首页 > 最新文献

Journal of Coatings Technology and Research最新文献

英文 中文
Antibacterial and antiviral activities of transparent PVA coating films prepared by using solutions containing eluted ions from rare earth iodates 使用含有稀土碘酸盐洗脱离子的溶液制备透明 PVA 涂层薄膜的抗菌和抗病毒活性
IF 2.3 4区 材料科学 Q2 CHEMISTRY, APPLIED Pub Date : 2024-08-28 DOI: 10.1007/s11998-024-00979-4
Kazuya Abe, Kayano Sunada, Yasuhide Mochizuki, Toshihiro Isobe, Takeshi Nagai, Hitoshi Ishiguro, Akira Nakajima

After powders of three rare earth iodates (Ce(IO3)4, Ce(IO3)3, δ-La(IO3)3) were dispersed in water, the constituent ions were eluted. After filtration, polyvinyl alcohol was dissolved in the filtrated solution. Then the solution was flow-coated to form coating films on glass substrates. The obtained coating films exhibited high transmittance in the visible wavelength range. IO3 was confirmed from the IR spectra measured using the ATR method. Fine precipitates were observed in the coating. The amount was greater on the surface than inside. The coating films prepared from Ce(IO3)3 and δ-La(IO3)3 possessed high antibacterial and antiviral activities against Escherichia coli, Staphylococcus aureus, bacteriophage Qβ, and bacteriophage Φ6 in the dark. Moreover, they inactivated viruses adsorbed from the gas phase.

将三种稀土碘酸盐(Ce(IO3)4、Ce(IO3)3 和 δ-La(IO3)3)的粉末分散在水中后,洗脱其中的离子。过滤后,在滤液中溶解聚乙烯醇。然后在玻璃基板上进行流涂,形成涂膜。所获得的涂膜在可见光波长范围内具有很高的透射率。使用 ATR 方法测量的红外光谱证实了 IO3-。在涂层中观察到了细小的沉淀物。表面的析出量大于内部。用 Ce(IO3)3 和 δ-La(IO3)3 制备的涂膜在黑暗条件下对大肠杆菌、金黄色葡萄球菌、噬菌体 Qβ 和噬菌体Φ6 具有很高的抗菌和抗病毒活性。此外,它们还能灭活从气相中吸附的病毒。
{"title":"Antibacterial and antiviral activities of transparent PVA coating films prepared by using solutions containing eluted ions from rare earth iodates","authors":"Kazuya Abe, Kayano Sunada, Yasuhide Mochizuki, Toshihiro Isobe, Takeshi Nagai, Hitoshi Ishiguro, Akira Nakajima","doi":"10.1007/s11998-024-00979-4","DOIUrl":"https://doi.org/10.1007/s11998-024-00979-4","url":null,"abstract":"<p>After powders of three rare earth iodates (Ce(IO<sub>3</sub>)<sub>4</sub>, Ce(IO<sub>3</sub>)<sub>3</sub>, δ-La(IO<sub>3</sub>)<sub>3</sub>) were dispersed in water, the constituent ions were eluted. After filtration, polyvinyl alcohol was dissolved in the filtrated solution. Then the solution was flow-coated to form coating films on glass substrates. The obtained coating films exhibited high transmittance in the visible wavelength range. IO<sub>3</sub><sup>−</sup> was confirmed from the IR spectra measured using the ATR method. Fine precipitates were observed in the coating. The amount was greater on the surface than inside. The coating films prepared from Ce(IO<sub>3</sub>)<sub>3</sub> and δ-La(IO<sub>3</sub>)<sub>3</sub> possessed high antibacterial and antiviral activities against <i>Escherichia coli</i>, <i>Staphylococcus aureus</i>, bacteriophage Qβ, and bacteriophage Φ6 in the dark. Moreover, they inactivated viruses adsorbed from the gas phase.</p>","PeriodicalId":619,"journal":{"name":"Journal of Coatings Technology and Research","volume":"48 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142185758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Blue light excitable fluorescent green security ink for anticounterfeit application 可激发蓝光的绿色荧光防伪墨水
IF 2.3 4区 材料科学 Q2 CHEMISTRY, APPLIED Pub Date : 2024-08-28 DOI: 10.1007/s11998-024-00975-8
Priya Angadiyavar, Rakshitha K. Jain, Dhanya Sunil, M. M. Apoorva, Poornima Bhagavath

Fluorescent security printing inks on flexible substrates is an arena that demands consistent developments to prevent the ever increasing menace of document/product counterfeiting. Visible light is a much more accessible and safer excitation source than the commonly used ultraviolet (UV) light. In this context, a simple Schiff base 4-pyridyl-benzylidene 2,4-difluoro aniline (PBDFA) is synthesized as a colorant with significant solid-state fluorescence for preparing security ink formulation. A huge challenge lies in preparing a security ink that does not fluoresce under UV light but produces a green fluorescence when irradiated with a blue light source. Such prints would be hard to forge as compared to the existing UV luminescent security inks. The screen prints obtained on a UV dull paper substrate using the solvent-based PBDFA ink revealed good blue light excitable green fluorescence, photostability, and colorimetric, densitometric, and rub resistance characteristics.

