Nowadays, geopolymer coatings have been studied a lot due to their green and sustainable properties, and they have a great potential to partially replace traditional coatings in terms of corrosion resistance and economy. In this study, metakaolin-based geopolymer coating was used as the control group, and anticorrosive coatings were prepared by adding different dosages (2–8 wt%) of ZnO fillers to study the effect of ZnO on physical properties and anticorrosion properties of metakaolin-based geopolymer anticorrosive coatings. The results showed that when the mass fraction of the zinc oxide was 8%, it had the optimum effect on physical performance. The water absorption was 12.4%, and the toughness was 3 mm. In addition, the anticorrosive properties of the coating were studied by sodium chloride (NaCl) solution immersion test, wet–dry cyclic test, salt spray test, and electrochemical test. In sodium chloride (NaCl) solution immersion, wet–dry cycle, and salt spray test, a reduction of 43.8%, 50.6%, and 74.2% in corrosion area ratio, respectively, were achieved with a coating of 8% ZnO filled as compared with pure geopolymer coatings. The results indicated that the addition of ZnO enhanced the anticorrosion performance of the coating. The macroscopic test results were verified by SEM. This study lays a foundation for the subsequent research and performance improvement of metakaolin-based geopolymer anticorrosive coatings.
{"title":"Effect of ZnO on properties of metakaolin-based geopolymer anticorrosive coating","authors":"Shixue Duan, Jiesheng Liu, Senlong Zhang, Xinyao Wu, Xuanyi Xiang, Xinke Li, Yinggui Wu, Yuansheng Wang","doi":"10.1007/s11998-024-00963-y","DOIUrl":"10.1007/s11998-024-00963-y","url":null,"abstract":"<div><p>Nowadays, geopolymer coatings have been studied a lot due to their green and sustainable properties, and they have a great potential to partially replace traditional coatings in terms of corrosion resistance and economy. In this study, metakaolin-based geopolymer coating was used as the control group, and anticorrosive coatings were prepared by adding different dosages (2–8 wt%) of ZnO fillers to study the effect of ZnO on physical properties and anticorrosion properties of metakaolin-based geopolymer anticorrosive coatings. The results showed that when the mass fraction of the zinc oxide was 8%, it had the optimum effect on physical performance. The water absorption was 12.4%, and the toughness was 3 mm. In addition, the anticorrosive properties of the coating were studied by sodium chloride (NaCl) solution immersion test, wet–dry cyclic test, salt spray test, and electrochemical test. In sodium chloride (NaCl) solution immersion, wet–dry cycle, and salt spray test, a reduction of 43.8%, 50.6%, and 74.2% in corrosion area ratio, respectively, were achieved with a coating of 8% ZnO filled as compared with pure geopolymer coatings. The results indicated that the addition of ZnO enhanced the anticorrosion performance of the coating. The macroscopic test results were verified by SEM. This study lays a foundation for the subsequent research and performance improvement of metakaolin-based geopolymer anticorrosive coatings.</p></div>","PeriodicalId":619,"journal":{"name":"Journal of Coatings Technology and Research","volume":"21 6","pages":"2171 - 2181"},"PeriodicalIF":2.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141506874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-26DOI: 10.1007/s11998-024-00955-y
Brahim Nomeir, Sara Lakhouil, Sofia Boukheir, Mustapha Ait Ali, Sanae Naamane
Over the last decade, superhydrophobic surfaces with their new functional and structural properties have attracted a lot of interest both in the scientific research environment and in the industrial environment because of their potential to be applied in several fields, including anticorrosion, water/oil separation, ice repellency, and above all self-cleaning. This review, which should be of interest to students, researchers, and also industries focused on the chemistry of coatings, has been made with the aim of citing, explaining, and comparing in detail the structural and functional properties, the formulation techniques, the advantages, and the inconveniences of the majority of materials most used until now, and on the other hand to meet all our needs to facilitate the choice of materials for the preparation of superhydrophobic coatings according to the desired properties. This review provides a detailed analysis of recent advances in the preparation of superhydrophobic surfaces using polymeric coatings. In a significant way, the theoretical principles for the manufacturing of this type of surface have been explained, and the factors impacting the surface superhydrophobicity have been proposed. Also, an in-depth examination of the preparation approaches is categorized according to types of polymers such as polydimethylsiloxane (PDMS), polymethyl methacrylate (PMMA), polystyrene (PS), polyvinylidene fluoride (PVDF), polyurethane (PU), epoxy, and other polymers. Finally, the applications and challenges related to the applicability of this type of coating in everyday life are highlighted.
