Excessive heat build-up of painted surfaces due to solar radiation and the resulting increase in interior temperatures is undesirable and even dangerous for roofing, facades, and other structural elements. One way to reduce surface temperature is to apply suitably pigmented organic coatings exhibiting high solar reflectance properties. The use of high solar reflectance pigments in paints resulted in coatings with high total solar reflectance (TSR) values, and thus with the ability to reduce the temperature of the painted substrate. The coatings were tested under laboratory and outdoor conditions on two livestock farms. It was found that the developed coatings exhibit significantly higher TSR values than commercial coatings of the same colors designed for painting roofs. The TSR values do not change when the coatings are exposed to the weather.
对于屋顶、外墙和其他结构部件来说,太阳辐射造成的涂漆表面过多热量积聚以及由此导致的室内温度升高是不可取的,甚至是危险的。降低表面温度的一种方法是使用具有高太阳反射率特性的适当颜料有机涂料。在涂料中使用高太阳反射率颜料可获得高太阳总反射率(TSR)值的涂料,从而能够降低被涂基材的温度。在两个畜牧场的实验室和室外条件下对涂料进行了测试。结果发现,所开发的涂料的 TSR 值明显高于专为涂刷屋顶而设计的相同颜色的商用涂料。当涂料暴露在天气中时,TSR 值不会发生变化。
{"title":"Coatings with high solar reflectivity: heat build-up in laboratory and real conditions","authors":"Ewa Langer, Małgorzata Zubielewicz, Bartosz Kopyciński","doi":"10.1007/s11998-024-00935-2","DOIUrl":"10.1007/s11998-024-00935-2","url":null,"abstract":"<div><p>Excessive heat build-up of painted surfaces due to solar radiation and the resulting increase in interior temperatures is undesirable and even dangerous for roofing, facades, and other structural elements. One way to reduce surface temperature is to apply suitably pigmented organic coatings exhibiting high solar reflectance properties. The use of high solar reflectance pigments in paints resulted in coatings with high total solar reflectance (TSR) values, and thus with the ability to reduce the temperature of the painted substrate. The coatings were tested under laboratory and outdoor conditions on two livestock farms. It was found that the developed coatings exhibit significantly higher TSR values than commercial coatings of the same colors designed for painting roofs. The TSR values do not change when the coatings are exposed to the weather.</p></div>","PeriodicalId":619,"journal":{"name":"Journal of Coatings Technology and Research","volume":"21 5","pages":"1783 - 1793"},"PeriodicalIF":2.3,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140885949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-03DOI: 10.1007/s11998-024-00929-0
Yadav Narendra Kumar Rajbahadur, Avinash Kumar, Sushant Negi, Simanchal Kar
Photovoltaic modules have emerged as a crucial technology for generating electricity from renewable sources to advance toward achieving neutrality in carbon emissions. Nevertheless, the efficacy and overall effectiveness of solar PV cells are significantly affected by various aspects, including ecological conditions and operation and maintenance practices. These factors directly impact the outcome, energy utilization efficacy, productivity, and lifespan of the PV cells, ultimately influencing the economic aspects of power generation. A highly effective method for mitigating ecological factors is applying a self-cleaning and antireflective coating, which utilizes micro–nano structures and surface wettability to facilitate cleaning and enhance light transmission. This study investigates the influence of ecological and operational factors on solar PV cell effectiveness. Further, a brief summary of the basic principles and development of self-cleaning and antireflective coating is presented by examining recent research. The review reveals that soiling, humidity, and temperature negatively influence the performance of PV modules. In humid conditions, dust deposition leads to the formation of adhesive mud on PV cells, resulting in a reduction of power generation by as high as ~ 70%. In addition, it is also suggested that the application of self-cleaning and antireflection coating on PV modules enhances its efficiency by ~ 11% compared to uncoated modules. Lastly, a comparative analysis of hydrophobic and hydrophilic coatings, various coating methods, and their durability and life expectancy are summarized, and a few effective processes are highlighted for their promising research outcomes.