柔性基材上的荧光防伪印刷油墨是一个需要不断发展的领域,以防止日益严重的文件/产品伪造威胁。与常用的紫外线(UV)相比,可见光是一种更容易获得、更安全的激发光源。在此背景下,我们合成了一种简单的席夫碱 4-吡啶基-亚苄基 2,4-二氟苯胺(PBDFA),作为一种具有显著固态荧光的着色剂,用于制备防伪油墨配方。要制备一种在紫外线下不会产生荧光,但在蓝光光源照射下会产生绿色荧光的防伪油墨,是一项巨大的挑战。与现有的紫外线发光防伪油墨相比,这种印刷品很难伪造。使用溶剂型 PBDFA 油墨在紫外线钝化纸基材上进行丝网印刷后,显示出良好的蓝光激发绿色荧光特性、光稳定性、色度特性、密度特性和耐摩擦特性。
{"title":"Blue light excitable fluorescent green security ink for anticounterfeit application","authors":"Priya Angadiyavar,&nbsp;Rakshitha K. Jain,&nbsp;Dhanya Sunil,&nbsp;M. M. Apoorva,&nbsp;Poornima Bhagavath","doi":"10.1007/s11998-024-00975-8","DOIUrl":"10.1007/s11998-024-00975-8","url":null,"abstract":"<div><p>Fluorescent security printing inks on flexible substrates is an arena that demands consistent developments to prevent the ever increasing menace of document/product counterfeiting. Visible light is a much more accessible and safer excitation source than the commonly used ultraviolet (UV) light. In this context, a simple Schiff base 4-pyridyl-benzylidene 2,4-difluoro aniline (PBDFA) is synthesized as a colorant with significant solid-state fluorescence for preparing security ink formulation. A huge challenge lies in preparing a security ink that does not fluoresce under UV light but produces a green fluorescence when irradiated with a blue light source. Such prints would be hard to forge as compared to the existing UV luminescent security inks. The screen prints obtained on a UV dull paper substrate using the solvent-based PBDFA ink revealed good blue light excitable green fluorescence, photostability, and colorimetric, densitometric, and rub resistance characteristics.</p></div>","PeriodicalId":619,"journal":{"name":"Journal of Coatings Technology and Research","volume":"21 6","pages":"2195 - 2200"},"PeriodicalIF":2.3,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11998-024-00975-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142185723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Graphene oxide and cuprous oxide/hydrogel modified epoxy coating for marine antifouling 用于船舶防污的氧化石墨烯和氧化亚铜/水凝胶改性环氧涂层
IF 2.3 4区 材料科学 Q2 CHEMISTRY, APPLIED Pub Date : 2024-08-26 DOI: 10.1007/s11998-024-00926-3
Fangyuan Ding, Min Wang, Lili Xue

Marine biofouling has detrimental effects on the performance and service life of ships and drilling platforms, leading to increased fuel consumption, corrosion of structural surfaces, and significant financial losses. To address these challenges, we developed epoxy coatings that incorporate graphene oxide (GO) and release copper ions (Cu(^{2+})). We carried out microalgae adhesion studies and marine bacterial adhesion experiments on the various composite coatings to examine the antifouling performance of the composite coatings. Additionally, we investigated the underlying mechanisms responsible for the effects of GO and Cu(^{2+}). The results demonstrated the superior anti-adhesion properties of GO. The amount of microalgae adhering to the GO modified epoxy coating was only 13% of that adhering to the epoxy resin coating. Moreover, no microalgae adhesion was observed in the microalgae adhesion assay for the GO/Cu(_{2})O hydrogel modified epoxy composite coating (GCHMC). Additionally, we observed a sustained release of Cu(^{2+}) from the GCHMC for over 100 days, as indicated by the Cu(^{2+}) release trend. Therefore, the GCHMC effectively showcased its long-lasting marine antifouling properties.

海洋生物污损会对船舶和钻井平台的性能和使用寿命产生不利影响,导致燃料消耗增加、结构表面腐蚀以及重大经济损失。为了应对这些挑战,我们开发了环氧树脂涂料,其中包含氧化石墨烯(GO)并释放铜离子(Cu(^{2+}))。我们对各种复合涂层进行了微藻附着研究和海洋细菌附着实验,以检验复合涂层的防污性能。此外,我们还研究了导致 GO 和 Cu(^{2+}) 效果的基本机制。结果表明,GO 具有优异的防附着性能。附着在 GO 改性环氧涂层上的微藻数量仅为附着在环氧树脂涂层上的微藻数量的 13%。此外,在 GO/Cu(_{2})O 水凝胶改性环氧树脂复合涂层(GCHMC)的微藻粘附试验中也没有观察到微藻粘附。此外,根据 Cu(^{2+}) 的释放趋势,我们观察到 GCHMC 中 Cu(^{2+}) 的持续释放时间超过 100 天。因此,GCHMC 有效地展示了其持久的海洋防污特性。
{"title":"Graphene oxide and cuprous oxide/hydrogel modified epoxy coating for marine antifouling","authors":"Fangyuan Ding,&nbsp;Min Wang,&nbsp;Lili Xue","doi":"10.1007/s11998-024-00926-3","DOIUrl":"10.1007/s11998-024-00926-3","url":null,"abstract":"<div><p>Marine biofouling has detrimental effects on the performance and service life of ships and drilling platforms, leading to increased fuel consumption, corrosion of structural surfaces, and significant financial losses. To address these challenges, we developed epoxy coatings that incorporate graphene oxide (GO) and release copper ions (Cu<span>(^{2+})</span>). We carried out microalgae adhesion studies and marine bacterial adhesion experiments on the various composite coatings to examine the antifouling performance of the composite coatings. Additionally, we investigated the underlying mechanisms responsible for the effects of GO and Cu<span>(^{2+})</span>. The results demonstrated the superior anti-adhesion properties of GO. The amount of microalgae adhering to the GO modified epoxy coating was only 13% of that adhering to the epoxy resin coating. Moreover, no microalgae adhesion was observed in the microalgae adhesion assay for the GO/Cu<span>(_{2})</span>O hydrogel modified epoxy composite coating (GCHMC). Additionally, we observed a sustained release of Cu<span>(^{2+})</span> from the GCHMC for over 100 days, as indicated by the Cu<span>(^{2+})</span> release trend. Therefore, the GCHMC effectively showcased its long-lasting marine antifouling properties.</p></div>","PeriodicalId":619,"journal":{"name":"Journal of Coatings Technology and Research","volume":"21 6","pages":"1955 - 1963"},"PeriodicalIF":2.3,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142185718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A self-healing epoxy coating realized by 2-chloromethylbenzimidazole loading MIL-88 通过添加 2-氯甲基苯并咪唑 MIL-88 实现的自愈合环氧涂层
IF 2.3 4区 材料科学 Q2 CHEMISTRY, APPLIED Pub Date : 2024-08-26 DOI: 10.1007/s11998-024-00977-6
Zhenyu Rui, Xiumei Feng, Liben Zhou, Zhixun Shen, Lu Wan, Zhaolei Li

