Due to the unique advantages of mimicking natural enzymes, nanozymes have received ever-growing interest in a wide range of fields including analytical chemistry in the past two decades. Exploring novel kinds of nanozymes with efficient active sites has always been one of the most important and hot topics in nanozyme-related research so far, especially in portable monitors. Herein, zeolitic imidazolate framework-8 (ZIF-8) incorporated with an organometallic iridium(III) complex as a new active site denoted as Irppy-ZIF-8 obtained via a one-pot coordination reaction between the iridium solvent complex and 2-methylimidazole is reported as an efficient peroxidase (POD)-like nanozyme. Importantly, due to the specific inhibition effects of triazine pesticides on the POD-like activities of this novel nanozyme, a portable acetylcholinesterase (AChE)-free colorimetric sensor via a smartphone apart from a UV-vis spectrometer to detect triazine pesticides in real vegetable sample analysis is further successfully proposed in this work. It should be noted that this work could not only open up a new avenue to explore novel kinds of nanozymes from organometallic complexes as active sites, but also promote the progress in emerging applications of nanozymes in visual and portable sensors in the future.
{"title":"Iridium(iii) complex functionalized ZIF-8 as a novel POD-like nanozyme for visual assay of triazine pesticides†","authors":"Fangming Zhu, Yibo Zhao, Chenji Dai, Yaoyao Xu and Yuyang Zhou","doi":"10.1039/D4AN01467G","DOIUrl":"10.1039/D4AN01467G","url":null,"abstract":"<p >Due to the unique advantages of mimicking natural enzymes, nanozymes have received ever-growing interest in a wide range of fields including analytical chemistry in the past two decades. Exploring novel kinds of nanozymes with efficient active sites has always been one of the most important and hot topics in nanozyme-related research so far, especially in portable monitors. Herein, zeolitic imidazolate framework-8 (ZIF-8) incorporated with an organometallic iridium(<small>III</small>) complex as a new active site denoted as Irppy-ZIF-8 obtained <em>via</em> a one-pot coordination reaction between the iridium solvent complex and 2-methylimidazole is reported as an efficient peroxidase (POD)-like nanozyme. Importantly, due to the specific inhibition effects of triazine pesticides on the POD-like activities of this novel nanozyme, a portable acetylcholinesterase (AChE)-free colorimetric sensor <em>via</em> a smartphone apart from a UV-vis spectrometer to detect triazine pesticides in real vegetable sample analysis is further successfully proposed in this work. It should be noted that this work could not only open up a new avenue to explore novel kinds of nanozymes from organometallic complexes as active sites, but also promote the progress in emerging applications of nanozymes in visual and portable sensors in the future.</p>","PeriodicalId":63,"journal":{"name":"Analyst","volume":" 5","pages":" 953-961"},"PeriodicalIF":3.6,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143050667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xuyao Wang, Junlan Zhu, Peng Shu, Jiajing Wang, Maowen Huang, Hengchao Chen and Haifen Ma
Detection of carcinogenesis-related miRNAs presents significant challenges due to their low abundance and high specificity, necessitating highly sensitive and reliable analytical methods. Herein, we propose a generic in situ electrochemical biosensor for the sensitive and effective detection of miRNAs by rationally integrating an entropy-driven DNA circuit (EDC) with a tetrahedral scaffold. The key advancement of this work is the implementation of tetrahedral DNA nanostructures (TDNs) as both a scaffold and substrate for the EDC directly on the electrode surface. TDNs, which are readily decorated with ordered orientation and well-controlled spacing, enhance hybridization efficiency and facilitate essential structural interactions within the EDC, achieving a performance comparable to that of homogeneous liquid-phase reactions. Identifying a target miRNA is achieved with complementary probes that trigger a cascade of structural rearrangements leading to the immobilization of numerous biotin-labeled signal strands on the electrode surface. This accumulation of biotinylated strands ensures that the initial interfacial hybridization event is subsequently amplified and translated into electrochemical signals via cascaded signal amplification. The resulting electrochemical signals are directly proportional to the concentration of the target miRNA, offering a highly sensitive detection platform with a detection limit as low as 74 aM and a dynamic range spanning from 100 aM to 100 pM. The biosensor's performance is validated using biological samples derived from B[a]PDE-exposed cells, where significantly elevated miR-96 levels are detected, consistent with qRT-PCR results. This demonstrates the potential of the proposed biosensor for early cancer diagnosis and monitoring of cancer-related miRNA biomarkers.