{"title":"Evaluation of hydrophobic/hydrophilic and antireflective coatings for photovoltaic panels","authors":"Yadav Narendra Kumar Rajbahadur, Avinash Kumar, Sushant Negi, Simanchal Kar","doi":"10.1007/s11998-024-00929-0","DOIUrl":"https://doi.org/10.1007/s11998-024-00929-0","url":null,"abstract":"<p>Photovoltaic modules have emerged as a crucial technology for generating electricity from renewable sources to advance toward achieving neutrality in carbon emissions. Nevertheless, the efficacy and overall effectiveness of solar PV cells are significantly affected by various aspects, including ecological conditions and operation and maintenance practices. These factors directly impact the outcome, energy utilization efficacy, productivity, and lifespan of the PV cells, ultimately influencing the economic aspects of power generation. A highly effective method for mitigating ecological factors is applying a self-cleaning and antireflective coating, which utilizes micro–nano structures and surface wettability to facilitate cleaning and enhance light transmission. This study investigates the influence of ecological and operational factors on solar PV cell effectiveness. Further, a brief summary of the basic principles and development of self-cleaning and antireflective coating is presented by examining recent research. The review reveals that soiling, humidity, and temperature negatively influence the performance of PV modules. In humid conditions, dust deposition leads to the formation of adhesive mud on PV cells, resulting in a reduction of power generation by as high as ~ 70%. In addition, it is also suggested that the application of self-cleaning and antireflection coating on PV modules enhances its efficiency by ~ 11% compared to uncoated modules. Lastly, a comparative analysis of hydrophobic and hydrophilic coatings, various coating methods, and their durability and life expectancy are summarized, and a few effective processes are highlighted for their promising research outcomes.</p>","PeriodicalId":619,"journal":{"name":"Journal of Coatings Technology and Research","volume":"22 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140886113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-30DOI: 10.1007/s11998-024-00934-3
Zachary Shepard, D. M. L. Meyer, Kayla Kurtz, Asa Julien, Vinka Oyanedel-Craver, Lucie Maranda
Biofouling release coatings (BRCs) have received attention for their potential to limit the negative impacts of biofouling on marine shipping. The calibrated water jet (CWJ, patent # US 8,984,958 B1) can be used to study the effectiveness of BRCs as a function of ship speed. Using a balance of force and linear momentum, we examined the theory and application of the CWJ for simulating the effect of ship speed on biofilm release for surfaces fouled under (1) laboratory and (2) natural conditions. Greater fouling release corresponded with an increase in CWJ pressure and, therefore, simulated ship speed for the surfaces coated with HullKote. The effectiveness of the CWJ was further confirmed for biofilm release from glass fouled naturally by submersion in flow-through seawater. A scaling analysis confirms that the results of these small-scale experiments are applicable to larger-scale biofouling release from ship hulls. This study is the first to utilize the pressure of a CWJ to quantify biofouling release as a function of simulated ship speed.