Using nanocontainers filled with corrosion inhibitors is an efficient strategy to create a high-performance coating that protects metals from corrosion. In this paper, Metal organic framework (MIL-88) was synthesized and loaded with a sustainable and eco-friendly corrosion inhibitor, 2-chloromethylbenzimidazole (2-CBI). The 2-CBI@MIL-88 was used as a nanofiller to prepare an epoxy resin composite coating. The results showed that the corrosion inhibitors in 2-CBI@MIL-88 were released sustainably in an acidic 3.5 wt% NaCl solution. Notably, the |Z|0.01 Hz of the intact EP + 1% 2-CBI@MIL-88 was significantly higher than that of EP, while the |Z|0.01 Hz of scratched EP + 1% 2-CBI@MIL-88 increases upon immersion in a 3.5 wt% NaCl solution, demonstrating the excellent self-healing ability. Overall, incorporating 2-CBI@MIL-88 into epoxy coatings offers a promising approach for enhancing the corrosion resistance of steel structures.

使用填充有腐蚀抑制剂的纳米容器是一种有效的策略,可以制造出保护金属免受腐蚀的高性能涂层。本文合成了金属有机框架 (MIL-88),并在其中添加了一种可持续的环保型缓蚀剂--2-氯甲基苯并咪唑 (2-CBI)。2-CBI@MIL-88 被用作纳米填料来制备环氧树脂复合涂层。结果表明,2-CBI@MIL-88 中的缓蚀剂可在 3.5 wt% 的酸性氯化钠溶液中持续释放。值得注意的是,完整 EP + 1% 2-CBI@MIL-88 的|Z|0.01 Hz 明显高于 EP,而划痕 EP + 1% 2-CBI@MIL-88 的|Z|0.01 Hz 在 3.5 wt% 的 NaCl 溶液中浸泡后会增加,这表明了其优异的自修复能力。总之,在环氧涂层中加入 2-CBI@MIL-88 为提高钢结构的耐腐蚀性提供了一种可行的方法。
{"title":"A self-healing epoxy coating realized by 2-chloromethylbenzimidazole loading MIL-88","authors":"Zhenyu Rui, Xiumei Feng, Liben Zhou, Zhixun Shen, Lu Wan, Zhaolei Li","doi":"10.1007/s11998-024-00977-6","DOIUrl":"https://doi.org/10.1007/s11998-024-00977-6","url":null,"abstract":"<p>Using nanocontainers filled with corrosion inhibitors is an efficient strategy to create a high-performance coating that protects metals from corrosion. In this paper, Metal organic framework (MIL-88) was synthesized and loaded with a sustainable and eco-friendly corrosion inhibitor, 2-chloromethylbenzimidazole (2-CBI). The 2-CBI@MIL-88 was used as a nanofiller to prepare an epoxy resin composite coating. The results showed that the corrosion inhibitors in 2-CBI@MIL-88 were released sustainably in an acidic 3.5 wt% NaCl solution. Notably, the |Z|<sub>0.01 Hz</sub> of the intact EP + 1% 2-CBI@MIL-88 was significantly higher than that of EP, while the |Z|<sub>0.01 Hz</sub> of scratched EP + 1% 2-CBI@MIL-88 increases upon immersion in a 3.5 wt% NaCl solution, demonstrating the excellent self-healing ability. Overall, incorporating 2-CBI@MIL-88 into epoxy coatings offers a promising approach for enhancing the corrosion resistance of steel structures.</p>","PeriodicalId":619,"journal":{"name":"Journal of Coatings Technology and Research","volume":"20 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142185717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergistic effects of zinc oxide and iron oxide photoinitiators for whole spectrum utilization of UV–Vis light in photo-curable coatings 氧化锌和氧化铁光引发剂在光固化涂料中紫外可见光全光谱利用方面的协同效应
IF 2.3 4区 材料科学 Q2 CHEMISTRY, APPLIED Pub Date : 2024-08-21 DOI: 10.1007/s11998-024-00978-5
Qin Lu, Daiyong Ye

In order to fully utilize the whole spectrum of UV–Vis light and eliminate the problems of organic photoinitiators in the photo-curable coatings, inorganic composited photoinitiators of ZnO and Fe2O3 nanoparticles (NPs) were prepared and added into the photo-curable waterborne polyurethane acrylates. The inorganic composited photoinitiators utilized both the ultraviolet and visible light, which easily extended the light absorption range of each photoinitiator of ZnO and Fe2O3 NPs. Fourier transform infrared spectroscopy, scanning electron microscopy, and ultraviolet–visible spectrophotometer were used to characterize the chemically composited particles, physically mixed particles, and their photo-curable coatings. Comparison with the pure waterborne polyurethane acrylates, better photoinitiation effect, light conversions, and mechanical properties of the photo-cured films were obtained when the chemically composited photoinitiators of ZnO and Fe2O3 NPs were added with a molar ratio of 1:1. The photo-curing kinetics characterized by the UV–Vis and FTIR spectroscopy also proved their improved synergistic photoinitiation effects. This study demonstrated that the chemically composited photoinitiators of ZnO and Fe2O3 NPs were a prospective solution to the complete utilization of illumination light during the conventional photo-curing processes.

