terahertz-wave absorber composed of a composite of metallic λ-Ti3O5 and insulating TiO2 nanocrystals (λ-Ti3O5@TiO2). This material exhibits a strong terahertz-wave absorption with high values for the real (permittivity, ε′) and imaginary parts (dielectric loss, ε″) of the complex dielectric constant. Furthermore, the tan(δ) (≡ ε″/ε′) values are significantly high, ranging from 0.50 to 0.76 in the frequency range between 0.1 and 1 THz. An ultrathin film with a thickness of 48 μm recorded a reflection loss of –28 dB (99.8% of the terahertz wave is absorbed by the film). A terahertz-wave absorber with such a small thickness has yet to be developed. Not only does the present material exhibit resistance to heat, light, water, and organic solvents, but it can also be economically fabricated to support various applications, including outdoor uses.
{"title":"Ultrathin Terahertz-Wave Absorber Based on Inorganic Materials for 6G Wireless Communications","authors":"Shin-ichi Ohkoshi, Yuna Tsuzuo, Marie Yoshikiyo, Asuka Namai, Tomu Otake, Kosei Okuzono, Yoshitaka Tanaka, Shingo Katayama","doi":"10.1021/acsami.4c17606","DOIUrl":"https://doi.org/10.1021/acsami.4c17606","url":null,"abstract":"Terahertz waves are gathering attention as carrier waves for next-generation wireless communications such as sixth-generation wireless communication networks and autonomous driving systems. Electromagnetic-wave absorbers for the terahertz-wave region are necessary to ensure information security and avoid interference issues. Herein we report a high-performance terahertz-wave absorber composed of a composite of metallic λ-Ti<sub>3</sub>O<sub>5</sub> and insulating TiO<sub>2</sub> nanocrystals (λ-Ti<sub>3</sub>O<sub>5</sub>@TiO<sub>2</sub>). This material exhibits a strong terahertz-wave absorption with high values for the real (permittivity, ε′) and imaginary parts (dielectric loss, ε″) of the complex dielectric constant. Furthermore, the tan(δ) (≡ ε″/ε′) values are significantly high, ranging from 0.50 to 0.76 in the frequency range between 0.1 and 1 THz. An ultrathin film with a thickness of 48 μm recorded a reflection loss of –28 dB (99.8% of the terahertz wave is absorbed by the film). A terahertz-wave absorber with such a small thickness has yet to be developed. Not only does the present material exhibit resistance to heat, light, water, and organic solvents, but it can also be economically fabricated to support various applications, including outdoor uses.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 1","pages":""},"PeriodicalIF":9.5,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143057249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maria João F. Marques, Dimitri Mercier, Antoine Seyeux, Sandrine Zanna, Christophe Tenailleau, Benjamin Duployer, Marc Jeannin, Philippe Marcus, Régine Basséguy
This study provides a detailed characterization of the AA5083 aluminum alloy, surface, and interface over 6 months of immersion in seawater, employing techniques such as SEM/EDX, GIXRD, μ-Raman and XPS. The purpose was to evaluate the evolution of the biomineralization process that occurs on the Al–Mg alloy. By investigating the specific conditions that favor the in situ growth of layered double hydroxide (LDH) during seawater immersion as a result of biomineralization, this research provides insights into marine biomineralization, highlighting its potential as an innovative and sustainable strategy for corrosion protection.