{"title":"Testing for biofilm release as a function of simulated ship speed using a calibrated water jet device","authors":"Zachary Shepard, D. M. L. Meyer, Kayla Kurtz, Asa Julien, Vinka Oyanedel-Craver, Lucie Maranda","doi":"10.1007/s11998-024-00934-3","DOIUrl":"10.1007/s11998-024-00934-3","url":null,"abstract":"<div><p>Biofouling release coatings (BRCs) have received attention for their potential to limit the negative impacts of biofouling on marine shipping. The calibrated water jet (CWJ, patent # US 8,984,958 B1) can be used to study the effectiveness of BRCs as a function of ship speed. Using a balance of force and linear momentum, we examined the theory and application of the CWJ for simulating the effect of ship speed on biofilm release for surfaces fouled under (1) laboratory and (2) natural conditions. Greater fouling release corresponded with an increase in CWJ pressure and, therefore, simulated ship speed for the surfaces coated with HullKote. The effectiveness of the CWJ was further confirmed for biofilm release from glass fouled naturally by submersion in flow-through seawater. A scaling analysis confirms that the results of these small-scale experiments are applicable to larger-scale biofouling release from ship hulls. This study is the first to utilize the pressure of a CWJ to quantify biofouling release as a function of simulated ship speed.</p></div>","PeriodicalId":619,"journal":{"name":"Journal of Coatings Technology and Research","volume":"21 5","pages":"1773 - 1781"},"PeriodicalIF":2.3,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11998-024-00934-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140829088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-29DOI: 10.1007/s11998-024-00925-4
Meihui Tang, Lin Su, Zhimeng Zhao, Siyu Wu, Pengfei Li, Xiaofeng Zhao, Fei Zhou, Yuxiang Li, Shanlin Wang
Thermal insulating coatings have important potential for energy saving in the field of building thermal management, but they are difficult to apply on a large scale due to the problem of being waterproof and moistureproof. Herein, we design a two-step spray process to fabricate a thermal insulating superhydrophobic composite coating using epoxy resin mixed with hollow glass microsphere as primer coating and fluorine-modified SiO2 nanocoating as a waterproof layer. The composite coating shows durable superhydrophobicity and low thermal conductivity [0.051 W/(m·k)], which is endowed with excellent thermal insulating properties under light and heat, contact heat conduction (− 20 to 70 °C), and boiling water scouring environment. These multiple key properties that have been integrated into our composite film are expected to provide unique advantages for applications in building thermal management.
{"title":"Thermal insulating superhydrophobic composite coating for building thermal management","authors":"Meihui Tang, Lin Su, Zhimeng Zhao, Siyu Wu, Pengfei Li, Xiaofeng Zhao, Fei Zhou, Yuxiang Li, Shanlin Wang","doi":"10.1007/s11998-024-00925-4","DOIUrl":"10.1007/s11998-024-00925-4","url":null,"abstract":"<div><p>Thermal insulating coatings have important potential for energy saving in the field of building thermal management, but they are difficult to apply on a large scale due to the problem of being waterproof and moistureproof. Herein, we design a two-step spray process to fabricate a thermal insulating superhydrophobic composite coating using epoxy resin mixed with hollow glass microsphere as primer coating and fluorine-modified SiO<sub>2</sub> nanocoating as a waterproof layer. The composite coating shows durable superhydrophobicity and low thermal conductivity [0.051 W/(m·k)], which is endowed with excellent thermal insulating properties under light and heat, contact heat conduction (− 20 to 70 °C), and boiling water scouring environment. These multiple key properties that have been integrated into our composite film are expected to provide unique advantages for applications in building thermal management.</p></div>","PeriodicalId":619,"journal":{"name":"Journal of Coatings Technology and Research","volume":"21 5","pages":"1691 - 1702"},"PeriodicalIF":2.3,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140829080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In order to increase the concentrations of bio-based alkyd polyols (or fatty acids) in self-crosslinking polyurethane dispersions, herein, a series of novel alkyd polyol-based autoxidizable waterborne polyurethane dispersions (AWPUDs) with different fatty acid contents, long storage stability, and low viscosity were successfully prepared by adding dimethylol propionic acid (DMPA) self-emulsifier in the late stage of their synthesis. They and their corresponding curing films were characterized by Fourier transform infrared spectroscopy (FTIR), particle size analysis, rheology measurement, storage stability evaluation, thermogravimetric analysis, dynamic thermomechanical analysis (DMA), etc. The results showed that the addition process of DMPA played a critical role for the excellent features of AWPUDs. Additionally, the crosslinking density, gel contents, and water contact angles of AWPUD films increased with the enlarged fatty acid contents, whereas their water uptake capability decreased. Moreover, a series of AWPUD coatings were prepared, and their properties like drying times, hardness development, pencil hardness, adhesion capability, impact resistance, flexibility, and water resistances were all effectively improved with the increased fatty acid contents, significantly superior to those of waterborne alkyd coatings and waterborne polyurethane coatings without fatty acids.