为了充分利用整个紫外-可见光谱,消除光固化涂料中有机光引发剂的问题,制备了 ZnO 和 Fe2O3 纳米粒子(NPs)无机复合光引发剂,并将其添加到光固化水性聚氨酯丙烯酸酯中。无机复合光引发剂可同时利用紫外线和可见光,从而轻松扩展了 ZnO 和 Fe2O3 纳米粒子光引发剂的光吸收范围。傅立叶变换红外光谱、扫描电子显微镜和紫外-可见分光光度计用于表征化学合成颗粒、物理混合颗粒及其光固化涂层。与纯水性聚氨酯丙烯酸酯相比,当 ZnO 和 Fe2O3 NPs 的化学合成光引发剂的摩尔比为 1:1 时,光固化薄膜获得了更好的光引发效果、光转化率和机械性能。紫外可见光谱和傅立叶变换红外光谱表征的光固化动力学也证明了它们的协同光引发效应得到了改善。这项研究表明,ZnO 和 Fe2O3 NPs 化学合成光引发剂是在传统光固化过程中完全利用照明光的一种前瞻性解决方案。
{"title":"Synergistic effects of zinc oxide and iron oxide photoinitiators for whole spectrum utilization of UV–Vis light in photo-curable coatings","authors":"Qin Lu, Daiyong Ye","doi":"10.1007/s11998-024-00978-5","DOIUrl":"https://doi.org/10.1007/s11998-024-00978-5","url":null,"abstract":"<p>In order to fully utilize the whole spectrum of UV–Vis light and eliminate the problems of organic photoinitiators in the photo-curable coatings, inorganic composited photoinitiators of ZnO and Fe<sub>2</sub>O<sub>3</sub> nanoparticles (NPs) were prepared and added into the photo-curable waterborne polyurethane acrylates. The inorganic composited photoinitiators utilized both the ultraviolet and visible light, which easily extended the light absorption range of each photoinitiator of ZnO and Fe<sub>2</sub>O<sub>3</sub> NPs. Fourier transform infrared spectroscopy, scanning electron microscopy, and ultraviolet–visible spectrophotometer were used to characterize the chemically composited particles, physically mixed particles, and their photo-curable coatings. Comparison with the pure waterborne polyurethane acrylates, better photoinitiation effect, light conversions, and mechanical properties of the photo-cured films were obtained when the chemically composited photoinitiators of ZnO and Fe<sub>2</sub>O<sub>3</sub> NPs were added with a molar ratio of 1:1. The photo-curing kinetics characterized by the UV–Vis and FTIR spectroscopy also proved their improved synergistic photoinitiation effects. This study demonstrated that the chemically composited photoinitiators of ZnO and Fe<sub>2</sub>O<sub>3</sub> NPs were a prospective solution to the complete utilization of illumination light during the conventional photo-curing processes.</p>","PeriodicalId":619,"journal":{"name":"Journal of Coatings Technology and Research","volume":"37 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142185719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of organotitanate-modified zinc oxide nanoparticles on some characteristics and anticorrosion protection properties of epoxy coating 有机钛酸酯改性纳米氧化锌对环氧涂料某些特性和防腐性能的影响
IF 2.3 4区 材料科学 Q2 CHEMISTRY, APPLIED Pub Date : 2024-08-20 DOI: 10.1007/s11998-024-00971-y
Chinh Thuy Nguyen, Lien Thi Ngoc Ly, Thai Xuan Nguyen, Hung Phi Dao, Son Anh Nguyen, Trung Huu Tran, Trung Quoc Vu, Quyen Thi Cam Ngo, Tan Ngoc Nguyen, Hoang Thai

Surface modification of metal oxide nanoparticles can enhance their dispersibility in polymer matrix. In this study, the zinc oxide (ZnO) nanoparticles (NPs) were organically modified by coupling agent as isopropyl tri (dioctyl phosphate) titanate (KR-12) with the initial content of 3 wt.% (in comparison with ZnO NPs weight). The characteristics of modified ZnO (m-ZnO) NPs, namely chemical changes, zeta potential, morphology, and thermal behavior, were evaluated using IR spectroscopy, DLS, SEM, and TGA methods, respectively. The obtained results suggested that ZnO NPs were modified successfully with KR-12 coupling agent. In comparison with the unmodified ZnO (u-ZnO) NPs, the m-ZnO NPs had additional functional groups and there were changes of some properties such as hydrophobic property, surface charge, and thermal stability of m-ZnO NPs. The m-ZnO NPs could disperse in epoxy resin better than the u-ZnO NPs. Therefore, the m-ZnO NPs improved the mechanical properties, chemical resistance, thermal stability, and anticorrosion protection ability of epoxy resin coating. The abrasion resistance and the adhesion of epoxy coating containing 2 wt.% m-ZnO NPs were increased about 40% and 54%, respectively. The bending resistance of epoxy resin was also enhanced, and the anticorrosion resistance of coatings was improved in the presence of m-ZnO nanoparticles.