{"title":"Exploring Marine Biomineralization on the Al–Mg Alloy as a Natural Process for In Situ LDH Growth to Improve Corrosion Resistance","authors":"Maria João F. Marques, Dimitri Mercier, Antoine Seyeux, Sandrine Zanna, Christophe Tenailleau, Benjamin Duployer, Marc Jeannin, Philippe Marcus, Régine Basséguy","doi":"10.1021/acsami.4c17532","DOIUrl":"https://doi.org/10.1021/acsami.4c17532","url":null,"abstract":"This study provides a detailed characterization of the AA5083 aluminum alloy, surface, and interface over 6 months of immersion in seawater, employing techniques such as SEM/EDX, GIXRD, μ-Raman and XPS. The purpose was to evaluate the evolution of the biomineralization process that occurs on the Al–Mg alloy. By investigating the specific conditions that favor the in situ growth of layered double hydroxide (LDH) during seawater immersion as a result of biomineralization, this research provides insights into marine biomineralization, highlighting its potential as an innovative and sustainable strategy for corrosion protection.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"29 1","pages":""},"PeriodicalIF":9.5,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143057253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Uncontrolled bleeding and infection following trauma continue to pose significant clinical challenges. This study employs hemoadhican (HD) polysaccharide, known for its superior hemostatic properties, as the foundational material to synthesize antibacterial carbon dots (H-CDs) through a hydrothermal method at various temperatures. The H-CDs exhibiting optimal antimicrobial properties were identified via in vitro antimicrobial characterization. The selected H-CDs possess nanoscale dimensions and a positive surface charge. They contain aldehyde groups and generate reactive oxygen species, which effectively eliminate bacteria. Subsequently, H-CDs were integrated into HD fibers (CDs-HD fibers) using a wet-spinning technique. The water vapor transmission rate, blood contact angle, and in vitro antimicrobial efficacy were evaluated. In a rat model of severe femoral artery hemorrhage and a noncompressible hepatic hemorrhage model, CDs-HD fibers demonstrated superior hemostatic performance compared to the commercially available QuikClot Combat Gauze. Furthermore, in a rat model of mixed bacterial wound infection, CDs-HD fibers significantly enhanced epithelial tissue remodeling and collagen deposition. In vivo studies confirmed the excellent biocompatibility of CDs-HD fibers. These findings suggest that CDs-HD fibers hold promise as a potential dressing for managing severe bleeding and preventing wound infections.
{"title":"Hemoadhican Fiber Composite with Carbon Dots for Treating Severe Hemorrhage and Infected Wounds","authors":"Rui Fang, Ning Yu, Fa Wang, Xi Xu, Jianfa Zhang","doi":"10.1021/acsami.4c20176","DOIUrl":"https://doi.org/10.1021/acsami.4c20176","url":null,"abstract":"Uncontrolled bleeding and infection following trauma continue to pose significant clinical challenges. This study employs hemoadhican (HD) polysaccharide, known for its superior hemostatic properties, as the foundational material to synthesize antibacterial carbon dots (H-CDs) through a hydrothermal method at various temperatures. The H-CDs exhibiting optimal antimicrobial properties were identified via in vitro antimicrobial characterization. The selected H-CDs possess nanoscale dimensions and a positive surface charge. They contain aldehyde groups and generate reactive oxygen species, which effectively eliminate bacteria. Subsequently, H-CDs were integrated into HD fibers (CDs-HD fibers) using a wet-spinning technique. The water vapor transmission rate, blood contact angle, and in vitro antimicrobial efficacy were evaluated. In a rat model of severe femoral artery hemorrhage and a noncompressible hepatic hemorrhage model, CDs-HD fibers demonstrated superior hemostatic performance compared to the commercially available QuikClot Combat Gauze. Furthermore, in a rat model of mixed bacterial wound infection, CDs-HD fibers significantly enhanced epithelial tissue remodeling and collagen deposition. In vivo studies confirmed the excellent biocompatibility of CDs-HD fibers. These findings suggest that CDs-HD fibers hold promise as a potential dressing for managing severe bleeding and preventing wound infections.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"33 1","pages":""},"PeriodicalIF":9.5,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143057256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Interfacial mechanical stability between silicon (Si) and the current collector is crucial when high areal-loading of Si is demanded as intense stress develops at the interface due to its extreme volume alteration during the lithiation-delithiation process. Therefore, we propose using a thin, rough, porous, and highly conductive carbon nanotube network (CNT-N) as a buffer layer between the Si and current collector that provides abundant anchor sites for Si nanoparticles. The strong and elastic CNT-N, which is not involved directly in the lithiation process, reduces stress at interfaces between the Si and CNT-N and the CNT-N and current collector. We successfully fabricated a Si anode and NMC cathode with areal loadings of 6.13 mg cm-2 (7.65 mA h cm-2 at 1 mA cm-2) and ∼80 mg cm-2 (∼17 mA h cm-2 at 1 mA cm-2), respectively. Besides, a full cell composed of the Si anode (WSi+CNTs = 6.13 mg cm-2) and NMC cathode (WNMC = 35 mg cm-2) at 1 mA cm-2 exhibited an initial Coulombic efficiency (ICE) and capacity of 85.1% and 7.14 mA h cm-2, respectively. Despite the cell's continuous capacity fade (∼4 mA h cm-2 at 100th cycle), the bilayer design may pave the way for achieving high areal-loading Si-based anodes for high-energy-density lithium-ion batteries.