{"title":"Recent advances in polymer-based superhydrophobic coatings: preparation, properties, and applications","authors":"Brahim Nomeir, Sara Lakhouil, Sofia Boukheir, Mustapha Ait Ali, Sanae Naamane","doi":"10.1007/s11998-024-00955-y","DOIUrl":"https://doi.org/10.1007/s11998-024-00955-y","url":null,"abstract":"<p>Over the last decade, superhydrophobic surfaces with their new functional and structural properties have attracted a lot of interest both in the scientific research environment and in the industrial environment because of their potential to be applied in several fields, including anticorrosion, water/oil separation, ice repellency, and above all self-cleaning. This review, which should be of interest to students, researchers, and also industries focused on the chemistry of coatings, has been made with the aim of citing, explaining, and comparing in detail the structural and functional properties, the formulation techniques, the advantages, and the inconveniences of the majority of materials most used until now, and on the other hand to meet all our needs to facilitate the choice of materials for the preparation of superhydrophobic coatings according to the desired properties. This review provides a detailed analysis of recent advances in the preparation of superhydrophobic surfaces using polymeric coatings. In a significant way, the theoretical principles for the manufacturing of this type of surface have been explained, and the factors impacting the surface superhydrophobicity have been proposed. Also, an in-depth examination of the preparation approaches is categorized according to types of polymers such as polydimethylsiloxane (PDMS), polymethyl methacrylate (PMMA), polystyrene (PS), polyvinylidene fluoride (PVDF), polyurethane (PU), epoxy, and other polymers. Finally, the applications and challenges related to the applicability of this type of coating in everyday life are highlighted.</p>","PeriodicalId":619,"journal":{"name":"Journal of Coatings Technology and Research","volume":"30 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141506875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-24DOI: 10.1007/s11998-024-00942-3
Patience Usman, Ijeoma A. Duru, Christogonus O. Akalezi, Chigoziri Njoku, Abdulsalami Kovo, Emeka E. Oguzie
The application of mesoporous silica nanoparticles (MSN) as smart containers to distribute corrosion inhibitors gradually over time for metal protection has been well documented. This material possesses unique properties such as tunable surface and pore, high thermal and chemical stability, large pore volume and pore size, relatively low toxicity, and water solubility. These properties of MSN enable it to encapsulate large volumes of corrosion inhibitors which upon installation of an appropriate gatekeeper can release inhibitors at a controlled rate thereby improving the service life of coatings when dispersed within. In this mini-review, we look at the structure and properties of MSN, various synthetic routes reported in the literature, the nucleation and growth mechanism proposed thus far, some of the challenges still encountered in the synthesis of MSN as well as various ways it has been applied as a “smart” container for the controlled release of corrosion inhibitors in coatings.
