Oxytocin (OXY), a peptide hormone and neurotransmitter essential to biological processes with nine distinct amino acid residues, has significantly received attention due to illegal use in food adulteration and stimulating milk ejection in cattle. Herein, for the first time, the electrochemical detection of Oxytocin (OXY) is reported using a novel nanocomposite consisting of a Zn-Cu metal-organic framework (Zn-Cu MOF) decorated on the reduced graphene oxide (rGO). An octahedral surface morphology with a crystalline structure of the size 45 nm, formation of a metal-oxygen bond, an enhanced pore diameter of 6.8 nm, a specific surface area of 70.8 m2/g, and pore volume of 0.08 cm3/g, revealed from the different characterization technique. The electro-catalytic behavior of Zn-Cu MOF/rGO nanocomposite has been increased substantially attributed to the synergistic effect, evident from the cyclic voltammetry (CV) when compared to Zn MOF, Cu MOF, Zn MOF/rGO, Cu MOF/rGO, Zn-Cu MOF keeping other parameters same. Moreover, the electrochemical impedance spectroscopy (EIS) spectra reveal the excellent conductivity of nanocomposite. The experimental parameters, viz. electrolyte pH (5), supporting electrolyte (0.1 M ABS), and volume of coating (12 µL), were optimized. The differential pulse voltammetry (DPV) technique was adopted to determine the OXY with the lowest limit of detection (LOD) to be 1.1 nM (S/N=3) with a linear range of 40 - 400 nM. The analytical application of the modified electrode was examined by spiking the OXY in pasteurized toned milk, skimmed powder milk, animal milk, and RO water, with a good recovery range of 95-106%.
{"title":"Tuning the electro-catalytic activity of the Zn-Cu MOF/rGO nanocomposite as a novel enzyme-free electrochemical sensor for the detection of Oxytocin hormone","authors":"Md Zainul Abedeen, Manish Sharma, Himmat Singh Kushwaha, Ragini Gupta","doi":"10.1039/d4an01157k","DOIUrl":"https://doi.org/10.1039/d4an01157k","url":null,"abstract":"Oxytocin (OXY), a peptide hormone and neurotransmitter essential to biological processes with nine distinct amino acid residues, has significantly received attention due to illegal use in food adulteration and stimulating milk ejection in cattle. Herein, for the first time, the electrochemical detection of Oxytocin (OXY) is reported using a novel nanocomposite consisting of a Zn-Cu metal-organic framework (Zn-Cu MOF) decorated on the reduced graphene oxide (rGO). An octahedral surface morphology with a crystalline structure of the size 45 nm, formation of a metal-oxygen bond, an enhanced pore diameter of 6.8 nm, a specific surface area of 70.8 m2/g, and pore volume of 0.08 cm3/g, revealed from the different characterization technique. The electro-catalytic behavior of Zn-Cu MOF/rGO nanocomposite has been increased substantially attributed to the synergistic effect, evident from the cyclic voltammetry (CV) when compared to Zn MOF, Cu MOF, Zn MOF/rGO, Cu MOF/rGO, Zn-Cu MOF keeping other parameters same. Moreover, the electrochemical impedance spectroscopy (EIS) spectra reveal the excellent conductivity of nanocomposite. The experimental parameters, viz. electrolyte pH (5), supporting electrolyte (0.1 M ABS), and volume of coating (12 µL), were optimized. The differential pulse voltammetry (DPV) technique was adopted to determine the OXY with the lowest limit of detection (LOD) to be 1.1 nM (S/N=3) with a linear range of 40 - 400 nM. The analytical application of the modified electrode was examined by spiking the OXY in pasteurized toned milk, skimmed powder milk, animal milk, and RO water, with a good recovery range of 95-106%.","PeriodicalId":63,"journal":{"name":"Analyst","volume":"11 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142610027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cátia Santa, Soohyun Park, Artur Gejt, Heather A Clark, Bastian Hengerer, Khulan Sergelen