{"title":"High Areal Loading Silicon Nanoparticle-Based Lithium-Ion Batteries.","authors":"Arun Thapa, Hongwei Gao","doi":"10.1021/acsami.4c17483","DOIUrl":"https://doi.org/10.1021/acsami.4c17483","url":null,"abstract":"<p><p>Interfacial mechanical stability between silicon (Si) and the current collector is crucial when high areal-loading of Si is demanded as intense stress develops at the interface due to its extreme volume alteration during the lithiation-delithiation process. Therefore, we propose using a thin, rough, porous, and highly conductive carbon nanotube network (CNT-N) as a buffer layer between the Si and current collector that provides abundant anchor sites for Si nanoparticles. The strong and elastic CNT-N, which is not involved directly in the lithiation process, reduces stress at interfaces between the Si and CNT-N and the CNT-N and current collector. We successfully fabricated a Si anode and NMC cathode with areal loadings of 6.13 mg cm<sup>-2</sup> (7.65 mA h cm<sup>-2</sup> at 1 mA cm<sup>-2</sup>) and ∼80 mg cm<sup>-2</sup> (∼17 mA h cm<sup>-2</sup> at 1 mA cm<sup>-2</sup>), respectively. Besides, a full cell composed of the Si anode (<i>W</i><sub>Si+CNTs</sub> = 6.13 mg cm<sup>-2</sup>) and NMC cathode (<i>W</i><sub>NMC</sub> = 35 mg cm<sup>-2</sup>) at 1 mA cm<sup>-2</sup> exhibited an initial Coulombic efficiency (ICE) and capacity of 85.1% and 7.14 mA h cm<sup>-2</sup>, respectively. Despite the cell's continuous capacity fade (∼4 mA h cm<sup>-2</sup> at 100th cycle), the bilayer design may pave the way for achieving high areal-loading Si-based anodes for high-energy-density lithium-ion batteries.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":""},"PeriodicalIF":8.3,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143062181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SrFeOx (SFO) offers a topotactic phase transformation between an insulating brownmillerite SrFeO2.5 (BM-SFO) phase and a conductive perovskite SrFeO3 (PV-SFO) phase, making it a competitive candidate for use in resistive memory and neuromorphic computing. However, most of existing SFO-based memristors are nonvolatile devices which struggle to achieve short-term synaptic plasticity (STP). To address this issue and realize STP, we propose to leverage ferroelectric polarization to effectively draw ions across the interface so that the PV-SFO conductive filaments (CFs) can be ruptured in absence of an external field. As a proof of concept, we fabricate ferroelectric Pb(Zr0.2Ti0.8)O3 (PZT)/BM-SFO bilayer films with Au top electrodes and SrRuO3 bottom electrodes. The device exhibits the desired volatile resistive switching behavior, with its low resistance state decaying over time. Such volatility is attributed to the positive polarization charge near the PZT/SFO interface, which can attract the oxygen ions from SFO to PZT and hence lead to the rupture of CFs. Moreover, this volatile device successfully emulates STP-related synaptic functions, including excitatory postsynaptic current, paired-pulse facilitation, learning-experience behavior, associative learning, and reservoir computing. Our study showcases an effective method for achieving volatile resistive switching and STP, which may be applied to various systems beyond SFO-based memristors.
