Interfacial solar steam generation (ISSG) technology provides a promising solution to the global issue of freshwater scarcity. However, its practical application is hindered by salt fouling and inconsistent solar illumination. In this work, a novel interfacial solar steam generator is proposed that integrates contactless design with low-voltage joule heating to provide all-day, all-weather freshwater generation. The contactless design utilizes a solar-reduced graphene oxide coated carbon fabric (SRGO-CF) as a heat generator and super hydrophilic paper walls as water transport channels. The contactless device can generate steam at the maximum rate of 4.27 kg m-2 h-1 under 1 sun solar illumination and small input voltage due to the excellent photothermal and electrothermal capabilities of SRGO-CF. At an input voltage of 2.5 V, the SRGO-CF evaporator exhibits an evaporation rate of 3.52 kg m-2 h-1 and 2.32 kg m-2 h-1 for 3.5 wt % salt water respectively with and without 1 sun illumination for a long period of time without any salt fouling, demonstrating its all-day, all-weather capability. The proposed contactless ISSG evaporator can resolve the impractical issue of conventional ISSG-based evaporators owing to irregular weather conditions and salt fouling issues while also promoting zero liquid discharge-based salt harvesting.
Dual-emission light-emitting diodes (DEDs) have great promising applications in medical imaging, optical communication, data storage, and three-dimensional display. The precise material design and advanced packaging technology for the construction of DEDs are still key challenges for practical application. We demonstrate a straightforward strategy to construct DEDs that deviates from traditional approaches, utilizing commercially available luminescent material of poly(9,9-dioctylfluorene-co-N-(4-(3-methylpropyl))diphenylamine) (TFB) and carbon dots (CDs). In the DEDs, the mixture of CDs and TFB was used as the luminescent layer, which exhibits dual-wavelength emission located at 436 and 632 nm, respectively. Notably, the CDs, with charge storage ability, can store the interfacial charges, reinject the carriers into TFB, and then facilitate the long-wavelength (632 nm) emission from TFB. This work provides a new way for the design and construction of fresh DEDs through the CD-based interfacial charge transport process.
Strain engineering has the potential to modify the adsorption process and enhance the electrocatalytic activity, especially in the hydrogen evolution reaction (HER). However, the introduction of lattice strain in electrocatalysts is often accompanied by a change in chemical composition, surface morphology, or phase structure to a certain extent, impeding the investigation of the intrinsic strain effect on HER. In this work, the FePt film was deposited on a Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (PMN-PT) substrate to construct the FePt/PMN-PT heterojunction, and the continuously adjustable nonvolatile lattice strain is induced by the asymmetric electric field manipulation avoiding the aforementioned disturbance factors. HER experimental results demonstrate a drastic improvement in the overpotential of FePt with the largest tensile strain of 3000 ppm, and the observed variation of HER performance indicates an upward trend as the tensile strain increases. Density functional theory calculations reveal that the Gibbs free energy of FePt with the appropriate tensile strain is closer to zero, attributed to the downward shift of the d-band center. Our study provides an approach to continuously regulate the lattice strain with less interference factors, facilitating the exploration of the intrinsic strain effect on a wide range of catalysts.
Cancer-related anemia (CRA), a complication of cancer, is considered the primary cause of high mortality for cancer patients. Safe and effective theranostics are desirable for realizing the high diagnostic accuracy of tumors and ameliorating CRA in the clinic. However, the available theranostics do not support dual-modal imaging and the amelioration of CRA at the same time. In this study, we synthesized functionalized iron oxide nanoparticles (Fe3O4 NPs) modified with protoporphyrin IX (PPIX) and folic acid (FA) by a one-step modification strategy (Fe3O4@NH-PPIX&FA NPs) or a step-by-step strategy (Fe3O4@NH-PPIX-FA NPs), aiming at both magnetic resonance imaging/fluorescence imaging (MRI/FI) and erythropoiesis. Fe3O4@NH-PPIX-FA NPs displayed better ability of MRI/FI than Fe3O4@NH-PPIX&FA NPs and had an efficient tumor targeting of 45 min after tail vein injection owing to the reduction of the steric effect and extension of FA groups. Fe3O4@NH-PPIX-FA NPs exhibited satisfactory erythropoiesis with up to 20% elevation of red blood cell (RBC) counts and hemoglobin concentrations in mice with CRA, which provided a safe alternative to RBC transfusions, especially for patients needing recurrent RBC transfusions. With excellent performance in both dual-modal imaging and erythropoiesis, Fe3O4@NH-PPIX-FA NPs could be a powerful tool for the theranostics of cancer patients with anemia.