对金属氧化物纳米粒子进行表面改性可提高其在聚合物基质中的分散性。本研究利用偶联剂三(二辛基磷酸酯)钛酸异丙酯(KR-12)对氧化锌(ZnO)纳米粒子(NPs)进行了有机改性,初始含量为 3 wt.%(与 ZnO NPs 重量相比)。利用红外光谱、DLS、扫描电镜和 TGA 方法分别评估了改性 ZnO(m-ZnO)NPs 的特性,即化学变化、ZETA 电位、形貌和热行为。结果表明,KR-12 偶联剂成功地修饰了 ZnO NPs。与未修饰的 ZnO(u-ZnO)NPs 相比,m-ZnO NPs 具有额外的官能团,并且 m-ZnO NPs 的疏水性、表面电荷和热稳定性等一些性质发生了变化。m-ZnO NPs 在环氧树脂中的分散性比 u-ZnO NPs 好。因此,m-ZnO 纳米粒子提高了环氧树脂涂层的机械性能、耐化学性、热稳定性和防腐保护能力。含有 2 wt.% m-ZnO NPs 的环氧树脂涂层的耐磨性和附着力分别提高了约 40% 和 54%。环氧树脂的抗弯曲性也得到了增强,涂层的防腐性在 m-ZnO 纳米粒子的存在下也得到了改善。
{"title":"The effect of organotitanate-modified zinc oxide nanoparticles on some characteristics and anticorrosion protection properties of epoxy coating","authors":"Chinh Thuy Nguyen, Lien Thi Ngoc Ly, Thai Xuan Nguyen, Hung Phi Dao, Son Anh Nguyen, Trung Huu Tran, Trung Quoc Vu, Quyen Thi Cam Ngo, Tan Ngoc Nguyen, Hoang Thai","doi":"10.1007/s11998-024-00971-y","DOIUrl":"https://doi.org/10.1007/s11998-024-00971-y","url":null,"abstract":"<p>Surface modification of metal oxide nanoparticles can enhance their dispersibility in polymer matrix. In this study, the zinc oxide (ZnO) nanoparticles (NPs) were organically modified by coupling agent as isopropyl tri (dioctyl phosphate) titanate (KR-12) with the initial content of 3 wt.% (in comparison with ZnO NPs weight). The characteristics of modified ZnO (m-ZnO) NPs, namely chemical changes, zeta potential, morphology, and thermal behavior, were evaluated using IR spectroscopy, DLS, SEM, and TGA methods, respectively. The obtained results suggested that ZnO NPs were modified successfully with KR-12 coupling agent. In comparison with the unmodified ZnO (u-ZnO) NPs, the m-ZnO NPs had additional functional groups and there were changes of some properties such as hydrophobic property, surface charge, and thermal stability of m-ZnO NPs. The m-ZnO NPs could disperse in epoxy resin better than the u-ZnO NPs. Therefore, the m-ZnO NPs improved the mechanical properties, chemical resistance, thermal stability, and anticorrosion protection ability of epoxy resin coating. The abrasion resistance and the adhesion of epoxy coating containing 2 wt.% m-ZnO NPs were increased about 40% and 54%, respectively. The bending resistance of epoxy resin was also enhanced, and the anticorrosion resistance of coatings was improved in the presence of m-ZnO nanoparticles.</p>","PeriodicalId":619,"journal":{"name":"Journal of Coatings Technology and Research","volume":"22 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142185721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bio-based interior UV-curable coating designed for wood substrates 专为木质基材设计的生物基室内紫外线固化涂料
IF 2.3 4区 材料科学 Q2 CHEMISTRY, APPLIED Pub Date : 2024-08-19 DOI: 10.1007/s11998-024-00970-z
Shubham Potdar, Saptarshi Maiti, Aniket Ukirade, Ramanand Jagtap

The advancement of UV-curable coatings derived from renewable resources is of paramount importance in achieving sustainability goals for safeguarding the environment. This study aims to synthesize novel UV-curable reactive diluent by reacting bio-based adipic acid with diethanolamine, followed by functionalizing it with glycidyl methacrylate. UV-curable bio-based oligomer was prepared by a ring-opening reaction of epoxidized castor oil with acrylic acid. The chemical structures of the resulting reactive diluent and oligomer were confirmed using analytical techniques such as end-group analysis, FTIR, and 1H NMR. A series of bio-based UV-curable formulations were prepared by combining synthesized reactive diluent with the oligomer and applied on wooden substrates. The effect of incorporating different concentrations of synthesized reactive diluent ranging from 10 to 40 wt.% on the viscosity of the synthesized oligomers was investigated by studying their rheological behavior. The UV-cured coatings were further evaluated for their extent of curing, bio-content, acid, alkali, and boiling water resistance. Thermal properties of films were further characterized for TGA and DSC. Cured coating with 40 wt.% reactive diluent exhibited 86 gloss at 60°, 5H hardness, 5B adhesion, 81.27 °C glass transition temperature, and maximum thermal decomposition temperature of 454 °C. The cured coatings have shown impressive stain resistance properties.