{"title":"Preparation and coating properties of alkyd polyol-based autoxidizable waterborne polyurethane dispersions with high fatty acid content, long storage stability, and low viscosity","authors":"Zecheng Lin, Qingyuan Zeng, Yucheng Zhang, Yongbo Ding, Shuai Chen, Yongluo Qiao, Liang Shen","doi":"10.1007/s11998-024-00928-1","DOIUrl":"10.1007/s11998-024-00928-1","url":null,"abstract":"<div><p>In order to increase the concentrations of bio-based alkyd polyols (or fatty acids) in self-crosslinking polyurethane dispersions, herein, a series of novel alkyd polyol-based autoxidizable waterborne polyurethane dispersions (AWPUDs) with different fatty acid contents, long storage stability, and low viscosity were successfully prepared by adding dimethylol propionic acid (DMPA) self-emulsifier in the late stage of their synthesis. They and their corresponding curing films were characterized by Fourier transform infrared spectroscopy (FTIR), particle size analysis, rheology measurement, storage stability evaluation, thermogravimetric analysis, dynamic thermomechanical analysis (DMA), etc. The results showed that the addition process of DMPA played a critical role for the excellent features of AWPUDs. Additionally, the crosslinking density, gel contents, and water contact angles of AWPUD films increased with the enlarged fatty acid contents, whereas their water uptake capability decreased. Moreover, a series of AWPUD coatings were prepared, and their properties like drying times, hardness development, pencil hardness, adhesion capability, impact resistance, flexibility, and water resistances were all effectively improved with the increased fatty acid contents, significantly superior to those of waterborne alkyd coatings and waterborne polyurethane coatings without fatty acids.</p></div>","PeriodicalId":619,"journal":{"name":"Journal of Coatings Technology and Research","volume":"21 5","pages":"1713 - 1727"},"PeriodicalIF":2.3,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140836013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-29DOI: 10.1007/s11998-024-00950-3
Alessandro Condini, Carlo Trentalange, Angela Giuliani, Andrea Cristoforetti, Stefano Rossi
This study investigates a novel solvent-free, UV LED-curable coating as a robust corrosion protection solution for the inner surface of steel pipelines. The properties of the UV-cured film were characterized in terms of reactivity, thermomechanical properties, and adhesion to metal substrates. The coating was applied to the inside steel pipelines and cured using a patented UV LED lamp designed to fit in confined spaces. Finally, electrochemical impedance spectroscopy characterization and an accelerated cyclic electrochemical technique were performed on the coated pipes to study the corrosion protection properties of the coating, both with and without the addition of inorganic fillers. The results were compared to a commercially available thermally cured coating. It was found that the UV-cured coating confers high barrier properties, effectively preventing liquid penetration even under elevated temperature conditions. Furthermore, the corrosion protection performance in harsh environments was comparable to and, in some cases, higher than standard epoxy linings.