{"title":"Mesoporous silica-based smart nanocontainers for corrosion inhibition: a mini-review","authors":"Patience Usman, Ijeoma A. Duru, Christogonus O. Akalezi, Chigoziri Njoku, Abdulsalami Kovo, Emeka E. Oguzie","doi":"10.1007/s11998-024-00942-3","DOIUrl":"https://doi.org/10.1007/s11998-024-00942-3","url":null,"abstract":"<p>The application of mesoporous silica nanoparticles (MSN) as smart containers to distribute corrosion inhibitors gradually over time for metal protection has been well documented. This material possesses unique properties such as tunable surface and pore, high thermal and chemical stability, large pore volume and pore size, relatively low toxicity, and water solubility. These properties of MSN enable it to encapsulate large volumes of corrosion inhibitors which upon installation of an appropriate gatekeeper can release inhibitors at a controlled rate thereby improving the service life of coatings when dispersed within. In this mini-review, we look at the structure and properties of MSN, various synthetic routes reported in the literature, the nucleation and growth mechanism proposed thus far, some of the challenges still encountered in the synthesis of MSN as well as various ways it has been applied as a “smart” container for the controlled release of corrosion inhibitors in coatings.</p>","PeriodicalId":619,"journal":{"name":"Journal of Coatings Technology and Research","volume":"72 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141506876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-21DOI: 10.1007/s11998-024-00958-9
Ana Suárez-Vega, Cecilia Agustín-Sáenz, Luke A. O’Dell, Fabiola Brusciotti, Anthony Somers, Maria Forsyth
Sol–gel based coatings are used to protect metals from corrosion. They offer a barrier to the electrolyte penetration, but they do not provide active corrosion protection. Therefore, corrosion inhibitors are often added to sol–gel formulations to improve the overall corrosion behavior. Sol–gel-based coatings typically require relatively high temperatures to be properly cured, which supposes high energy consumptions and might damage some of the precursors of the formulation, including corrosion inhibitors incorporated to improve the coating’s properties. In this study, the effect of diethylenetriamine (DETA) as a curing agent, and yttrium 4-hydroxy cinnamate [Y-(4OHCin)3] as corrosion inhibitor, on the chemistry and corrosion performance of a hybrid silica-epoxy formulation are investigated. Solid nuclear magnetic resonance and attenuated total reflectance Fourier transform infrared spectroscopy are carried out to analyze the influence of the curing agent and the corrosion inhibitor on the chemical structure of the coating. The corrosion performance is assessed by means of electrochemical impedance spectroscopy, and the results are evaluated considering the chemical study and the interaction between the different compounds.
{"title":"Effect of the curing agent DETA and its interaction with a rare earth carboxylate as corrosion inhibitor in a hybrid silica-epoxy formulation","authors":"Ana Suárez-Vega, Cecilia Agustín-Sáenz, Luke A. O’Dell, Fabiola Brusciotti, Anthony Somers, Maria Forsyth","doi":"10.1007/s11998-024-00958-9","DOIUrl":"10.1007/s11998-024-00958-9","url":null,"abstract":"<div><p>Sol–gel based coatings are used to protect metals from corrosion. They offer a barrier to the electrolyte penetration, but they do not provide active corrosion protection. Therefore, corrosion inhibitors are often added to sol–gel formulations to improve the overall corrosion behavior. Sol–gel-based coatings typically require relatively high temperatures to be properly cured, which supposes high energy consumptions and might damage some of the precursors of the formulation, including corrosion inhibitors incorporated to improve the coating’s properties. In this study, the effect of diethylenetriamine (DETA) as a curing agent, and yttrium 4-hydroxy cinnamate [Y-(4OHCin)<sub>3</sub>] as corrosion inhibitor, on the chemistry and corrosion performance of a hybrid silica-epoxy formulation are investigated. Solid nuclear magnetic resonance and attenuated total reflectance Fourier transform infrared spectroscopy are carried out to analyze the influence of the curing agent and the corrosion inhibitor on the chemical structure of the coating. The corrosion performance is assessed by means of electrochemical impedance spectroscopy, and the results are evaluated considering the chemical study and the interaction between the different compounds.</p></div>","PeriodicalId":619,"journal":{"name":"Journal of Coatings Technology and Research","volume":"21 6","pages":"2105 - 2116"},"PeriodicalIF":2.3,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11998-024-00958-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141506877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study aims to create paper packaging by developing paper coated with silver-exchanged zeolite that provides the necessary antibacterial properties. Various coating solutions containing different concentrations of silver-exchanged zeolite (0.1%, 0.2%, 0.3%, and 0.4%) by weight of starch mixed with starch were prepared. The study investigated the effects and properties of these silver-coated papers. Examination of the microscopic structure of the surface coated paper revealed that the coating solution effectively filled the pores of the paper, resulting in a smoother surface with even distribution of silver-exchanged zeolite. The basis weight and thickness of the coated paper increased after the coating process. The paper coated with silver-exchanged zeolite demonstrated the ability to inhibit the growth of both Gram-negative bacteria (Staphylococcus aureus) and Gram-positive bacteria (Escherichia coli). Notably, the paper coated with 0.1% silver-exchanged zeolite exhibited improved mechanical properties and a higher water contact angle compared to uncoated paper (61°–88°). This suggests that paper coated with silver-exchanged zeolite has the potential to be used as antibacterial paper for packaging food products.