Graphical abstract

从可再生资源中提取紫外线固化涂料对实现保护环境的可持续发展目标至关重要。本研究旨在通过生物基己二酸与二乙醇胺反应,然后与甲基丙烯酸缩水甘油酯官能化,合成新型紫外线固化活性稀释剂。紫外线固化生物基低聚物是通过环氧化蓖麻油与丙烯酸的开环反应制备的。利用端基分析、傅立叶变换红外光谱和 1H NMR 等分析技术确认了所得到的活性稀释剂和低聚物的化学结构。通过将合成的活性稀释剂与低聚物结合,制备了一系列生物基紫外线固化配方,并将其涂在木质基底上。通过研究合成低聚物的流变行为,考察了加入 10 至 40 wt.% 不同浓度的合成活性稀释剂对其粘度的影响。还进一步评估了紫外线固化涂层的固化程度、生物含量、耐酸、耐碱和耐沸水性。薄膜的热性能还通过 TGA 和 DSC 进行了进一步表征。含 40 wt.% 活性稀释剂的固化涂层在 60° 时的光泽度为 86,硬度为 5H,附着力为 5B,玻璃化转变温度为 81.27 °C,最高热分解温度为 454 °C。固化涂层具有令人印象深刻的抗污性能。
{"title":"Bio-based interior UV-curable coating designed for wood substrates","authors":"Shubham Potdar, Saptarshi Maiti, Aniket Ukirade, Ramanand Jagtap","doi":"10.1007/s11998-024-00970-z","DOIUrl":"https://doi.org/10.1007/s11998-024-00970-z","url":null,"abstract":"<p>The advancement of UV-curable coatings derived from renewable resources is of paramount importance in achieving sustainability goals for safeguarding the environment. This study aims to synthesize novel UV-curable reactive diluent by reacting bio-based adipic acid with diethanolamine, followed by functionalizing it with glycidyl methacrylate. UV-curable bio-based oligomer was prepared by a ring-opening reaction of epoxidized castor oil with acrylic acid. The chemical structures of the resulting reactive diluent and oligomer were confirmed using analytical techniques such as end-group analysis, FTIR, and 1H NMR. A series of bio-based UV-curable formulations were prepared by combining synthesized reactive diluent with the oligomer and applied on wooden substrates. The effect of incorporating different concentrations of synthesized reactive diluent ranging from 10 to 40 wt.% on the viscosity of the synthesized oligomers was investigated by studying their rheological behavior. The UV-cured coatings were further evaluated for their extent of curing, bio-content, acid, alkali, and boiling water resistance. Thermal properties of films were further characterized for TGA and DSC. Cured coating with 40 wt.% reactive diluent exhibited 86 gloss at 60°, 5H hardness, 5B adhesion, 81.27 °C glass transition temperature, and maximum thermal decomposition temperature of 454 °C. The cured coatings have shown impressive stain resistance properties.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\u0000","PeriodicalId":619,"journal":{"name":"Journal of Coatings Technology and Research","volume":"196 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142185720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing the colloidal stability of carboxylated styrene-acrylic latexes using anionic and nonionic polymerizable surfactants for architectural paints 使用阴离子和非离子可聚合表面活性剂提高建筑涂料中羧基苯乙烯-丙烯酸胶乳的胶体稳定性
IF 2.3 4区 材料科学 Q2 CHEMISTRY, APPLIED Pub Date : 2024-08-14 DOI: 10.1007/s11998-024-00956-x
Isabelle C. Zavecz, Caio A. Palma, Maria A. S. Yokomichi, Diego C. F. Moreira, Maurício P. Oliveira

To overcome the main challenge of low colloidal stability of poly(styrene-co-butyl acrylate-co-acrylic acid-co-acrylamide) latexes in the presence of polymerizable surfactants, this study aimed to obtain latexes with superior properties and coagulum-free through semibatch emulsion polymerization using anionic and nonionic polymerizable surfactants (MaxemulTM 5010 and MaxemulTM 6106) mixed with a conventional anionic surfactant (DowfaxTM 2A1). The effect of the surfactant amount and type on the colloidal stability, particle size, electrolyte stability, water absorption of the polymer films, and wet scrub resistance of the paint films were investigated. The water absorption of polymer films containing a blend of polymerizable and conventional surfactants was compared to that of films containing conventional surfactants. The results showed that the molar mass has a significant impact on latex stability during the early stages of polymerization. By incorporating a chain transfer agent (n-dodecyl mercaptan, DDM) within the range of 0.05-0.2 wt% loaded in the reactor charge based on the total formulation, coagulum-free latexes were obtained. When polymerizable surfactants were used together with a conventional surfactant and DDM, stable latexes with particle sizes ranging from 96.5 to 110.0 nm, enhanced film properties, and better scrub resistance of the paint films were obtained. The increase in polymerizable surfactant improves the electrolyte stability of the latexes but increases the water absorption of the polymer films. The use of polymerizable surfactant helps to reduce the total amount of surfactant used in the latex formulation. The results achieved in this study create a new approach for the synthesis of poly(St/BA/AA/AM) latexes using polymerizable surfactants for highly pigmented architectural paints.