{"title":"Volatile Resistive Switching and Short-Term Synaptic Plasticity in a Ferroelectric-Modulated SrFeOx Memristor","authors":"Wenjie Hu, Zhen Fan, Linyuan Mo, Haipeng Lin, Meixia Li, Wenjie Li, Jiali Ou, Ruiqiang Tao, Guo Tian, Minghui Qin, Min Zeng, Xubing Lu, Guofu Zhou, Xingsen Gao, Jun-Ming Liu","doi":"10.1021/acsami.4c19627","DOIUrl":"https://doi.org/10.1021/acsami.4c19627","url":null,"abstract":"SrFeO<sub><i>x</i></sub> (SFO) offers a topotactic phase transformation between an insulating brownmillerite SrFeO<sub>2.5</sub> (BM-SFO) phase and a conductive perovskite SrFeO<sub>3</sub> (PV-SFO) phase, making it a competitive candidate for use in resistive memory and neuromorphic computing. However, most of existing SFO-based memristors are nonvolatile devices which struggle to achieve short-term synaptic plasticity (STP). To address this issue and realize STP, we propose to leverage ferroelectric polarization to effectively draw ions across the interface so that the PV-SFO conductive filaments (CFs) can be ruptured in absence of an external field. As a proof of concept, we fabricate ferroelectric Pb(Zr<sub>0.2</sub>Ti<sub>0.8</sub>)O<sub>3</sub> (PZT)/BM-SFO bilayer films with Au top electrodes and SrRuO<sub>3</sub> bottom electrodes. The device exhibits the desired volatile resistive switching behavior, with its low resistance state decaying over time. Such volatility is attributed to the positive polarization charge near the PZT/SFO interface, which can attract the oxygen ions from SFO to PZT and hence lead to the rupture of CFs. Moreover, this volatile device successfully emulates STP-related synaptic functions, including excitatory postsynaptic current, paired-pulse facilitation, learning-experience behavior, associative learning, and reservoir computing. Our study showcases an effective method for achieving volatile resistive switching and STP, which may be applied to various systems beyond SFO-based memristors.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"20 1","pages":""},"PeriodicalIF":9.5,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143057274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fabio De Ferrari, Shyamprasad N. Raja, Anna Herland, Frank Niklaus, Göran Stemme
Solid-state nanopores offer unique possibilities for biomolecule sensing; however, scalable production of sub-5 nm pores with precise diameter control remains a manufacturing challenge. In this work, we developed a scalable method to fabricate sub-5 nm nanopores in silicon (Si) nanomembranes through metal-assisted chemical etching (MACE) using gold nanoparticles. Notably, we present a previously unreported self-limiting effect that enables sub-5 nm nanopore formation from both 10 and 40 nm nanoparticles in the 12 nm thick monocrystalline device layer of a silicon-on-insulator substrate. This effect reveals distinctive etching dynamics in ultrathin Si nanomembranes, enabling precise control over nanopore dimensions. The resulting nanopore sensor, suspended over self-aligned spheroidal oxide undercuts with diameters of just a few hundred nanometers, exhibited low electrical noise and high stability due to encapsulation within dielectric layers. In DNA translocation experiments, our nanopore platform could distinguish folded and unfolded DNA conformations and maintained stable baseline conductance for up to 6 h, demonstrating both sensitivity and robustness. Our scalable nanopore fabrication method is compatible with wafer-level and batch processing and holds promise for advancing biomolecular sensing and analysis.
