Numerous synergistic anticorrosion methods have attracted great research interest. A silicone-modified self-healing polyurethane composite coating, known as MXene@ fluorinated polyaniline, was synthesized through in situ polymerization of fluorinated polyaniline on the MXene surface using polydopamine to enhance the compatibility between the filler and the polyurethane coating. The anticorrosion efficiency of the coating was examined in a 3.5 wt% NaCl solution via electrochemical impedance spectroscopy. The synergistic effect of polyaniline passivation and the physical barrier effect of MXene indicated that even after 100 d of immersion, the impedance modulus of the composite coating at 0.01 Hz remained above 108 Ω·cm2. Additionally, the introduction of disulfide linkages into the coating endowed it with self-healing properties. Owing to the superior photothermal capabilities of MXene, polyaniline, and polydopamine, the polyurethane coating exhibited self-healing abilities in the presence of sunlight. The coating retained its mechanical and anticorrosion properties both before and after the self-healing process. This approach integrates the synergistic effects of MXene, polyaniline, and dynamic disulfide bonds to meet the requirements of coatings in harsh environments, thereby prolonging the lifespan of metals.
{"title":"Synthesis of silicone-modified self-healing polyurethane coatings with MXene@fluorinated polyaniline for prolonged corrosion resistance","authors":"Aimin Ran, Fenyong Liang, Sidi Yu, Yinbo Gan, Wei Yang, Bing Fan, Yuegang Cao, Liangkun Zhang","doi":"10.1007/s11998-024-00952-1","DOIUrl":"10.1007/s11998-024-00952-1","url":null,"abstract":"<div><p>Numerous synergistic anticorrosion methods have attracted great research interest. A silicone-modified self-healing polyurethane composite coating, known as MXene@ fluorinated polyaniline, was synthesized through in situ polymerization of fluorinated polyaniline on the MXene surface using polydopamine to enhance the compatibility between the filler and the polyurethane coating. The anticorrosion efficiency of the coating was examined in a 3.5 wt% NaCl solution via electrochemical impedance spectroscopy. The synergistic effect of polyaniline passivation and the physical barrier effect of MXene indicated that even after 100 d of immersion, the impedance modulus of the composite coating at 0.01 Hz remained above 10<sup>8</sup> Ω·cm<sup>2</sup>. Additionally, the introduction of disulfide linkages into the coating endowed it with self-healing properties. Owing to the superior photothermal capabilities of MXene, polyaniline, and polydopamine, the polyurethane coating exhibited self-healing abilities in the presence of sunlight. The coating retained its mechanical and anticorrosion properties both before and after the self-healing process. This approach integrates the synergistic effects of MXene, polyaniline, and dynamic disulfide bonds to meet the requirements of coatings in harsh environments, thereby prolonging the lifespan of metals.</p></div>","PeriodicalId":619,"journal":{"name":"Journal of Coatings Technology and Research","volume":"21 6","pages":"2035 - 2046"},"PeriodicalIF":2.3,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141195706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
There are many harmful chemicals in the wood protection and coating industry. These substances adversely affect human health over time and cause many diseases such as respiratory tract, skin, or lung cancer over time. In this study, bio-based nano-coatings as a replacement of bisphenol-A (BPA) were prepared by both protecting the wood organically and trying to prevent applications that would adversely affect human health. This study was aimed to improve wood properties such as oven and air-dry densities and water absorption (WA) from physical properties, color, gloss, and roughness from surface properties after natural weathering, and compression strength parallel to the grain (CSPG) from mechanical properties by coating these materials on Oriental beech wood. New bio-based epoxide–amine (EP) coatings were preferred over BPA material and their nano-composite coating derivatives including fullerenes, graphene, and carbon nanotubes were prepared by reactions of epoxy-functionalized tung. A diamine hardener (isophorone diamine) and epoxide tung oil (ETO) doped with nanoparticles were cured, and their physical properties were also determined. Consistent with our previous work, glycidyl methacrylate and tung oil were preferred to form epoxy-functionalized tung oil (ETO) by opting for a Diels–Alder reaction. The new bio-based epoxide–amine-cured systems were created at ambient temperature using a 1:1 epoxy-to-amine molar ratio. The specimens covered with epoxide nano-composites exhibited greater water resistance than the control group. When the surface properties of the epoxy nano-composite-coated specimens after weathering were examined, a more stable color change was observed compared to the control group. Furthermore, while the glossiness of the epoxide nano-composite-coated specimens decreased more than the control group, their roughness increased more. CSPG of epoxy-coated specimens increased a little bit compared to the control group, but no statistical difference was found.