{"title":"Integrating an entropy-driven DNA circuit with a tetrahedral scaffold as a generic in situ electrochemical biosensor for amplified detection of microRNAs†","authors":"Xuyao Wang, Junlan Zhu, Peng Shu, Jiajing Wang, Maowen Huang, Hengchao Chen and Haifen Ma","doi":"10.1039/D4AN01528B","DOIUrl":"10.1039/D4AN01528B","url":null,"abstract":"<p >Detection of carcinogenesis-related miRNAs presents significant challenges due to their low abundance and high specificity, necessitating highly sensitive and reliable analytical methods. Herein, we propose a generic <em>in situ</em> electrochemical biosensor for the sensitive and effective detection of miRNAs by rationally integrating an entropy-driven DNA circuit (EDC) with a tetrahedral scaffold. The key advancement of this work is the implementation of tetrahedral DNA nanostructures (TDNs) as both a scaffold and substrate for the EDC directly on the electrode surface. TDNs, which are readily decorated with ordered orientation and well-controlled spacing, enhance hybridization efficiency and facilitate essential structural interactions within the EDC, achieving a performance comparable to that of homogeneous liquid-phase reactions. Identifying a target miRNA is achieved with complementary probes that trigger a cascade of structural rearrangements leading to the immobilization of numerous biotin-labeled signal strands on the electrode surface. This accumulation of biotinylated strands ensures that the initial interfacial hybridization event is subsequently amplified and translated into electrochemical signals <em>via</em> cascaded signal amplification. The resulting electrochemical signals are directly proportional to the concentration of the target miRNA, offering a highly sensitive detection platform with a detection limit as low as 74 aM and a dynamic range spanning from 100 aM to 100 pM. The biosensor's performance is validated using biological samples derived from B[<em>a</em>]PDE-exposed cells, where significantly elevated miR-96 levels are detected, consistent with qRT-PCR results. This demonstrates the potential of the proposed biosensor for early cancer diagnosis and monitoring of cancer-related miRNA biomarkers.</p>","PeriodicalId":63,"journal":{"name":"Analyst","volume":" 5","pages":" 982-988"},"PeriodicalIF":3.6,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143050670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jay Bhakti Kapadia, Jamal Daoud, Jonathan Perreault
Toehold mediated strand displacement reaction (TMSDR) offers a rapid, enzyme-free amplification strategy, providing advantages over traditional methods like RT-PCR, and RT-LAMP. Optimizing TMSDR can significantly enhance sensitivity in point-of-care biosensor applications for target nucleic acid detection. However, achieving optimal performance requires meticulous probe design and stringent quality control. We developed a TMSDR-based system targeting a specific SARS-CoV-2 RNA sequence through testing multiple fluorophore-quencher labeled DNA probes. Following optimization, a probe with a strategically designed: stem, loop, and optimized toehold length emerged as the most effective candidate. Displacer sequence optimization further enhanced amplification efficiency. Ensuring probe purity is crucial, as impurities elevated background noise and diminished sensitivity. This work underscores the importance of rigorous probe quality in achieving reliable and sensitive TMSDR-based viral RNA detection, paving the way for robust point-of-care diagnostic tools.