{"title":"Sub-5 nm Silicon Nanopore Sensors: Scalable Fabrication via Self-Limiting Metal-Assisted Chemical Etching","authors":"Fabio De Ferrari, Shyamprasad N. Raja, Anna Herland, Frank Niklaus, Göran Stemme","doi":"10.1021/acsami.4c19750","DOIUrl":"https://doi.org/10.1021/acsami.4c19750","url":null,"abstract":"Solid-state nanopores offer unique possibilities for biomolecule sensing; however, scalable production of sub-5 nm pores with precise diameter control remains a manufacturing challenge. In this work, we developed a scalable method to fabricate sub-5 nm nanopores in silicon (Si) nanomembranes through metal-assisted chemical etching (MACE) using gold nanoparticles. Notably, we present a previously unreported self-limiting effect that enables sub-5 nm nanopore formation from both 10 and 40 nm nanoparticles in the 12 nm thick monocrystalline device layer of a silicon-on-insulator substrate. This effect reveals distinctive etching dynamics in ultrathin Si nanomembranes, enabling precise control over nanopore dimensions. The resulting nanopore sensor, suspended over self-aligned spheroidal oxide undercuts with diameters of just a few hundred nanometers, exhibited low electrical noise and high stability due to encapsulation within dielectric layers. In DNA translocation experiments, our nanopore platform could distinguish folded and unfolded DNA conformations and maintained stable baseline conductance for up to 6 h, demonstrating both sensitivity and robustness. Our scalable nanopore fabrication method is compatible with wafer-level and batch processing and holds promise for advancing biomolecular sensing and analysis.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"39 1","pages":""},"PeriodicalIF":9.5,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143057220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yan Chen, Siheng Yang, Jingyu Wang, Li Ji, Tianhua Cui, Chenghui Dai, Weichao Xue, Xueli Zheng, Haiyan Fu, Hua Chen, Shuang Li, Chong Cheng, Ruixiang Li, Jiaqi Xu
Primary diamines are valuable yet challenging to synthesize due to issues such as product and intermediate condensation and catalyst poisoning. To address these problems, effective synthesis systems must be explored. Here, 2,5-bis(aminomethyl)furan (BAMF), a biomass-derived primary diamine, is chosen as the model for constructing such a system. A series of carbon-shell confined Co nanoparticles (Co@CNT-x) are fabricated to synthesize BAMF. The Co@CNT-700 catalyst, with ca. 4 layers of carbon shells, achieves an outstanding 96% isolated yield of BAMF through the reductive amination of 2,5-diformylfuran dioxime. In this system, an excess NH3 atmosphere is necessary to prevent condensation reactions by competitive reactions, while the carbon shells protect the catalyst from NH3 and amine poisoning. Control experiments indicate that 2,5-diformylfuran dioxime primarily follows a H2-assisted dehydration pathway to form key imine intermediates, while side products such as amides and nitriles can also eventually be converted into BAMF by Co@CNT-700, leading to its excellent selectivity. Notably, by employing a sequential three-step strategy, ca. 87% BAMF can be achieved by directly using biomass as the raw material. To evaluate the tolerance of this system, 9 other important aromatic, cycloalkyl, and linear alkyl primary diamines, such as 1,4-cyclohexanediamine, are obtained in high yields of 87−99%.
{"title":"Targeted Conversion of Biomass into Primary Diamines via Carbon Shell-Confined Cobalt Nanoparticles","authors":"Yan Chen, Siheng Yang, Jingyu Wang, Li Ji, Tianhua Cui, Chenghui Dai, Weichao Xue, Xueli Zheng, Haiyan Fu, Hua Chen, Shuang Li, Chong Cheng, Ruixiang Li, Jiaqi Xu","doi":"10.1021/acsami.4c17669","DOIUrl":"https://doi.org/10.1021/acsami.4c17669","url":null,"abstract":"Primary diamines are valuable yet challenging to synthesize due to issues such as product and intermediate condensation and catalyst poisoning. To address these problems, effective synthesis systems must be explored. Here, 2,5-bis(aminomethyl)furan (BAMF), a biomass-derived primary diamine, is chosen as the model for constructing such a system. A series of carbon-shell confined Co nanoparticles (Co@CNT-<i>x</i>) are fabricated to synthesize BAMF. The Co@CNT-700 catalyst, with ca. 4 layers of carbon shells, achieves an outstanding 96% isolated yield of BAMF through the reductive amination of 2,5-diformylfuran dioxime. In this system, an excess NH<sub>3</sub> atmosphere is necessary to prevent condensation reactions by competitive reactions, while