木材保护和涂料行业中存在许多有害化学物质。随着时间的推移,这些物质会对人类健康产生不利影响,并引发多种疾病,如呼吸道癌、皮肤癌或肺癌。在这项研究中,制备了生物基纳米涂料,作为双酚 A(BPA)的替代品,既对木材进行有机保护,又尽量避免应用会对人类健康产生不利影响的物质。本研究旨在通过在东方榉木上涂覆这些材料,改善木材的物理性质,如烘箱密度和风干密度以及吸水率(WA);自然风化后的表面性质,如颜色、光泽和粗糙度;以及机械性质,如平行于纹理的压缩强度(CSPG)。与双酚 A 材料相比,新型生物基环氧胺(EP)涂料更受青睐,其纳米复合涂料衍生物包括富勒烯、石墨烯和碳纳米管,由环氧功能化桐反应制备而成。固化了二胺固化剂(异佛尔酮二胺)和掺杂纳米颗粒的环氧桐油(ETO),并测定了它们的物理性质。与我们之前的工作一致,甲基丙烯酸缩水甘油酯和桐油通过选择 Diels-Alder 反应形成环氧官能化桐油(ETO)。新的生物基环氧胺固化体系是在常温下以 1:1 的环氧胺摩尔比制成的。与对照组相比,覆盖环氧纳米复合材料的试样表现出更强的耐水性。在检测环氧纳米复合材料涂层试样风化后的表面特性时,发现与对照组相比,环氧纳米复合材料涂层试样的颜色变化更加稳定。此外,环氧纳米复合材料涂层试样的光泽度比对照组下降得更多,但粗糙度却增加得更多。环氧树脂涂层试样的 CSPG 与对照组相比略有增加,但没有发现统计学差异。
{"title":"Physical, mechanical, and surface properties of Oriental beech coated with bio-based epoxide nano-coatings after weathering","authors":"Çağlar Altay, İlknur Babahan-Bircan, Hilmi Toker, Ergün Baysal","doi":"10.1007/s11998-024-00951-2","DOIUrl":"10.1007/s11998-024-00951-2","url":null,"abstract":"<div><p>There are many harmful chemicals in the wood protection and coating industry. These substances adversely affect human health over time and cause many diseases such as respiratory tract, skin, or lung cancer over time. In this study, bio-based nano-coatings as a replacement of bisphenol-A (BPA) were prepared by both protecting the wood organically and trying to prevent applications that would adversely affect human health. This study was aimed to improve wood properties such as oven and air-dry densities and water absorption (WA) from physical properties, color, gloss, and roughness from surface properties after natural weathering, and compression strength parallel to the grain (CSPG) from mechanical properties by coating these materials on Oriental beech wood. New bio-based epoxide–amine (EP) coatings were preferred over BPA material and their nano-composite coating derivatives including fullerenes, graphene, and carbon nanotubes were prepared by reactions of epoxy-functionalized tung. A diamine hardener (isophorone diamine) and epoxide tung oil (ETO) doped with nanoparticles were cured, and their physical properties were also determined. Consistent with our previous work, glycidyl methacrylate and tung oil were preferred to form epoxy-functionalized tung oil (ETO) by opting for a Diels–Alder reaction. The new bio-based epoxide–amine-cured systems were created at ambient temperature using a 1:1 epoxy-to-amine molar ratio. The specimens covered with epoxide nano-composites exhibited greater water resistance than the control group. When the surface properties of the epoxy nano-composite-coated specimens after weathering were examined, a more stable color change was observed compared to the control group. Furthermore, while the glossiness of the epoxide nano-composite-coated specimens decreased more than the control group, their roughness increased more. CSPG of epoxy-coated specimens increased a little bit compared to the control group, but no statistical difference was found.</p></div>","PeriodicalId":619,"journal":{"name":"Journal of Coatings Technology and Research","volume":"21 6","pages":"2023 - 2034"},"PeriodicalIF":2.3,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141195938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-28DOI: 10.1007/s11998-024-00949-w
Rongkang Xu, Hong Ye, Mingyuan Wu, Qingyun Wu, Jianjun Yang, Jiuyi Liu, Jianan Zhang
Superamphiphobic coating with excellent optical transmittance has immense potential for utilization in many fields. However, it is challenging to maintain superamphiphobic surface with high transparency. Herein, a lotus leaf-inspired double-layered coating is proposed. The bottom layer of the coating consisted of fluorosilane-modified epoxy resin, while the top layer was composed of fluorosilane-modified SiO2 and cellulose nanofibers (CNFs). The trends of optical transmittance and oil-water contact angle of the coating at different mass ratios between SiO2 and CNFs were systematically investigated, and the stability of the coating was further studied by means of immersion in water, tape peeling, falling sand abrasion, and ultraviolet radiation. Experimental results showed that the coating exhibited the best comprehensive performance when the mass ratio of SiO2 to CNFs was 1:1. The coating exhibited optical transmittance of 79%, while the contact angles of water, glycerol, glycol, and hexadecane were up to 169°, 163.5°, 155.2°, and 125.4°, respectively. Even after the stability test, the coating still showed a good superamphiphobic performance. This demonstrates that the coating exhibited excellent optical transmittance, good chemical stabilities, and high mechanical stability.