{"title":"Enzyme-free temperature resilient amplification assay with toehold stem-loop probe","authors":"Jay Bhakti Kapadia, Jamal Daoud, Jonathan Perreault","doi":"10.1039/d4an01212g","DOIUrl":"https://doi.org/10.1039/d4an01212g","url":null,"abstract":"Toehold mediated strand displacement reaction (TMSDR) offers a rapid, enzyme-free amplification strategy, providing advantages over traditional methods like RT-PCR, and RT-LAMP. Optimizing TMSDR can significantly enhance sensitivity in point-of-care biosensor applications for target nucleic acid detection. However, achieving optimal performance requires meticulous probe design and stringent quality control. We developed a TMSDR-based system targeting a specific SARS-CoV-2 RNA sequence through testing multiple fluorophore-quencher labeled DNA probes. Following optimization, a probe with a strategically designed: stem, loop, and optimized toehold length emerged as the most effective candidate. Displacer sequence optimization further enhanced amplification efficiency. Ensuring probe purity is crucial, as impurities elevated background noise and diminished sensitivity. This work underscores the importance of rigorous probe quality in achieving reliable and sensitive TMSDR-based viral RNA detection, paving the way for robust point-of-care diagnostic tools.","PeriodicalId":63,"journal":{"name":"Analyst","volume":"119 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143050666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Although combinational antiretroviral therapy has been proven highly effective, it suffers from drug–drug interactions, drug resistance and adverse reactions with long-term use. The introduction of novel drugs in antiretroviral therapy proposes newer treatment options. However, drug safety and their potential interactions after long-term therapy remain largely unexplored. In this study, the induction potential of bictegravir on efflux transporters at the protein level was assessed by quantifying the transporters using an LC-MS/MS-based method. A surrogate peptide approach was used for the simultaneous determination of P-gp, BCRP and MRP1 transporter proteins in rat peripheral blood mononuclear cells. The previously developed Excel-based ProteoExcelTP tool was utilized for selecting surrogate peptides corresponding to the target transporters. Moreover, ProteoExcelTP was integrated with a novel MRM prediction capability for predicting MRM transitions of selected surrogate peptides. The surrogate peptides LLSGQALK (415.2 → 716.4), SSLLDVLAAR (522.8 → 288.1) and EDLDLVLK (472.7 → 685.3) were selected for P-gp, BCRP and MRP1 transporter proteins, respectively. The peptides LLSGQALK, SSLLDVLAAR and EDLDLVLK were eluted at 5.4, 7.0 and 4.1 min, respectively. The findings of the study revealed that bictegravir could significantly induce BCRP transporter after one week of its administration to Sprague-Dawley rats. This finding can be utilized in the future to prevent transporter-mediated drug–drug interactions involving bictegravir. Moreover, the addition of MRM prediction feature to ProteoExcelTP enhanced its applicability in mass spectrometry-based targeted proteomics. The developed LC-MS/MS-based quantitation method for determining clinically relevant efflux transporters will be useful in investigating the induction potential of other drugs.
{"title":"Highly sensitive LC-MRM workflow for quantitation of efflux transporters in rat peripheral blood mononuclear cells: leveraging ProteoExcelTP with MRM prediction capability","authors":"Tarang Jadav, Niraj Rajput and Pinaki Sengupta","doi":"10.1039/D4AN01514B","DOIUrl":"10.1039/D4AN01514B","url":null,"abstract":"<p >Although combinational antiretroviral therapy has been proven highly effective, it suffers from drug–drug interactions, drug resistance and adverse reactions with long-term use. The introduction of novel drugs in antiretroviral therapy proposes newer treatment options. However, drug safety and their potential interactions after long-term therapy remain largely unexplored. In this study, the induction potential of bictegravir on efflux transporters at the protein level was assessed by quantifying the transporters using an LC-MS/MS-based method. A surrogate peptide approach was used for the simultaneous determination of P-gp, BCRP and MRP1 transporter proteins in rat peripheral blood mononuclear cells. The previously developed Excel-based ProteoExcel<small><sup>TP</sup></small> tool was utilized for selecting surrogate peptides corresponding to the target transporters. Moreover, ProteoExcel<small><sup>TP</sup></small> was