the carbon shells protect the catalyst from NH<sub>3</sub> and amine poisoning. Control experiments indicate that 2,5-diformylfuran dioxime primarily follows a H<sub>2</sub>-assisted dehydration pathway to form key imine intermediates, while side products such as amides and nitriles can also eventually be converted into BAMF by Co@CNT-700, leading to its excellent selectivity. Notably, by employing a sequential three-step strategy, ca. 87% BAMF can be achieved by directly using biomass as the raw material. To evaluate the tolerance of this system, 9 other important aromatic, cycloalkyl, and linear alkyl primary diamines, such as 1,4-cyclohexanediamine, are obtained in high yields of 87−99%.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"5 1","pages":""},"PeriodicalIF":9.5,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143057251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Floating-gate transistors (FGTs), considered the most promising structure among three-terminal van der Waals (vdW) synaptic transistors, possess superiorities in improved data retention, excellent endurance properties, and multibit storage capacity, thereby overcoming the von Neumann bottleneck in conventional computing architectures. However, the dielectric layer in FGT devices typically depends on atomic layer deposition or mechanically transferred insulators, posing several challenges in terms of device compatibility, manufacturing complexity, and performance degradation. Therefore, it is crucial to discover dielectrics compatible with two-dimensional (2D) materials for further simplifying FGT structures and achieving optimal performance. Here, we present a controllable and reliable oxidation process to convert the 2D semiconductor ZrS2 into its native oxide ZrOx and combine ZrOx/ZrS2 with the MoS2 channel to form MoS2/ZrOx/ZrS2 FGT, which exhibits a high on/off ratio of 107, a wide memory window of 101 V, a long retention time of 103 s, a large storage capacity of 7 bits, an excellent PPF index of 269.4%, and low power consumption of 5 pJ. Under photoelectric stimulation, the device stimulates various biological synapse behaviors, including associative memory function and retina-like adaptation. In particular, the device achieves information storage and erasure under solely optical stimulation, exhibiting high consistency with synaptic weight modulation in optogenetics and outstanding optoelectronic storage performance. These results suggest that our work provides a novel and effective approach for simplifying FGT structures and enhancing their performance, holding significant potential for application in next-generation multifunctional memory devices and systems.
{"title":"A Reliable High-Performance Floating-Gate Transistor Based on ZrS<sub>2</sub> Native Oxidation for Optoelectronic Synergistic Artificial Synapses.","authors":"Ding-Wen Cao, Meng-Na Wang, Huaqiang Pang, Gao-Li Luo, Jia-Rong Zhao, Jia-Ke Zhi, Wei Gao, Yu-Fang Liu, Yong Yan","doi":"10.1021/acsami.4c18913","DOIUrl":"https://doi.org/10.1021/acsami.4c18913","url":null,"abstract":"<p><p>Floating-gate transistors (FGTs), considered the most promising structure among three-terminal van der Waals (vdW) synaptic transistors, possess superiorities in improved data retention, excellent endurance properties, and multibit storage capacity, thereby overcoming the von Neumann bottleneck in conventional computing architectures. However, the dielectric layer in FGT devices typically depends on atomic layer deposition or mechanically transferred insulators, posing several challenges in terms of device compatibility, manufacturing complexity, and performance degradation. Therefore, it is crucial to discover dielectrics compatible with two-dimensional (2D) materials for further simplifying FGT structures and achieving optimal performance. Here, we present a controllable and reliable oxidation process to convert the 2D semiconductor ZrS<sub>2</sub> into its native oxide ZrO<sub><i>x</i></sub> and combine ZrO<sub><i>x</i></sub>/ZrS<sub>2</sub> with the MoS<sub>2</sub> channel to form MoS<sub>2</sub>/ZrO<sub><i>x</i></sub>/ZrS<sub>2</sub> FGT, which exhibits a high on/off ratio of 10<sup>7</sup>, a wide memory window of 101 V, a long retention time of 10<sup>3</sup> s, a large storage capacity of 7 bits, an excellent PPF index of 269.4%, and low power consumption of 5 pJ. Under photoelectric stimulation, the device stimulates various biological synapse behaviors, including associative memory function and retina-like adaptation. In particular, the device achieves information storage and erasure under solely optical stimulation, exhibiting high consistency with synaptic weight modulation in optogenetics and outstanding optoelectronic storage performance. These results suggest that our work provides a novel and effective approach for simplifying FGT structures and enhancing their performance, holding significant potential for application in next-generation multifunctional memory devices and systems.