为了克服聚(苯乙烯-丙烯酸丁酯-丙烯酸-丙烯酰胺)胶乳在可聚合表面活性剂存在下胶体稳定性低这一主要难题,本研究旨在通过使用阴离子和非离子可聚合表面活性剂(MaxemulTM 5010 和 MaxemulTM 6106)与传统阴离子表面活性剂(DowfaxTM 2A1)混合进行半批次乳液聚合,获得性能优越且无凝集物的胶乳。研究了表面活性剂的用量和类型对胶体稳定性、粒度、电解质稳定性、聚合物薄膜的吸水性和漆膜的耐湿擦洗性的影响。将含有可聚合表面活性剂和传统表面活性剂混合物的聚合物薄膜的吸水性与含有传统表面活性剂的薄膜的吸水性进行了比较。结果表明,在聚合的早期阶段,摩尔质量对胶乳的稳定性有很大影响。将链转移剂(正十二烷基硫醇,DDM)加入反应器装料(以总配方为基础)0.05-0.2 wt% 的范围内,可获得无凝固的胶乳。将可聚合表面活性剂与传统表面活性剂和 DDM 一起使用时,可获得粒径为 96.5 至 110.0 nm 的稳定胶乳,漆膜性能得到增强,漆膜的耐擦洗性也得到改善。可聚合表面活性剂的增加提高了胶乳的电解质稳定性,但却增加了聚合物薄膜的吸水性。使用可聚合表面活性剂有助于减少胶乳配方中表面活性剂的总用量。本研究取得的成果为使用可聚合表面活性剂合成聚(St/BA/AA/AM)胶乳提供了一种新方法,可用于高颜料建筑涂料。
{"title":"Enhancing the colloidal stability of carboxylated styrene-acrylic latexes using anionic and nonionic polymerizable surfactants for architectural paints","authors":"Isabelle C. Zavecz,&nbsp;Caio A. Palma,&nbsp;Maria A. S. Yokomichi,&nbsp;Diego C. F. Moreira,&nbsp;Maurício P. Oliveira","doi":"10.1007/s11998-024-00956-x","DOIUrl":"10.1007/s11998-024-00956-x","url":null,"abstract":"<div><p>To overcome the main challenge of low colloidal stability of poly(styrene-<i>co</i>-butyl acrylate-<i>co</i>-acrylic acid-<i>co</i>-acrylamide) latexes in the presence of polymerizable surfactants, this study aimed to obtain latexes with superior properties and coagulum-free through semibatch emulsion polymerization using anionic and nonionic polymerizable surfactants (Maxemul<sup>TM</sup> 5010 and Maxemul<sup>TM</sup> 6106) mixed with a conventional anionic surfactant (Dowfax<sup>TM</sup> 2A1). The effect of the surfactant amount and type on the colloidal stability, particle size, electrolyte stability, water absorption of the polymer films, and wet scrub resistance of the paint films were investigated. The water absorption of polymer films containing a blend of polymerizable and conventional surfactants was compared to that of films containing conventional surfactants. The results showed that the molar mass has a significant impact on latex stability during the early stages of polymerization. By incorporating a chain transfer agent (<i>n-</i>dodecyl mercaptan, DDM) within the range of 0.05-0.2 wt% loaded in the reactor charge based on the total formulation, coagulum-free latexes were obtained. When polymerizable surfactants were used together with a conventional surfactant and DDM, stable latexes with particle sizes ranging from 96.5 to 110.0 nm, enhanced film properties, and better scrub resistance of the paint films were obtained. The increase in polymerizable surfactant improves the electrolyte stability of the latexes but increases the water absorption of the polymer films. The use of polymerizable surfactant helps to reduce the total amount of surfactant used in the latex formulation. The results achieved in this study create a new approach for the synthesis of poly(St/BA/AA/AM) latexes using polymerizable surfactants for highly pigmented architectural paints.</p></div>","PeriodicalId":619,"journal":{"name":"Journal of Coatings Technology and Research","volume":"21 6","pages":"2079 - 2092"},"PeriodicalIF":2.3,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142185777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of thermolabile particles for debonding on demand in fiber reinforced composites 纤维增强复合材料中按需脱胶的热敏性颗粒研究
IF 2.3 4区 材料科学 Q2 CHEMISTRY, APPLIED Pub Date : 2024-08-12 DOI: 10.1007/s11998-024-00941-4
Lea Senneka, Markus Haag, Katharina N. Aigner, Thomas Gries, Oliver I. Strube

Glass fiber reinforced plastics (GFRP) are essential for lightweight design and are manufactured in high quantities. Since there is no suitable method for recycling, the GFRP are mostly grinded and used as filler at end of life. In this work, the well-known principle of debonding on demand is considered to enable feasible and value-retaining separation of glass fibers from the polymeric matrix. To this end, gas-releasing thermo-responsive substances (TRS) like carboxylic or amino acids are introduced to the composite to investigate their potential for causing delamination after heating. To promote sufficient fiber/matrix adhesion, the TRS are encapsulated with silica or immobilized on magnetite particles. Furthermore, the immobilization synthesis is scaled up by using a custom-made continuous flow reactor. Finally, a new sizing mixed for glass fiber spinning, containing the particles, is formulated. The experiments reveal that a maximum of 0.5 wt.% particles can be used in the sizing to coat the fibers. Although all tested samples show a significant organic functionalization, the particles functionalized with TRS do not trigger sufficient delamination at the current state of development.