Real-time monitoring of therapeutic drugs is crucial for treatment management and pharmacokinetic studies. We present the optimization and affinity tuning of split-aptamer sandwich assay for real-time monitoring of the narrow therapeutic window drug vancomycin, using surface plasmon resonance (SPR). To achieve reversible, label-free sensing of small molecules by SPR, we adapted the vancomycin binding aptamer in a sandwich assay format through split-aptamer approach. By evaluating multiple split sites within the secondary structure of the original aptamer, we identified position 27 (P27) as optimal for preserving target affinity, ensuring reversibility, and maximizing sensitivity. The assay demonstrated robust performance under physiologically relevant ranges of pH and divalent cations and the specific ternary complex formation of the aptamer split segments with the analyte was confirmed by circular dichroism spectroscopy. Subsequently, we engineered a series of split-aptamer pairs with increasing complementarity in the stem regions, improving both the affinity and limit of detection up to 10-fold, as compared to the primary P27 pair. The kinetics of the engineered split-aptamer pairs were evaluated, revealing fast association and dissociation rates, confirming improved affinity and detection limits across variants. Most importantly, the reversibility of the assay, essential for real-time monitoring, was maintained in all pairs. Finally, the assay was further validated in complex biological matrices, including cerebrospinal fluid from dog and diluted plasma from rat, demonstrating functionality in biological environments, and stability exceeding 9 hours. Our study paves the way for applications of split-aptamers in real-time monitoring of small molecules, with potential implications for in vivo therapeutic drug monitoring and pharmacokinetic studies.
{"title":"Real-time monitoring of vancomycin using split-aptamer surface plasmon resonance biosensor","authors":"Cátia Santa, Soohyun Park, Artur Gejt, Heather A Clark, Bastian Hengerer, Khulan Sergelen","doi":"10.1039/d4an01226g","DOIUrl":"https://doi.org/10.1039/d4an01226g","url":null,"abstract":"Real-time monitoring of therapeutic drugs is crucial for treatment management and pharmacokinetic studies. We present the optimization and affinity tuning of split-aptamer sandwich assay for real-time monitoring of the narrow therapeutic window drug vancomycin, using surface plasmon resonance (SPR). To achieve reversible, label-free sensing of small molecules by SPR, we adapted the vancomycin binding aptamer in a sandwich assay format through split-aptamer approach. By evaluating multiple split sites within the secondary structure of the original aptamer, we identified position 27 (P27) as optimal for preserving target affinity, ensuring reversibility, and maximizing sensitivity. The assay demonstrated robust performance under physiologically relevant ranges of pH and divalent cations and the specific ternary complex formation of the aptamer split segments with the analyte was confirmed by circular dichroism spectroscopy. Subsequently, we engineered a series of split-aptamer pairs with increasing complementarity in the stem regions, improving both the affinity and limit of detection up to 10-fold, as compared to the primary P27 pair. The kinetics of the engineered split-aptamer pairs were evaluated, revealing fast association and dissociation rates, confirming improved affinity and detection limits across variants. Most importantly, the reversibility of the assay, essential for real-time monitoring, was maintained in all pairs. Finally, the assay was further validated in complex biological matrices, including cerebrospinal fluid from dog and diluted plasma from rat, demonstrating functionality in biological environments, and stability exceeding 9 hours. Our study paves the way for applications of split-aptamers in real-time monitoring of small molecules, with potential implications for in vivo therapeutic drug monitoring and pharmacokinetic studies.","PeriodicalId":63,"journal":{"name":"Analyst","volume":"5 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142609905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jie Huang, Ruicheng Xu, Qiaoting Yang, kang Tao, Dan Shan
This study introduces a straightforward one-step pyrolytic method for synthesizing carbon dots derived from folic acid (FACDs). This green and cost-effective approach simplifies the production of fluorescent carbon nanomaterials, which exhibit strong and stable fluorescence properties. These properties make FACDs particularly suitable for the sensitive and selective detection of cysteine (Cys) through a "turn-on" fluorescence mechanism. The FACDs demonstrate a low detection limit of 1.7 × 10⁻⁷ M and a broad linear range from 5.0 × 10⁻⁷ to 8.0 × 10⁻ 5M, effectively restoring quenched fluorescence in the presence of Cys. These results underscore the potential of FACDs as reliable, high-performance sensors for various biological and environmental applications, paving the way for the development of versatile and efficient fluorescence-based detection platforms.