{"title":"Enhancing antibacterial characteristics of paper through silver-exchanged zeolite coating for packaging paper","authors":"Kapphapaphim Wanitpinyo, Kawinthida Nanta, Korawit Chitbanyong, Sawitree Pisutpiched, Somwang Khantayanuwong, Piyawan Yimlamai, Prakit Sukyai, Buapan Puangsin","doi":"10.1007/s11998-024-00965-w","DOIUrl":"https://doi.org/10.1007/s11998-024-00965-w","url":null,"abstract":"<p>This study aims to create paper packaging by developing paper coated with silver-exchanged zeolite that provides the necessary antibacterial properties. Various coating solutions containing different concentrations of silver-exchanged zeolite (0.1%, 0.2%, 0.3%, and 0.4%) by weight of starch mixed with starch were prepared. The study investigated the effects and properties of these silver-coated papers. Examination of the microscopic structure of the surface coated paper revealed that the coating solution effectively filled the pores of the paper, resulting in a smoother surface with even distribution of silver-exchanged zeolite. The basis weight and thickness of the coated paper increased after the coating process. The paper coated with silver-exchanged zeolite demonstrated the ability to inhibit the growth of both Gram-negative bacteria (<i>Staphylococcus aureus</i>) and Gram-positive bacteria (<i>Escherichia coli</i>). Notably, the paper coated with 0.1% silver-exchanged zeolite exhibited improved mechanical properties and a higher water contact angle compared to uncoated paper (61°–88°). This suggests that paper coated with silver-exchanged zeolite has the potential to be used as antibacterial paper for packaging food products.</p>","PeriodicalId":619,"journal":{"name":"Journal of Coatings Technology and Research","volume":"34 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141529511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-17DOI: 10.1007/s11998-024-00954-z
Duong Thi Thuy Nguyen, Dai Ba Do, Thinh Huu Nguyen, Chinh Thuy Nguyen, Thai Xuan Nguyen, Hung Phi Dao, Hoang Thai, Linh Ngoc Nguyen, Manh Quoc Vu, Trung Quoc Vu
In this study, we utilized nanocomposites prepared from nanosilica (SiO2) and various polythiophene derivatives as enhancement additives for acrylic coatings. The nanocomposites were synthesized in a nitrogen environment using FeCl3 as a catalyst in a chloroform solvent. The weight ratio of nanosilica to monomers was 2/1, specifically for the compounds (5-benzo[d]thiazol-2-yl)-7-methoxy-2-(thiophen-3-yl)benzo[d]oxazole (P1), 3-(2-benzothiazolyl)thiophene (P2), and 5-(benzo[d]thiazol-2-yl)-2-(thiophene-3-yl)benzo[d]oxazole (P3). Analysis techniques including IR, TGA, SEM, and UV–Vis were employed to demonstrate the formation of polythiophenes on the surface of the nanosilica. The presence of polythiophenes on the nanosilica broadened the UV absorption region. Upon adding the nanocomposites to acrylic coatings, the UV absorption intensity of the coatings was increased. Notably, the coating containing SiO2-P3 nanocomposite exhibited the highest abrasion resistance among all the investigated samples. By varying the content of SiO2-P3 nanocomposite, we observed enhanced abrasion resistance, adhesion, pencil hardness, and gloss of the acrylic coating. The maximum values were achieved when the content of SiO2-P3 nanoparticles was 2 wt.%. The SiO2-P3 nanoparticles were uniformly dispersed in the acrylic coatings, leading to an improvement in the coating's sunlight-reflective ability. Consequently, the acrylic/SiO2-P3 nanocomposite coatings exhibited potential for outdoor applications, particularly as UV-resistant coatings.