本研究探讨了一种新型的无溶剂紫外线 LED 固化涂层,作为钢质管道内表面的强腐蚀保护解决方案。研究人员从反应性、热力学特性以及与金属基材的附着力等方面对紫外线固化薄膜的特性进行了表征。涂层被涂抹在钢制管道内部,并使用专为狭小空间设计的专利紫外线 LED 灯进行固化。最后,对涂层管道进行了电化学阻抗光谱表征和加速循环电化学技术,以研究涂层的防腐蚀性能,包括添加和不添加无机填料的情况。研究结果与市售的热固化涂层进行了比较。结果发现,紫外线固化涂层具有很高的阻隔性能,即使在高温条件下也能有效防止液体渗透。此外,在恶劣环境中的防腐蚀性能与标准环氧内衬相当,在某些情况下甚至高于标准环氧内衬。
{"title":"Advancing corrosion protection in confined spaces: a solvent-free UV LED-curable coating for steel pipelines with enhanced barrier properties and harsh environment performance","authors":"Alessandro Condini, Carlo Trentalange, Angela Giuliani, Andrea Cristoforetti, Stefano Rossi","doi":"10.1007/s11998-024-00950-3","DOIUrl":"10.1007/s11998-024-00950-3","url":null,"abstract":"<div><p>This study investigates a novel solvent-free, UV LED-curable coating as a robust corrosion protection solution for the inner surface of steel pipelines. The properties of the UV-cured film were characterized in terms of reactivity, thermomechanical properties, and adhesion to metal substrates. The coating was applied to the inside steel pipelines and cured using a patented UV LED lamp designed to fit in confined spaces. Finally, electrochemical impedance spectroscopy characterization and an accelerated cyclic electrochemical technique were performed on the coated pipes to study the corrosion protection properties of the coating, both with and without the addition of inorganic fillers. The results were compared to a commercially available thermally cured coating. It was found that the UV-cured coating confers high barrier properties, effectively preventing liquid penetration even under elevated temperature conditions. Furthermore, the corrosion protection performance in harsh environments was comparable to and, in some cases, higher than standard epoxy linings.</p></div>","PeriodicalId":619,"journal":{"name":"Journal of Coatings Technology and Research","volume":"21 6","pages":"2009 - 2022"},"PeriodicalIF":2.3,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11998-024-00950-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140829005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-25DOI: 10.1007/s11998-024-00932-5
Daegeun Oh, Junyoung Park, Young Kyu Song, Seung Man Noh, Hyun Wook Jung
Crosslinking systems play a vital role in the coating industry by significantly improving the wear resistance, chemical resistance, and toughness of the coatings. In particular, polyfunctional aziridines, known for their distinctive nitrogen-containing three-membered ring structures, serve as versatile crosslinkers in automotive coatings and adhesives. These crosslinkers can effectively enhance both the physical and chemical properties of polyurethane coatings. This study focuses on investigating the impact of two different trifunctional aziridines on the thermal curing characteristics of 2K clearcoats containing free-isocyanate crosslinker and polyacrylic resin. The analysis confirmed the ring-opening reaction of the aziridine crosslinker with the carboxyl groups in the resin at room temperature, as evidenced by changes in the –NH stretching frequency in the Fourier transform infrared spectra. To assess the real-time curing performance of aziridines during thermal curing at 80 °C, rheological storage modulus and curing behavior of the formulated 2K clearcoats were measured using a rotational rheometer and a rigid-body pendulum tester. Additionally, nano-indentation and nano-scratch tests were conducted to quantitatively evaluate the surface hardness and scratch resistance of the cured clearcoat films. By examining the relationship between the curing dynamics and the final mechanical properties, this study offers insights into optimizing the amount of aziridines required to enhance the properties of clearcoat films.
