Perovskite has attracted extensive attention in the realm of photovoltaic and light-emitting diodes (LEDs) on account of its outstanding photoelectric properties. Perovskite-type quantum wells (QW) have been developed for high-efficiency perovskite-type LEDs. However, there are few reports on the in situ quantum well structure formed by a bimetallic antiperovskite and its properties. In this work, we report a double/bimetallic antiperovskite composed of magnesium and manganese. It is an in situ homogeneous junction composed of a p-type manganese well layer and an n-type magnesium barrier layer, which promotes the recombination of carriers and increases the luminous efficiency. The in situ quantum wells enable the green antiperovskite LED to have a maximum external quantum efficiency reaching 20.2% and a maximum luminance as high as 19000 cd m-2. These research results provide the chance to produce high-performance LEDs based on an in situ quantum well structure. Meanwhile, the strategy developed in this work is helpful for the design of other highly luminescent lead-free materials.
A series of tertiary amine suspended hyper-cross-linked ionic polymers (HCIPs), characterized by a rich mesoporous structure, high ionic liquid (IL) density, and good CO2 adsorption capability, were readily prepared via a postsynthetic method. The self-polymerization of 1,3,5-tris(bromomethyl) benzene (TBB) or its copolymerization with 4,4'-bis(bromomethyl) biphenyl (BBP) in varying ratios, followed by grafting with N,N,N',N'-tetramethyl-1,3-propanediamine (TMPDA), yielded the target TMPDA-HCIPs. These HCIPs constitute one of the limited categories of heterogeneous water-tolerant catalyst types ever developed for the cycloaddition reaction between CO2 and epoxides. Specifically, chloropropylene carbonate (CPC) was produced in 99.9% yield with 99% selectivity at 80 °C and 1 bar of CO2 pressure in the presence of 22 mol % water relative to the epoxide substrate. Furthermore, when simulated flue gas served as the CO2 source, the same ratio of water enhanced the CPC yield from 81.9% to 91.5% under 1 MPa pressure, with the selectivity only slightly decreasing from 99% to 94.1%. Additionally, the catalyst could be easily recovered and maintained a high catalytic performance after six cycles. In conclusion, this study presents a robust water-tolerant heterogeneous catalyst for the efficient synthesis of cyclic carbonates from CO2 under mild conditions, potentially reducing the high costs of purifying real flue gas that contains water vapor.