integrated with a novel MRM prediction capability for predicting MRM transitions of selected surrogate peptides. The surrogate peptides LLSGQALK (415.2 → 716.4), SSLLDVLAAR (522.8 → 288.1) and EDLDLVLK (472.7 → 685.3) were selected for P-gp, BCRP and MRP1 transporter proteins, respectively. The peptides LLSGQALK, SSLLDVLAAR and EDLDLVLK were eluted at 5.4, 7.0 and 4.1 min, respectively. The findings of the study revealed that bictegravir could significantly induce BCRP transporter after one week of its administration to Sprague-Dawley rats. This finding can be utilized in the future to prevent transporter-mediated drug–drug interactions involving bictegravir. Moreover, the addition of MRM prediction feature to ProteoExcel<small><sup>TP</sup></small> enhanced its applicability in mass spectrometry-based targeted proteomics. The developed LC-MS/MS-based quantitation method for determining clinically relevant efflux transporters will be useful in investigating the induction potential of other drugs.</p>","PeriodicalId":63,"journal":{"name":"Analyst","volume":" 5","pages":" 998-1011"},"PeriodicalIF":3.6,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143044582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wichit Taron, Tharinda Kasemphong, Pachanuporn Sunon, Keerakit Kaewket, Nuntaporn Kamonsutthipaijit, James R. Ketudat-Cairns, Gun Bhakdisongkhram, Warut Tulalamba, Supakmongkon Sanguansuk, Vip Viprakasit and Kamonwad Ngamchuea
Nicotinamide adenine dinucleotide is a crucial coenzyme in cellular metabolism and is implicated in various diseases. This work introduces an electrochemical bioanalytical method utilizing solution-phase Candida boidinii formate dehydrogenase (CbFDH) for detecting its oxidized form (NAD+) in human blood plasma samples. The detection mechanism involves the catalytic conversion of NAD+ to NADH, facilitated by CbFDH in the presence of formate. This NADH is then quantified by electrochemical measurements at disposable carbon screen-printed electrodes. The reaction is completed within one minute. The assay exhibits a linear response range from 3.74 μM to 2.00 mM, a sensitivity of 8.98 ± 0.18 μA mM−1, and a limit of detection (3sb/m) of 1.12 μM. It demonstrates selectivity against common interferences found in plasma samples, including glucose, urea, creatinine, guanosine 5′-monophosphate, cytidine 5′-monophosphate, flavin adenine dinucleotide, adenosine 5′-triphosphate, and lactate, with interference levels below 5% relative to the unperturbed NAD+ signal. Recovery studies showed 98.0–104.4% recoveries, with further validation against a colorimetric alcohol dehydrogenase assay confirming accuracy in plasma samples.
{"title":"Bioanalytical method for NAD+ detection in blood plasma utilizing solution-phase Candida boidinii formate dehydrogenase and electrochemical detection†","authors":"Wichit Taron, Tharinda Kasemphong, Pachanuporn Sunon, Keerakit Kaewket, Nuntaporn Kamonsutthipaijit, James R. Ketudat-Cairns, Gun Bhakdisongkhram, Warut Tulalamba, Supakmongkon Sanguansuk, Vip Viprakasit and Kamonwad Ngamchuea","doi":"10.1039/D4AN01560F","DOIUrl":"10.1039/D4AN01560F","url":null,"abstract":"<p >Nicotinamide adenine dinucleotide is a crucial coenzyme in cellular metabolism and is implicated in various diseases. This work introduces an electrochemical bioanalytical method utilizing solution-phase <em>Candida boidinii</em> formate dehydrogenase (CbFDH) for detecting its oxidized form (NAD<small><sup>+</sup></small>) in human blood plasma samples. The detection mechanism involves the catalytic conversion of NAD<small><sup>+</sup></small> to NADH, facilitated by CbFDH in the presence of formate. This NADH is then quantified by electrochemical measurements at disposable carbon screen-printed electrodes. The reaction is completed within one minute. The assay exhibits a linear response range from 3.74 μM to 2.00 mM, a sensitivity of 8.98 ± 0.18 μA mM<small><sup>−1</sup></small>, and a limit of detection (3<em>s</em><small><sub>b</sub></small>/<em>m</em>) of 1.12 μM. It demonstrates selectivity against common interferences found in plasma samples, including glucose, urea, creatinine, guanosine 5′-monophosphate, cytidine 5′-monophosphate, flavin adenine dinucleotide, adenosine 5′-triphosphate, and lactate, with interference levels below 5% relative to the unperturbed NAD<small><sup>+</sup></small> signal. Recovery studies showed 98.0–104.4% recoveries, with further validation against a colorimetric alcohol dehydrogenase assay confirming accuracy in plasma samples.</p>","PeriodicalId":63,"journal":{"name":"Analyst","volume":" 5","pages":" 894-904"},"PeriodicalIF":3.6,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143044581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kanyapat Teekayupak, Pattarachaya Preechakasedkit, Natthaya Chuaypen, Thasinas Dissayabutra, Peter A. Lieberzeit, Orawon Chailapakul, Nipapan Ruecha and Daniel Citterio