交联体系在涂料工业中发挥着至关重要的作用,可显著提高涂料的耐磨性、耐化学性和韧性。其中,多官能团氮丙啶因其独特的含氮三元环结构而闻名,是汽车涂料和粘合剂中的多功能交联剂。这些交联剂可有效提高聚氨酯涂料的物理和化学特性。本研究主要探讨了两种不同的三官能团氮丙啶对含有游离异氰酸酯交联剂和聚丙烯酸树脂的 2K 透明涂层热固化特性的影响。分析证实,氮丙啶交联剂与树脂中的羧基在室温下发生了开环反应,傅里叶变换红外光谱中 -NH 伸展频率的变化证明了这一点。为了评估氮丙啶类化合物在 80 °C 热固化过程中的实时固化性能,使用旋转流变仪和刚体摆锤测试仪测量了配制的 2K 透明涂层的流变储存模量和固化行为。此外,还进行了纳米压痕和纳米划痕测试,以定量评估固化清漆薄膜的表面硬度和抗划伤性。通过研究固化动力学与最终机械性能之间的关系,本研究为优化提高透明涂层薄膜性能所需的氮丙啶用量提供了启示。
{"title":"Crosslinking characteristics of aziridine crosslinkers in polyurethane-based clearcoats for automotive applications","authors":"Daegeun Oh, Junyoung Park, Young Kyu Song, Seung Man Noh, Hyun Wook Jung","doi":"10.1007/s11998-024-00932-5","DOIUrl":"10.1007/s11998-024-00932-5","url":null,"abstract":"<div><p>Crosslinking systems play a vital role in the coating industry by significantly improving the wear resistance, chemical resistance, and toughness of the coatings. In particular, polyfunctional aziridines, known for their distinctive nitrogen-containing three-membered ring structures, serve as versatile crosslinkers in automotive coatings and adhesives. These crosslinkers can effectively enhance both the physical and chemical properties of polyurethane coatings. This study focuses on investigating the impact of two different trifunctional aziridines on the thermal curing characteristics of 2K clearcoats containing free-isocyanate crosslinker and polyacrylic resin. The analysis confirmed the ring-opening reaction of the aziridine crosslinker with the carboxyl groups in the resin at room temperature, as evidenced by changes in the –NH stretching frequency in the Fourier transform infrared spectra. To assess the real-time curing performance of aziridines during thermal curing at 80 °C, rheological storage modulus and curing behavior of the formulated 2K clearcoats were measured using a rotational rheometer and a rigid-body pendulum tester. Additionally, nano-indentation and nano-scratch tests were conducted to quantitatively evaluate the surface hardness and scratch resistance of the cured clearcoat films. By examining the relationship between the curing dynamics and the final mechanical properties, this study offers insights into optimizing the amount of aziridines required to enhance the properties of clearcoat films.</p></div>","PeriodicalId":619,"journal":{"name":"Journal of Coatings Technology and Research","volume":"21 6","pages":"1893 - 1906"},"PeriodicalIF":2.3,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140654162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-24DOI: 10.1007/s11998-024-00933-4
Liu Jie, Zhang Feifei, Qiao Pengfei, Jin Liqiang, Wang Yulu, Lu Aide, Nian Xinyue
Waterborne polyurethane (WPU) has excellent performance because of its special soft and hard segments in polymer chains, but the relatively high cost, poor water vapor permeability, and inferior biocompatibility limit its application. The introduction of biomass materials can improve the performance of WPU. Keratin belongs to natural macro-molecule compounds which contain numerous peptide bonds and hydrophilic groups. It can make up for the shortcomings of WPU materials. In this study, keratin was extracted from the recycled cattle hair waste, and then it was chemically bonded with isocyanates, polyols, and other raw materials to prepare a keratin-modified WPU film which has excellent performance. First, polytetramethylene ether glycol (PTMEG) was reacted with 4.4-dicyclohexylmethane diisocyanate (HMDI) to form a prepolymer, then it was reacted with dimethylol propionic acid (DMPA), neopentyl glycol (NPG) and trimethylolpropane (TMP). The addition of keratin was in the emulsification process, and the structure of keratin-modified WPU was investigated. TG analysis results showed that the addition of keratin can improve the thermal stability of the WPU film with a higher residual carbon content at 600°C. The DMA analysis showed that the mechanical properties of the modified WPU film with a certain amount of keratin added (≤ 0.1%) were significantly improved. The yellowing resistance test showed that the addition of an appropriate amount (≤ 0.1%) of keratin can increase its stability to light, but the addition of an excessive amount of protein (≥ 0.2%) will result in a decrease in the yellowing resistance of the WPU film.