{"title":"Effect of silica nanocomposite modified with some polythiophene derivations on characteristics and properties of waterborne acrylic coatings","authors":"Duong Thi Thuy Nguyen, Dai Ba Do, Thinh Huu Nguyen, Chinh Thuy Nguyen, Thai Xuan Nguyen, Hung Phi Dao, Hoang Thai, Linh Ngoc Nguyen, Manh Quoc Vu, Trung Quoc Vu","doi":"10.1007/s11998-024-00954-z","DOIUrl":"10.1007/s11998-024-00954-z","url":null,"abstract":"<div><p>In this study, we utilized nanocomposites prepared from nanosilica (SiO<sub>2</sub>) and various polythiophene derivatives as enhancement additives for acrylic coatings. The nanocomposites were synthesized in a nitrogen environment using FeCl<sub>3</sub> as a catalyst in a chloroform solvent. The weight ratio of nanosilica to monomers was 2/1, specifically for the compounds (5-benzo[<i>d</i>]thiazol-2-yl)-7-methoxy-2-(thiophen-3-yl)benzo[<i>d</i>]oxazole (P1), 3-(2-benzothiazolyl)thiophene (P2), and 5-(benzo[<i>d</i>]thiazol-2-yl)-2-(thiophene-3-yl)benzo[<i>d</i>]oxazole (P3). Analysis techniques including IR, TGA, SEM, and UV–Vis were employed to demonstrate the formation of polythiophenes on the surface of the nanosilica. The presence of polythiophenes on the nanosilica broadened the UV absorption region. Upon adding the nanocomposites to acrylic coatings, the UV absorption intensity of the coatings was increased. Notably, the coating containing SiO<sub>2</sub>-P3 nanocomposite exhibited the highest abrasion resistance among all the investigated samples. By varying the content of SiO<sub>2</sub>-P3 nanocomposite, we observed enhanced abrasion resistance, adhesion, pencil hardness, and gloss of the acrylic coating. The maximum values were achieved when the content of SiO<sub>2</sub>-P3 nanoparticles was 2 wt.%. The SiO<sub>2</sub>-P3 nanoparticles were uniformly dispersed in the acrylic coatings, leading to an improvement in the coating's sunlight-reflective ability. Consequently, the acrylic/SiO<sub>2</sub>-P3 nanocomposite coatings exhibited potential for outdoor applications, particularly as UV-resistant coatings.</p></div>","PeriodicalId":619,"journal":{"name":"Journal of Coatings Technology and Research","volume":"21 6","pages":"2063 - 2077"},"PeriodicalIF":2.3,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141506899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-14DOI: 10.1007/s11998-024-00945-0
Marcel Butschle, Markus Schackmann, Kim Dam-Johansen
Traditional polyurethane (PU) catalysts, especially dibutyl tin dilaurate, face scrutiny over toxicity concerns, leading to interest in safer alternatives. In an unexpected turn of events, research into a commercially available antibacterial agent revealed that it drastically reduced the pot life of PU coatings. Experiments show that when PU coatings were formulated with the antibacterial agent as catalyst, drying time and solvent resistance were improved as compared to traditional tin and zirconium catalysts. Further analysis showed that this was the result of copper compounds and it could be shown that a similar catalytic effect was achieved through Cu(II)-sulfate and Cu(II)-acetate. Such copper salts are not yet commonly known as replacements for tin catalysts. Possible mechanisms such as heterogenous catalysis or in-situ formation of the active compound were discussed.