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":""},"PeriodicalIF":8.3,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143062095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wei Yuan, Qin Tao, Xuyuan Chen, Tianwen Liu, Jin Wang, Xiaoying Wang
The single-luminophore-based ratiometric electrochemiluminescence (ECL) sensor coupling bidirectional regulator has become a research hotspot in the detection field because of its simplicity and accuracy. However, the limited bidirectional regulator hinders its further development. In this study, by leveraging the robust predictive capabilities of machine learning, we prepared an Fe-based metal–organic framework (FeMOF) as a bidirectional regulator for modulating the dual-emission ECL signals of a single luminophore for the first time. The proof of concept was demonstrated by applying FeMOF to the classical luminophore Ru(bpy)32+, and the results showed its ability to enhance the cathode ECL signal (Ecathode) and inhibit the anode ECL signal (Eanode). As an example, a ratiometric ECL sensor for Tau protein (Tau) detection utilizing the FeMOF/Ru(bpy)32+ system was developed. The incorporation of a bidirectional regulator in the ECL system effectively mitigated erratic fluctuations or minor discrepancies between the two signals and showed a stronger correlation and stability of Ecathode/Eanode than before regulation. As a result, the ECL sensor showed good analytical performance with a detection limit as low as 3.38 fg mL–1 (S/N = 3). Moreover, it was not only comparable in test results to the commercially available ELISA kit but also could well distinguish between normal and Alzheimer’s disease (AD) patients (80% specificity and 90% sensitivity). Thus, the proposed strategy is promising to be extended to other ECL luminophores or MOFs, providing a new path for ratiometric ECL sensors.
{"title":"Using Machine Learning to Design a FeMOF Bidirectional Regulator for Electrochemiluminescence Sensing of Tau Protein","authors":"Wei Yuan, Qin Tao, Xuyuan Chen, Tianwen Liu, Jin Wang, Xiaoying Wang","doi":"10.1021/acsami.4c18204","DOIUrl":"https://doi.org/10.1021/acsami.4c18204","url":null,"abstract":"The single-luminophore-based ratiometric electrochemiluminescence (ECL) sensor coupling bidirectional regulator has become a research hotspot in the detection field because of its simplicity and accuracy. However, the limited bidirectional regulator hinders its further development. In this study, by leveraging the robust predictive capabilities of machine learning, we prepared an Fe-based metal–organic framework (FeMOF) as a bidirectional regulator for modulating the dual-emission ECL signals of a single luminophore for the first time. The proof of concept was demonstrated by applying FeMOF to the classical luminophore Ru(bpy)<sub>3</sub><sup>2+</sup>, and the results showed its ability to enhance the cathode ECL signal (<i>E</i><sub>cathode</sub>) and inhibit the anode ECL signal (<i>E</i><sub>anode</sub>). As an example, a ratiometric ECL sensor for Tau protein (Tau) detection utilizing the FeMOF/Ru(bpy)<sub>3</sub><sup>2+</sup> system was developed. The incorporation of a bidirectional regulator in the ECL system effectively mitigated erratic fluctuations or minor discrepancies between the two signals and showed a stronger correlation and stability of <i>E</i><sub>cathode</sub>/<i>E</i><sub>anode</sub> than before regulation. As a result, the ECL sensor showed good analytical performance with a detection limit as low as 3.38 fg mL<sup>–1</sup> (S/N = 3). Moreover, it was not only comparable in test results to the commercially available ELISA kit but also could well distinguish between normal and Alzheimer’s disease (AD) patients (80% specificity and 90% sensitivity). Thus, the proposed strategy is promising to be extended to other ECL luminophores or MOFs, providing a new path for ratiometric ECL sensors.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 1","pages":""},"PeriodicalIF":9.5,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143057250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}