A paper-based potentiometric sensor integrated with a polymeric hydrogel has been developed for sodium ion (Na+) determination in human urine. The construction of an all-solid-state ion selective electrode (s-ISE) and an all-solid-state reference electrode (s-RE) on a photo paper substrate was achieved using an inkjet printing method. For s-ISE fabrication, carbon nanotubes (CNTs) and gold nanoparticles (AuNPs) were printed on the substrate as a nanocomposite solid contact. A polymeric hydrogel containing lithium acetate (CH3COOLi) was then prepared and used as an intermediate layer to improve the adhesion between the ion selective membrane (ISM) and the AuNP/CNT solid contact, leading to enhanced detection sensitivity. The printed s-RE consisted of a pseudo silver/silver chloride electrode (p-Ag/AgCl) coated with a polymeric hydrogel containing KCl to improve the potential stability of the sensor. Under the optimal conditions, the hydrogel-integrated paper-based potentiometric sensor provided a response toward Na+ over a linear range of 10−7 M to 1 M with a near Nernstian slope of 56.42 ± 0.68 mV per decade. This sensor exhibited fast response, good sensitivity, and reasonable selectivity for Na+ measurement. Furthermore, the developed sensor was effectively applied for the detection of Na+ in urine samples with high accuracy. The presented work can be considered as a good addition to the growing field of potentiometric analytical platforms suitable for large-scale production using inkjet printing technology.
{"title":"Polymeric hydrogel integrated paper-based potentiometric ion-sensing device for the determination of sodium ions in human urine†","authors":"Kanyapat Teekayupak, Pattarachaya Preechakasedkit, Natthaya Chuaypen, Thasinas Dissayabutra, Peter A. Lieberzeit, Orawon Chailapakul, Nipapan Ruecha and Daniel Citterio","doi":"10.1039/D4AN01505C","DOIUrl":"10.1039/D4AN01505C","url":null,"abstract":"<p >A paper-based potentiometric sensor integrated with a polymeric hydrogel has been developed for sodium ion (Na<small><sup>+</sup></small>) determination in human urine. The construction of an all-solid-state ion selective electrode (s-ISE) and an all-solid-state reference electrode (s-RE) on a photo paper substrate was achieved using an inkjet printing method. For s-ISE fabrication, carbon nanotubes (CNTs) and gold nanoparticles (AuNPs) were printed on the substrate as a nanocomposite solid contact. A polymeric hydrogel containing lithium acetate (CH<small><sub>3</sub></small>COOLi) was then prepared and used as an intermediate layer to improve the adhesion between the ion selective membrane (ISM) and the AuNP/CNT solid contact, leading to enhanced detection sensitivity. The printed s-RE consisted of a pseudo silver/silver chloride electrode (p-Ag/AgCl) coated with a polymeric hydrogel containing KCl to improve the potential stability of the sensor. Under the optimal conditions, the hydrogel-integrated paper-based potentiometric sensor provided a response toward Na<small><sup>+</sup></small> over a linear range of 10<small><sup>−7</sup></small> M to 1 M with a near Nernstian slope of 56.42 ± 0.68 mV per decade. This sensor exhibited fast response, good sensitivity, and reasonable selectivity for Na<small><sup>+</sup></small> measurement. Furthermore, the developed sensor was effectively applied for the detection of Na<small><sup>+</sup></small> in urine samples with high accuracy. The presented work can be considered as a good addition to the growing field of potentiometric analytical platforms suitable for large-scale production using inkjet printing technology.</p>","PeriodicalId":63,"journal":{"name":"Analyst","volume":" 5","pages":" 841-850"},"PeriodicalIF":3.6,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143044585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jing-Hao Fu, Xuan Wang, Qi-He Xia, Zeng-Ping Chen, Ping-Fan Shen, Yao Chen and Ru-Qin Yu
Herein, two new or overlooked features of ZIF-90 were identified and investigated. Imidazole-2-carboxaldehyde is fluorescent, but its fluorescence in ZIF-90 is quenched by an ACQ effect. ZIF-90 can enhance the fluorescence of Cy5, but quench that of 6-FAM. The applicability of the two newly identified features in biosensing was explored.