{"title":"Challenging toxic tin catalysts in polyurethane coatings through serendipity","authors":"Marcel Butschle, Markus Schackmann, Kim Dam-Johansen","doi":"10.1007/s11998-024-00945-0","DOIUrl":"10.1007/s11998-024-00945-0","url":null,"abstract":"<div><p>Traditional polyurethane (PU) catalysts, especially dibutyl tin dilaurate, face scrutiny over toxicity concerns, leading to interest in safer alternatives. In an unexpected turn of events, research into a commercially available antibacterial agent revealed that it drastically reduced the pot life of PU coatings. Experiments show that when PU coatings were formulated with the antibacterial agent as catalyst, drying time and solvent resistance were improved as compared to traditional tin and zirconium catalysts. Further analysis showed that this was the result of copper compounds and it could be shown that a similar catalytic effect was achieved through Cu(II)-sulfate and Cu(II)-acetate. Such copper salts are not yet commonly known as replacements for tin catalysts. Possible mechanisms such as heterogenous catalysis or in-situ formation of the active compound were discussed.</p></div>","PeriodicalId":619,"journal":{"name":"Journal of Coatings Technology and Research","volume":"21 5","pages":"1857 - 1865"},"PeriodicalIF":2.3,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11998-024-00945-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141343183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-12DOI: 10.1007/s11998-024-00939-y
Nida Çelebi, Nebahat Aral, Özge Taştan
In this study, coated fabrics were developed using waterborne polyurethane (WPU) containing pomegranate peel (PoP) powders of varying particle sizes. The objective of this research is to diminish the synthetic polymer content by adopting a sustainable approach through the utilization of food waste and functionalized fabrics by using PoP powders with antibacterial properties. In the initial phase of the study, PoP powders were characterized based on parameters such as particle size, moisture content, water activity, water absorption capacity, total phenolic content, and antioxidant activity. Secondly, cotton fabrics were coated with WPU containing PoP powders (10 wt%). While it was observed that the particle size of PoP powders did not make a significant difference in the color and stress-strain values, antibacterial analysis showed that the coatings containing powders with the lowest particle distribution (18.2–81.7 µ, D50: 42.77 µ) resulted in larger inhibition zones. Consequently, functional fabrics with antibacterial properties against both S. aureus (Gram-positive) and P. aeruginosa (Gram-negative) bacteria were composed by incorporating PoP powders as fillers into WPU-coated cotton fabrics.
本研究使用含有不同粒径石榴皮粉末的水性聚氨酯(WPU)开发了涂层织物。这项研究的目的是通过利用食物垃圾和具有抗菌特性的石榴皮粉末功能化织物,采用可持续的方法减少合成聚合物的含量。在研究的初始阶段,根据粒度、含水量、水活性、吸水能力、总酚含量和抗氧化活性等参数对 PoP 粉进行了表征。其次,在棉织物上涂覆含有 PoP 粉末(10 wt%)的 WPU。据观察,PoP 粉的粒度对颜色和应力应变值的影响不大,但抗菌分析表明,含有最低粒度分布(18.2-81.7 µ,D50:42.77 µ)粉末的涂层会产生较大的抑菌区。因此,在 WPU 涂层棉织物中加入 PoP 粉作为填料,可制成对金黄色葡萄球菌(革兰氏阳性)和绿脓杆菌(革兰氏阴性)均具有抗菌特性的功能性织物。
{"title":"Development and characterization of pomegranate peel powder and waterborne polyurethane-coated fabrics","authors":"Nida Çelebi, Nebahat Aral, Özge Taştan","doi":"10.1007/s11998-024-00939-y","DOIUrl":"10.1007/s11998-024-00939-y","url":null,"abstract":"<div><p>In this study, coated fabrics were developed using waterborne polyurethane (WPU) containing pomegranate peel (PoP) powders of varying particle sizes. The objective of this research is to diminish the synthetic polymer content by adopting a sustainable approach through the utilization of food waste and functionalized fabrics by using PoP powders with antibacterial properties. In the initial phase of the study, PoP powders were characterized based on parameters such as particle size, moisture content, water activity, water absorption capacity, total phenolic content, and antioxidant activity. Secondly, cotton fabrics were coated with WPU containing PoP powders (10 wt%). While it was observed that the particle size of PoP powders did not make a significant difference in the color and stress-strain values, antibacterial analysis showed that the coatings containing powders with the lowest particle distribution (18.2–81.7 µ, <i>D</i><sub>50</sub>: 42.77 µ) resulted in larger inhibition zones. Consequently, functional fabrics with antibacterial properties against both <i>S. aureus</i> (Gram-positive) and <i>P. aeruginosa</i> (Gram-negative) bacteria were composed by incorporating PoP powders as fillers into WPU-coated cotton fabrics.