{"title":"Keratin-modified waterborne polyurethane: an alternative circular economy technology for adding value to cattle hair waste from leather tanneries","authors":"Liu Jie, Zhang Feifei, Qiao Pengfei, Jin Liqiang, Wang Yulu, Lu Aide, Nian Xinyue","doi":"10.1007/s11998-024-00933-4","DOIUrl":"10.1007/s11998-024-00933-4","url":null,"abstract":"<div><p>Waterborne polyurethane (WPU) has excellent performance because of its special soft and hard segments in polymer chains, but the relatively high cost, poor water vapor permeability, and inferior biocompatibility limit its application. The introduction of biomass materials can improve the performance of WPU. Keratin belongs to natural macro-molecule compounds which contain numerous peptide bonds and hydrophilic groups. It can make up for the shortcomings of WPU materials. In this study, keratin was extracted from the recycled cattle hair waste, and then it was chemically bonded with isocyanates, polyols, and other raw materials to prepare a keratin-modified WPU film which has excellent performance. First, polytetramethylene ether glycol (PTMEG) was reacted with 4.4-dicyclohexylmethane diisocyanate (HMDI) to form a prepolymer, then it was reacted with dimethylol propionic acid (DMPA), neopentyl glycol (NPG) and trimethylolpropane (TMP). The addition of keratin was in the emulsification process, and the structure of keratin-modified WPU was investigated. TG analysis results showed that the addition of keratin can improve the thermal stability of the WPU film with a higher residual carbon content at 600°C. The DMA analysis showed that the mechanical properties of the modified WPU film with a certain amount of keratin added (≤ 0.1%) were significantly improved. The yellowing resistance test showed that the addition of an appropriate amount (≤ 0.1%) of keratin can increase its stability to light, but the addition of an excessive amount of protein (≥ 0.2%) will result in a decrease in the yellowing resistance of the WPU film.</p></div>","PeriodicalId":619,"journal":{"name":"Journal of Coatings Technology and Research","volume":"21 5","pages":"1759 - 1771"},"PeriodicalIF":2.3,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140660070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-22DOI: 10.1007/s11998-024-00927-2
Yu-Ting Cao, Shuai-Wei Lu, Yu-hang Zhou, Jun Wei
The organosilicon intermediate with three hydroxyl groups was synthesized from isopropanol amine (MIPA) and (3-glycidoxypropyl) trimethoxy silane. Meanwhile, a polyurethane prepolymer, prepared by the polymerization of isophorone diisocyanate with 2, 2-bis(hydroxymethyl) propionic acid and polyethylene glycol (PEG-600) in sequence, was chain extended by the intermediate. Ultimately, methyl ethyl ketone oxime, a conventional isocyanate (NCO) blocking agent, was chosen to inactivate the branched polymers. Thus, a waterborne blocked crosslinker containing siloxane groups was achieved, which was further treated by a mixture of alcohol and water to obtain its hydrolyzed product, i.e., a crosslinker containing silanol groups. The structure and thermal properties of crosslinkers were analyzed by means of 1H-NMR, FTIR, TG, and DTG, respectively. The gel content, hardness, and adhesion of the cured coatings were also investigated. The results confirm the crosslinker system containing silanol groups performs much better, and when the hardness reaches 0.64 or above, the adhesion can still be maintained above 1.2 MPa.