{"title":"The aggregation-caused quenching effect and fluorescence enhancement features of ZIF-90 and their feasibility for the detection and imaging of ATP in cells†","authors":"Jing-Hao Fu, Xuan Wang, Qi-He Xia, Zeng-Ping Chen, Ping-Fan Shen, Yao Chen and Ru-Qin Yu","doi":"10.1039/D4AN01385A","DOIUrl":"10.1039/D4AN01385A","url":null,"abstract":"<p >Herein, two new or overlooked features of ZIF-90 were identified and investigated. Imidazole-2-carboxaldehyde is fluorescent, but its fluorescence in ZIF-90 is quenched by an ACQ effect. ZIF-90 can enhance the fluorescence of Cy5, but quench that of 6-FAM. The applicability of the two newly identified features in biosensing was explored.</p>","PeriodicalId":63,"journal":{"name":"Analyst","volume":" 4","pages":" 600-604"},"PeriodicalIF":3.6,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143044583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vinni Thekkudan Novi, Anil Kumar Meher and Abdennour Abbas
Recent advances in nucleic acid (NA) detection techniques have significantly enhanced the diagnosis of diseases caused by a range of pathogens. These NA-based methods that target specific gene sequences for identification offer high specificity. Despite the effectiveness of polymerase chain reaction (PCR), its requirement for sophisticated laboratory settings and expensive equipment restricts its accessibility, particularly in resource-limited settings. As an alternative, isothermal nucleic acid amplification methods are highly sought after due to their rapid, sensitive, and specific detection ability. Among these, loop mediated isothermal amplification (LAMP) stands out due to its simplicity, reliability, and cost-effectiveness. LAMP operates without the need for varied temperature cycles, employing a simple heating block to maintain a constant temperature, thus facilitating onsite rapid testing. In LAMP, the detection step is critical as it shows the outcome of the assay. In order to make the LAMP technique user-friendly and applicable for large scale testing, it is critical to have visual detection where the results can be observed with the naked eye. This review focuses on recent developments of LAMP visualization techniques, including the more common fluorescence, turbidity, and gel electrophoresis methods, as well as innovations in colorimetric techniques applying novel transduction methods such as nanoparticles and digital tools. Additionally, various practical applications of LAMP are discussed.