</p></div>","PeriodicalId":619,"journal":{"name":"Journal of Coatings Technology and Research","volume":"21 5","pages":"1805 - 1818"},"PeriodicalIF":2.3,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141354833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-11DOI: 10.1007/s11998-024-00947-y
Van Phuc Mac, Minh Thanh Do, Anh Hiep Nguyen, Phi Hung Dao, Thien Vuong Nguyen, Cong Nguyen Pham, Tuan Anh Nguyen
This work explores how cenospheres (hollow microsphere) can provide a flame-retardant ability to the waterborne acrylic coating. For this purpose, the intumescent fire-retardant coating was prepared on the steel surface, from the acrylic emulsion polymer, flame-retardant additives (ammonium polyphosphate, melamine, pentaerythritol), and flame-retardant fillers (TiO2, Al(OH)3). The experimental results showed that after 60-min fire resistance test under burning torch of 900–1000 °C, the backside temperature of coated steel was in the range of 200–250 °C. Addition of cenosphere into the acrylic polymer coating (at 2–10 wt%) enhanced its fire resistance performance by reducing the backside temperature of coated steels from 27 to 76 °C, as compared to the pure coating without FACs. Data from the furnace test showed that the presence of FACs in coating reduced its intumescent factor (from 14.9 to 33.5%) but produced the denser char layer with a better heat shielding ability. XRD analysis confirmed the interaction between cenosphere and coating matrices at high temperatures by forming the heat-stable compounds. TGA data demonstrated that increasing the content of FACs in coating increased its char weight residue at high temperatures and enhanced its thermal stability and fire resistance. Data from the mechanical test indicated that the presence of cenosphere in the acrylic polymer coating did not affect its hardness but decreased its adhesion to the steel surface (from 5.3 to 23.8%).
Graphical abstract
这项研究探讨了仙人球(空心微球)如何为水性丙烯酸涂层提供阻燃能力。为此,在钢铁表面制备了膨胀型阻燃涂层,由丙烯酸乳液聚合物、阻燃添加剂(聚磷酸铵、三聚氰胺、季戊四醇)和阻燃填料(TiO2、Al(OH)3)组成。实验结果表明,在 900-1000 °C 的灼烧炬下进行 60 分钟的耐火试验后,涂层钢材的背面温度在 200-250 °C 之间。与不含 FACs 的纯涂层相比,在丙烯酸聚合物涂层中添加仙人球(2-10 wt%)可将涂层钢材的背面温度从 27 ℃ 降至 76 ℃,从而提高其耐火性能。熔炉试验的数据显示,涂层中 FAC 的存在降低了涂层的膨胀系数(从 14.9% 提高到 33.5%),但产生的炭层更致密,热屏蔽能力更强。XRD 分析证实,在高温下,炭黑与涂层基质之间通过形成热稳定化合物而发生相互作用。TGA 数据表明,涂料中 FAC 含量的增加提高了高温下的炭重残留,增强了其热稳定性和耐火性。机械测试数据表明,丙烯酸聚合物涂层中的碳圈不会影响其硬度,但会降低其与钢表面的附着力(从 5.3% 降至 23.8%)。
{"title":"A water-based flame-retardant coating with cenospheres","authors":"Van Phuc Mac, Minh Thanh Do, Anh Hiep Nguyen, Phi Hung Dao, Thien Vuong Nguyen, Cong Nguyen Pham, Tuan Anh Nguyen","doi":"10.1007/s11998-024-00947-y","DOIUrl":"10.1007/s11998-024-00947-y","url":null,"abstract":"<div><p>This work explores how cenospheres (hollow microsphere) can provide a flame-retardant ability to the waterborne acrylic coating. For this purpose, the intumescent fire-retardant coating was prepared on the steel surface, from the acrylic emulsion polymer, flame-retardant additives (ammonium polyphosphate, melamine, pentaerythritol), and flame-retardant fillers (TiO<sub>2</sub>, Al(OH)<sub>3</sub>). The experimental results showed that after 60-min fire resistance test under burning torch of 900–1000 °C, the backside temperature of coated steel was in the range of 200–250 °C. Addition of cenosphere into the acrylic polymer coating (at 2–10 wt%) enhanced its fire resistance performance by reducing the backside temperature of coated steels from 27 to 76 °C, as compared to the pure coating without FACs. Data from the furnace test showed that the presence of FACs in coating reduced its intumescent factor (from 14.9 to 33.5%) but produced the denser char layer with a better heat shielding ability. XRD analysis confirmed the interaction between cenosphere and coating matrices at high temperatures by forming the heat-stable compounds. TGA data demonstrated that increasing the content of FACs in coating increased its char weight residue at high temperatures and enhanced its thermal stability and fire resistance. Data from the mechanical test indicated that the presence of cenosphere in the acrylic polymer coating did not affect its hardness but decreased its adhesion to the steel surface (from 5.3 to 23.8%).