{"title":"Novel organosilicon-modified polyisocyanate crosslinkers for curing of waterborne hydroxyl acrylic resin","authors":"Yu-Ting Cao, Shuai-Wei Lu, Yu-hang Zhou, Jun Wei","doi":"10.1007/s11998-024-00927-2","DOIUrl":"10.1007/s11998-024-00927-2","url":null,"abstract":"<div><p>The organosilicon intermediate with three hydroxyl groups was synthesized from isopropanol amine (MIPA) and (3-glycidoxypropyl) trimethoxy silane. Meanwhile, a polyurethane prepolymer, prepared by the polymerization of isophorone diisocyanate with 2, 2-bis(hydroxymethyl) propionic acid and polyethylene glycol (PEG-600) in sequence, was chain extended by the intermediate. Ultimately, methyl ethyl ketone oxime, a conventional isocyanate (NCO) blocking agent, was chosen to inactivate the branched polymers. Thus, a waterborne blocked crosslinker containing siloxane groups was achieved, which was further treated by a mixture of alcohol and water to obtain its hydrolyzed product, i.e., a crosslinker containing silanol groups. The structure and thermal properties of crosslinkers were analyzed by means of <sup>1</sup>H-NMR, FTIR, TG, and DTG, respectively. The gel content, hardness, and adhesion of the cured coatings were also investigated. The results confirm the crosslinker system containing silanol groups performs much better, and when the hardness reaches 0.64 or above, the adhesion can still be maintained above 1.2 MPa.</p></div>","PeriodicalId":619,"journal":{"name":"Journal of Coatings Technology and Research","volume":"21 5","pages":"1703 - 1711"},"PeriodicalIF":2.3,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11998-024-00927-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140674270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-22DOI: 10.1007/s11998-024-00919-2
Thi Lan Pham, Van Cuong Bui, Hai Khoa Le, Thi My Hanh Le, Xuan Minh Vu, Tuan Anh Nguyen, Thi Thu Hoai Pham, Thanh Tung Mai, T. A. Savitskaya, Dai Lam Tran
The preservation of fruits after harvesting has been one of the extensively studied concerns in recent times. In countries with tropical climates, high temperatures, and heavy rainfall like Vietnam, the post-harvest preservation of fruits holds significant practical importance. Avocados are a type of fruit rich in nutritional value and high economic significance. However, avocados have a short shelf life and are susceptible to damage and bruising during harvesting, transportation, and storage. In this study, a coating preservation product for avocados was developed using chitosan in combination with the active compound rutin, encapsulated in a complex with hydroxypropyl-β-cyclodextrin. Research results indicate that a chitosan solution with a concentration of 1.5%, prepared in a 1% acetic acid solution, and supplemented with the rutin–hydroxypropyl-β-cyclodextrin complex at a content of 0.5%, was found to be the most suitable for creating the avocado preservation coating. The utilization of this product extended the preservation period of avocados up to 10 days under room temperature conditions. The biochemical characteristics of the fruit were preserved to the greatest extent, and the ripening process was significantly slowed down compared to control samples.
{"title":"Study on the production of edible coatings based on chitosan and inclusion complex of rutin with hydroxypropyl-β-cyclodextrin for avocado preservation","authors":"Thi Lan Pham, Van Cuong Bui, Hai Khoa Le, Thi My Hanh Le, Xuan Minh Vu, Tuan Anh Nguyen, Thi Thu Hoai Pham, Thanh Tung Mai, T. A. Savitskaya, Dai Lam Tran","doi":"10.1007/s11998-024-00919-2","DOIUrl":"10.1007/s11998-024-00919-2","url":null,"abstract":"<div><p>The preservation of fruits after harvesting has been one of the extensively studied concerns in recent times. In countries with tropical climates, high temperatures, and heavy rainfall like Vietnam, the post-harvest preservation of fruits holds significant practical importance. Avocados are a type of fruit rich in nutritional value and high economic significance. However, avocados have a short shelf life and are susceptible to damage and bruising during harvesting, transportation, and storage. In this study, a coating preservation product for avocados was developed using chitosan in combination with the active compound rutin, encapsulated in a complex with hydroxypropyl-<i>β</i>-cyclodextrin. Research results indicate that a chitosan solution with a concentration of 1.5%, prepared in a 1% acetic acid solution, and supplemented with the rutin–hydroxypropyl-<i>β</i>-cyclodextrin complex at a content of 0.5%, was found to be the most suitable for creating the avocado preservation coating. The utilization of this product extended the preservation period of avocados up to 10 days under room temperature conditions. The biochemical characteristics of the fruit were preserved to the greatest extent, and the ripening process was significantly slowed down compared to control samples.</p></div>","PeriodicalId":619,"journal":{"name":"Journal of Coatings Technology and Research","volume":"21 5","pages":"1605 - 1619"},"PeriodicalIF":2.3,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140676151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}