{"title":"Visualization methods for loop mediated isothermal amplification (LAMP) assays","authors":"Vinni Thekkudan Novi, Anil Kumar Meher and Abdennour Abbas","doi":"10.1039/D4AN01287A","DOIUrl":"10.1039/D4AN01287A","url":null,"abstract":"<p >Recent advances in nucleic acid (NA) detection techniques have significantly enhanced the diagnosis of diseases caused by a range of pathogens. These NA-based methods that target specific gene sequences for identification offer high specificity. Despite the effectiveness of polymerase chain reaction (PCR), its requirement for sophisticated laboratory settings and expensive equipment restricts its accessibility, particularly in resource-limited settings. As an alternative, isothermal nucleic acid amplification methods are highly sought after due to their rapid, sensitive, and specific detection ability. Among these, loop mediated isothermal amplification (LAMP) stands out due to its simplicity, reliability, and cost-effectiveness. LAMP operates without the need for varied temperature cycles, employing a simple heating block to maintain a constant temperature, thus facilitating onsite rapid testing. In LAMP, the detection step is critical as it shows the outcome of the assay. In order to make the LAMP technique user-friendly and applicable for large scale testing, it is critical to have visual detection where the results can be observed with the naked eye. This review focuses on recent developments of LAMP visualization techniques, including the more common fluorescence, turbidity, and gel electrophoresis methods, as well as innovations in colorimetric techniques applying novel transduction methods such as nanoparticles and digital tools. Additionally, various practical applications of LAMP are discussed.</p>","PeriodicalId":63,"journal":{"name":"Analyst","volume":" 4","pages":" 588-599"},"PeriodicalIF":3.6,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143026955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joy Udensi, James Loughman, Ekaterina Loskutova and Hugh J. Byrne
Carotenoids are known for their antioxidant and vision protection roles, with dietary supplements often promoted for eye health. An initial trial, the European Nutrition in Glaucoma Management (ENIGMA), assessed macular pigment optical density (MPOD) and other ocular parameters before and after supplementing glaucoma patients with macular pigment (MP) carotenoids. The trial confirmed significant improvements in clinical ocular health. Blood, containing all major dietary carotenoids, serves as an efficient medium for in vivo analysis of carotenoids. Raman spectroscopy, an effective analytical tool, was used to measure the impact of supplementation on serum carotenoid levels and their correlation with MPOD and other ocular responses. Serum samples from baseline and 18-month supplemented participants were analysed. An inverse relationship was found between the percentage change in Raman intensity over the supplementation period and baseline Raman serum measurements, indicating greater relative benefits for people with low MPOD/serum carotenoids pre-supplementation. Partial least squares regression (PLSR) was employed to analyse the spectra after pre-processing, and the loadings reflected the carotenoid content and structural profile. MPOD results correlated at all eccentricities, with a coefficient of determination (R2) of 0.62–0.92 and %Root mean squared error of <44%. Structural, functional, and perceptual parameters also showed good correlation with serum Raman measurements. The results support the ENIGMA trial conclusions, and suggest strategies for optimizing patient responses to supplementation based on baseline carotenoid levels. Additionally, Raman spectroscopy of serum carotenoids shows significant potential as a simple and reliable method for investigating macular pigment carotenoids and assessing patient health.
{"title":"Effects of supplementation of macular pigment carotenoids on ocular health: a Raman spectroscopic study of human blood serum of glaucoma patients","authors":"Joy Udensi, James Loughman, Ekaterina Loskutova and Hugh J. Byrne","doi":"10.1039/D4AN01337A","DOIUrl":"10.1039/D4AN01337A","url":null,"abstract":"<p >Carotenoids are known for their antioxidant and vision protection roles, with dietary supplements often promoted for eye health. An initial trial, the European Nutrition in Glaucoma Management (ENIGMA), assessed macular pigment optical density (MPOD) and other ocular parameters before and after supplementing glaucoma patients with macular pigment (MP) carotenoids. The trial confirmed significant improvements in clinical ocular health. Blood, containing all major dietary carotenoids, serves as an efficient medium for <em>in vivo</em> analysis of carotenoids. Raman spectroscopy, an effective analytical tool, was used to measure the impact of supplementation on serum carotenoid levels and their correlation with MPOD and other ocular responses. Serum samples from baseline and 18-month supplemented participants were analysed. An inverse relationship was found between