</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":619,"journal":{"name":"Journal of Coatings Technology and Research","volume":"21 6","pages":"1977 - 1992"},"PeriodicalIF":2.3,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141355809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-07DOI: 10.1007/s11998-024-00943-2
Youhua Zhang, Meng Zhao, Qiang Luo, Jian Liu, Zewen Zhu, Li Dai, Yao Rong, Yaoting Zhu, Zeyu Fan, Wei Han
Fluorocarbon surfactants are widely used, especially in the emulsion polymerization of fluoropolymers, due to their high surface activity, excellent stability, and excellent compatibility. However, the long-term environmental pollution of perfluoroalkyl and polyfluoroalkyl groups in fluorocarbon surfactants has made them banned. Here, we designed and prepared an environmentally friendly zwitterionic fluorocarbon surfactant (PFSC) through shortening fluorocarbon chains and covalent bonding them with the zwitterionic groups, and further demonstrated the effect on the emulsion polymerization of fluoropolymers. The results showed that the surface tension of the emulsion after adding PFSC reached 12 mN/m at a concentration above 0.05%, which is significantly superior to that of perfluorooctanoic acid (PFOA). The study also examined the reaction kinetics, emulsion particle size, and emulsion stability during the emulsion polymerization reaction. The results demonstrated that the fluorinated surfactant exhibits excellent emulsification effects and can serve as an alternative to PFOA. This work presents the synthesis strategy of a new environmentally friendly zwitterionic fluorocarbon surfactant for high-efficiency emulsion polymerization of fluoropolymers.
{"title":"Environmentally friendly zwitterionic fluorocarbon surfactant for high-efficiency emulsion polymerization of fluoropolymers","authors":"Youhua Zhang, Meng Zhao, Qiang Luo, Jian Liu, Zewen Zhu, Li Dai, Yao Rong, Yaoting Zhu, Zeyu Fan, Wei Han","doi":"10.1007/s11998-024-00943-2","DOIUrl":"10.1007/s11998-024-00943-2","url":null,"abstract":"<div><p>Fluorocarbon surfactants are widely used, especially in the emulsion polymerization of fluoropolymers, due to their high surface activity, excellent stability, and excellent compatibility. However, the long-term environmental pollution of perfluoroalkyl and polyfluoroalkyl groups in fluorocarbon surfactants has made them banned. Here, we designed and prepared an environmentally friendly zwitterionic fluorocarbon surfactant (PFSC) through shortening fluorocarbon chains and covalent bonding them with the zwitterionic groups, and further demonstrated the effect on the emulsion polymerization of fluoropolymers. The results showed that the surface tension of the emulsion after adding PFSC reached 12 mN/m at a concentration above 0.05%, which is significantly superior to that of perfluorooctanoic acid (PFOA). The study also examined the reaction kinetics, emulsion particle size, and emulsion stability during the emulsion polymerization reaction. The results demonstrated that the fluorinated surfactant exhibits excellent emulsification effects and can serve as an alternative to PFOA. This work presents the synthesis strategy of a new environmentally friendly zwitterionic fluorocarbon surfactant for high-efficiency emulsion polymerization of fluoropolymers.</p></div>","PeriodicalId":619,"journal":{"name":"Journal of Coatings Technology and Research","volume":"21 5","pages":"1831 - 1842"},"PeriodicalIF":2.3,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141373018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}