The polarization-induced internal electric field (IEF) in ferroelectric materials could promote photogenerated charge transfer across the heterojunction interface, but the effect of polarization-induced IEF on the mechanism of photogenerated charge transfer is ambiguous. In this study, a KNbO3-CuO heterojunction was synthesized by depositing copper oxide (CuO) onto KNbO3. Incorporating CuO broadens the light absorption of KNbO3, thereby enhancing the dissociation of the photogenerated charges. The results show that the polarization-induced IEF in KNbO3 determines that the charge transport mechanism in the KNbO3-CuO heterojunction follows the S-scheme. Owing to the S-scheme heterojunctions and efficient CO2 capture and activation by CuO, the CH4 production rate of KNbO3-CuO increased by nearly 26 times compared to KNbO3. Additionally, the CH4 selectivity of KNbO3-CuO could reach up to 97.80%. This research offers valuable insights into enhancing the photogenerated charge separation and constructing heterojunctions.
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases, commonly affecting the aged, with pathophysiological changes presenting 15 to 20 years before clinical symptoms. Early diagnosis and intervention are crucial in effectively slowing the progression of AD. In the current study, poly(2-(methacryloyloxy)ethyl phosphorylcholine) (PMPC)-functionalized NaGdF4 nanoparticles (NaGdF4-PMPC) were developed as magnetic resonance imaging (MRI) contrast agents for targeting alpha 7 nicotinic acetylcholine receptors (α7 nAChRs) in AD mice. NaGdF4-PMPC showed excellent biocompatibility, targeting ability, and MRI performance, with the longitudinal molar relaxivity (r1) and transverse molar relaxivity (r2) being 1.21-fold and 1.33-fold higher than those of the clinical contrast agent Gd-DTPA, respectively, resulting in higher-sensitive MR angiography. After intravenous injection, 3D dynamic contrast-enhanced (DCE) MR images with high-resolution vasculature of the mouse brain were obtained. In addition, by using NaGdF4-PMPC, susceptibility-weighted imaging (SWI) signals in AD mouse brains were greatly retained compared to those in healthy mice for 24 h, emphasizing the excellent targeting ability of NaGdF4-PMPC. Furthermore, the CD31, α7 nAChRs, and Thioflavin S staining were also utilized to investigate the relationship among vascular inflammation, α7 nAChRs, and amyloid-β (Aβ) deposition in AD mice. This work highlights a promising targeted imaging strategy for the timely diagnosis of AD.
Achieving high-performance and stable organic solar cells (OSCs) remains a critical challenge, primarily due to the precise optimization required for active layer morphology. Herein, this work reports a dual additive strategy using 3,5-dichlorobromobenzene (DCBB) and 1,8-diiodooctane (DIO) to optimize the morphology of both bulk-heterojunction (BHJ) and quasi-planar heterojunction (Q-PHJ) based on donor D18 and acceptor BTP-eC9. The systematic results reveal that the dual additive strategy significantly promotes phase separation while inhibiting excessive aggregation, which, in turn, improves molecular order and crystallization. As a result, BHJ and Q-PHJ OSCs processed with dual additive DIO + DCBB achieve impressive power conversion efficiencies of 17.77% and 18.60%, respectively, the highest reported values for dual additive-processed OSCs. The superior performance is attributed to improved charge transport and reduced recombination losses, as evidenced by higher short-circuit current densities (JSC) and fill factors (FF). Importantly, Q-PHJ OSCs processed with either DCBB or DIO + DCBB, in comparison to BHJ OSCs, exhibit exceptional shelf-stability, maintaining 80% of their initial power conversion efficiency after 2660 and 2193 h, respectively. These findings underscore the potential of dual additive strategies to advance the development of stable, high-efficiency OSCs suitable for large-area fabrication, marking a significant step forward in renewable energy technology.