the percentage change in Raman intensity over the supplementation period and baseline Raman serum measurements, indicating greater relative benefits for people with low MPOD/serum carotenoids pre-supplementation. Partial least squares regression (PLSR) was employed to analyse the spectra after pre-processing, and the loadings reflected the carotenoid content and structural profile. MPOD results correlated at all eccentricities, with a coefficient of determination (<em>R</em><small><sup>2</sup></small>) of 0.62–0.92 and %Root mean squared error of <44%. Structural, functional, and perceptual parameters also showed good correlation with serum Raman measurements. The results support the ENIGMA trial conclusions, and suggest strategies for optimizing patient responses to supplementation based on baseline carotenoid levels. Additionally, Raman spectroscopy of serum carotenoids shows significant potential as a simple and reliable method for investigating macular pigment carotenoids and assessing patient health.</p>","PeriodicalId":63,"journal":{"name":"Analyst","volume":" 4","pages":" 630-641"},"PeriodicalIF":3.6,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143020725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Giammarco Maria Romano, Pierangela Di Menna, Andrea Bencini, Yschtar Tecla Simonini Steiner, Massimo Innocenti, Corrado Di Natale, Roberto Paolesse and Larisa Lvova
Herein, we report on a polyamine receptor L1 bearing pyrene fluorogenic groups for the optical assessment of the non-opioid analgesic drug ketoprofen (KP). L1, composed of a diethylenetriamine moiety linked at its extremities to the 1 position of two pyrene units via methylene linkers, produced an emission at 460 nm in 1 : 1 (v/v) water/ethanol mixture at pH 7, which can be attributed to the excimer formation between the two aromatic groups. In the presence of KP, a salt-bridging interaction between the carboxylate group of the analyte and the central ammonium group of L1 induced a redistribution of acidic protons in the polyamine chain, causing a marked increase in the emission. This optical signal was used to detect KP in aqueous media. Based on this observation, the properties of all-solid-state optodes with plasticized PVC membranes doped with L1 and deposited on an appropriate solid support material were further investigated. The best membrane contained 1 wt% of fully protonated L1, plasticized with DOS and doped with 3 equiv. of the TDMACl anion-exchanger, which detected KP in the 2 μM–0.1 mM range with a low influence of interfering ions. Furthermore, this membrane was applied for the assessment of the amount of KP in OkiTask, achieving an RSD of 2.1% and recovery of 102%. Moreover, the possibility to decrease the LOD of KP to 0.84 μM (0.21 mg L−1) through the application of L1-based fluorescent sensor arrays and chemometrics was studied.
{"title":"A bis-pyrene polyamine receptor for fast optical detection of ketoprofen: synthesis, characterization and application in all-solid-state fluorescent sensors†","authors":"Giammarco Maria Romano, Pierangela Di Menna, Andrea Bencini, Yschtar Tecla Simonini Steiner, Massimo Innocenti, Corrado Di Natale, Roberto Paolesse and Larisa Lvova","doi":"10.1039/D4AN01469C","DOIUrl":"10.1039/D4AN01469C","url":null,"abstract":"<p >Herein, we report on a polyamine receptor L1 bearing pyrene fluorogenic groups for the optical assessment of the non-opioid analgesic drug ketoprofen (KP). L1, composed of a diethylenetriamine moiety linked at its extremities to the 1 position of two pyrene units <em>via</em> methylene linkers, produced an emission at 460 nm in 1 : 1 (v/v) water/ethanol mixture at pH 7, which can be attributed to the excimer formation between the two aromatic groups. In the presence of KP, a salt-bridging interaction between the carboxylate group of the analyte and the central ammonium group of L1 induced a redistribution of acidic protons in the polyamine chain, causing a marked increase in the emission. This optical signal was used to detect KP in aqueous media. Based on this observation, the properties of all-solid-state optodes with plasticized PVC membranes doped with L1 and deposited on an appropriate solid support material were further investigated. The best membrane contained 1 wt% of fully protonated L1, plasticized with DOS and doped with 3 equiv. of the TDMACl anion-exchanger, which detected KP in the 2 μM–0.1 mM range with a low influence of interfering ions. Furthermore, this membrane was applied for the assessment of the amount of KP in OkiTask, achieving an RSD of 2.1% and recovery of 102%. Moreover, the possibility to decrease the LOD of KP to 0.84 μM (0.21 mg L<small><sup>−1</sup></small>) through the application of L1-based fluorescent sensor arrays and chemometrics was studied.</p>","PeriodicalId":63,"journal":{"name":"Analyst","volume":" 5","pages":" 806-818"},"PeriodicalIF":3.6,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/an/d4an01469c?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143020733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}