玻璃纤维增强塑料(GFRP)对轻质设计至关重要,其生产量很大。由于没有合适的回收方法,玻璃纤维增强塑料在报废时大多被磨碎并用作填料。在这项工作中,考虑了众所周知的按需脱胶原理,以实现玻璃纤维从聚合物基体中分离的可行性和保值性。为此,在复合材料中引入了羧酸或氨基酸等释放气体的热响应物质(TRS),以研究它们在加热后导致分层的可能性。为了促进纤维/基质充分粘合,TRS 被二氧化硅封装或固定在磁铁矿颗粒上。此外,还使用定制的连续流反应器扩大了固定化合成的规模。最后,还配制了一种用于玻璃纤维纺丝的新型上浆混合物,其中含有该颗粒。实验表明,上浆中最多可使用 0.5 wt.% 的颗粒来包裹纤维。虽然所有测试样品都显示出明显的有机官能化,但在目前的开发阶段,用 TRS 进行官能化的颗粒并不能引发足够的分层。
{"title":"Investigation of thermolabile particles for debonding on demand in fiber reinforced composites","authors":"Lea Senneka,&nbsp;Markus Haag,&nbsp;Katharina N. Aigner,&nbsp;Thomas Gries,&nbsp;Oliver I. Strube","doi":"10.1007/s11998-024-00941-4","DOIUrl":"10.1007/s11998-024-00941-4","url":null,"abstract":"<div><p>Glass fiber reinforced plastics (GFRP) are essential for lightweight design and are manufactured in high quantities. Since there is no suitable method for recycling, the GFRP are mostly grinded and used as filler at end of life. In this work, the well-known principle of debonding on demand is considered to enable feasible and value-retaining separation of glass fibers from the polymeric matrix. To this end, gas-releasing thermo-responsive substances (TRS) like carboxylic or amino acids are introduced to the composite to investigate their potential for causing delamination after heating. To promote sufficient fiber/matrix adhesion, the TRS are encapsulated with silica or immobilized on magnetite particles. Furthermore, the immobilization synthesis is scaled up by using a custom-made continuous flow reactor. Finally, a new sizing mixed for glass fiber spinning, containing the particles, is formulated. The experiments reveal that a maximum of 0.5 wt.% particles can be used in the sizing to coat the fibers. Although all tested samples show a significant organic functionalization, the particles functionalized with TRS do not trigger sufficient delamination at the current state of development.</p></div>","PeriodicalId":619,"journal":{"name":"Journal of Coatings Technology and Research","volume":"21 6","pages":"1931 - 1943"},"PeriodicalIF":2.3,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11998-024-00941-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142185756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sustainable organic–inorganic hybrid coating system with multiple cure capabilities 具有多种固化功能的可持续有机-无机混合涂料系统
IF 2.3 4区 材料科学 Q2 CHEMISTRY, APPLIED Pub Date : 2024-08-05 DOI: 10.1007/s11998-024-00969-6
Tahereh Hayeri, Vijay Mannari

Organic–inorganic hybrid (OIH) coatings and thin films have been established as advanced materials owing to their unique combination of properties suitable for many current and emerging end-use applications. The difficulties in the deposition of such films under desirable cure conditions limit their application space. This study presents the development of a new generation of functional oligomers designed to cure independently under various cure conditions to produce OIH coatings. Specifically, we have meticulously designed and synthesized a high-solid organosilane oligomer with polyurethane backbone structure and alkoxysilane functionality. This study investigates high-solid OIH coating systems comprised of organosilane oligomer, alkoxysilane reactive diluents, and a diverse range of blocked catalysts for their effectiveness in curing under thermal, UV exposure, and ambient temperature conditions. Furthermore, we have explored the potential to combine these curing processes, offering the coating system with plural-cure capabilities. FTIR spectroscopy has been used to track the extent of cure by tracking relative intensities of alkoxysilane groups before and after curing. A comparative analysis of coatings cured by various techniques provided valuable insights into the underlying curing mechanisms and their impact on film properties. The outcome of this study suggests that these new generation versatile OIH coatings systems can be excellent candidates for sustainable advanced coating applications.

有机-无机杂化(OIH)涂层和薄膜因其独特的综合特性而成为先进材料,适用于许多当前和新兴的终端应用领域。但在理想的固化条件下沉积此类薄膜的困难限制了它们的应用空间。本研究介绍了新一代功能性低聚物的开发情况,这些低聚物可在各种固化条件下独立固化,从而生产出 OIH 涂层。具体来说,我们精心设计并合成了一种具有聚氨酯骨架结构和烷氧基硅烷功能的高固有机硅低聚物。本研究调查了由有机硅烷低聚物、烷氧基硅烷反应性稀释剂和多种封端催化剂组成的高固含量 OIH 涂料体系在热固化、紫外线照射和环境温度条件下的固化效果。此外,我们还探索了将这些固化工艺结合起来的可能性,从而使涂层系统具备多重固化能力。傅立叶变换红外光谱通过跟踪固化前后烷氧基硅烷基团的相对强度来跟踪固化程度。通过对采用不同技术固化的涂层进行比较分析,可以深入了解固化机理及其对薄膜性能的影响。这项研究的结果表明,这些新一代多功能 OIH 涂层系统可以成为可持续先进涂层应用的理想候选材料。
{"title":"Sustainable organic–inorganic hybrid coating system with multiple cure capabilities","authors":"Tahereh Hayeri, Vijay Mannari","doi":"10.1007/s11998-024-00969-6","DOIUrl":"https://doi.org/10.1007/s11998-024-00969-6","url":null,"abstract":"<p>Organic–inorganic hybrid (OIH) coatings and thin films have been established as advanced materials owing to their unique combination of properties suitable for many current and emerging end-use applications. The difficulties in the deposition of such films under desirable cure conditions limit their application space. This study presents the development of a new generation of functional oligomers designed to cure independently under various cure conditions to produce OIH coatings. Specifically, we have meticulously designed and synthesized a high-solid organosilane oligomer with polyurethane backbone structure and alkoxysilane functionality. This study investigates high-solid OIH coating systems comprised of organosilane oligomer, alkoxysilane reactive diluents, and a diverse range of blocked catalysts for their effectiveness in curing under thermal, UV exposure, and ambient temperature conditions. Furthermore, we have explored the potential to combine these curing processes, offering the coating system with plural-cure capabilities. FTIR spectroscopy has been used to track the extent of cure by tracking relative intensities of alkoxysilane groups before and after curing. A comparative analysis of coatings cured by various techniques provided valuable insights into the underlying curing mechanisms and their impact on film properties. The outcome of this study suggests that these new generation versatile OIH coatings systems can be excellent candidates for sustainable advanced coating applications.</p>","PeriodicalId":619,"journal":{"name":"Journal of Coatings Technology and Research","volume":"8 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141941698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Coatings Technology and Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1