{"title":"Green One-step Pyrolytic Synthesis of Folic Acid-Derived Carbon Dots for Sensitive Turn-on Fluorescence Detection of Cysteine","authors":"Jie Huang, Ruicheng Xu, Qiaoting Yang, kang Tao, Dan Shan","doi":"10.1039/d4an01144a","DOIUrl":"https://doi.org/10.1039/d4an01144a","url":null,"abstract":"This study introduces a straightforward one-step pyrolytic method for synthesizing carbon dots derived from folic acid (FACDs). This green and cost-effective approach simplifies the production of fluorescent carbon nanomaterials, which exhibit strong and stable fluorescence properties. These properties make FACDs particularly suitable for the sensitive and selective detection of cysteine (Cys) through a \"turn-on\" fluorescence mechanism. The FACDs demonstrate a low detection limit of 1.7 × 10⁻⁷ M and a broad linear range from 5.0 × 10⁻⁷ to 8.0 × 10⁻ 5M, effectively restoring quenched fluorescence in the presence of Cys. These results underscore the potential of FACDs as reliable, high-performance sensors for various biological and environmental applications, paving the way for the development of versatile and efficient fluorescence-based detection platforms.","PeriodicalId":63,"journal":{"name":"Analyst","volume":"20 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eirini Malegiannaki, Pascal Bohleber, Daniele Zannoni, Ciprian Stremtan, Agnese Petteni, Barbara Stenni, Carlo Barbante, Bo M. Vinther, Vasileios Gkinis
A new micro-destructive technique for high-resolution water isotope analysis of ice samples using a Laser Ablation (LA) system coupled with a Cavity Ring Down Spectrometer (CRDS) is presented. This method marks the first time water isotope analysis is conducted directly on the ice, bypassing the traditional steps of melting and vaporizing the ice sample, thanks to the direct transition of ice into water vapour through the laser ablation process. A nanosecond ArF laser ablation system (193 nm) with an integrated two-volume ablation chamber was successfully coupled to a CRDS analyzer, utilizing nitrogen as the carrier gas. The application goal is the use of LA-CRDS for ice core studies, so a method for preparing ice standard samples using liquid water isotope standards, widely used for ice core analysis, is introduced. The measurements were conducted in a discrete mode, by performing laser ablation raster scans of 4 mm × 4 mm areas, establishing a sampling resolution of 4 mm along an ice core's depth. The water vapour concentration reaching the CRDS analyzer as well as the quality of the water isotopic measurements of δ18O and δD were influenced by laser parameters, such as laser spot size, repetition rate, laser fluence, ablation time as well as by the flow rates of the carrier gas. After optimizing the experimental conditions for water vapour formation, three ice standards samples were analyzed for calibration purposes on the VSMOW-SLAP scale and a section of an ice core sample was also tested. Critical parameters influencing the precision and accuracy of water isotopic measurements were investigated, and isotopic fractionation phenomena were identified, pointing to essential considerations for the technique's further development.
{"title":"Towards high-resolution water isotope analysis in ice cores using laser ablation – cavity ring-down spectroscopy","authors":"Eirini Malegiannaki, Pascal Bohleber, Daniele Zannoni, Ciprian Stremtan, Agnese Petteni, Barbara Stenni, Carlo Barbante, Bo M. Vinther, Vasileios Gkinis","doi":"10.1039/d4an01054j","DOIUrl":"https://doi.org/10.1039/d4an01054j","url":null,"abstract":"A new micro-destructive technique for high-resolution water isotope analysis of ice samples using a Laser Ablation (LA) system coupled with a Cavity Ring Down Spectrometer (CRDS) is presented. This method marks the first time water isotope analysis is conducted directly on the ice, bypassing the traditional steps of melting and vaporizing the ice sample, thanks to the direct transition of ice into water vapour through the laser ablation process. A nanosecond ArF laser ablation system (193 nm) with an integrated two-volume ablation chamber was successfully coupled to a CRDS analyzer, utilizing nitrogen as the carrier gas. The application goal is the use of LA-CRDS for ice core studies, so a method for preparing ice standard samples using liquid water isotope standards, widely used for ice core analysis, is introduced. The measurements were conducted in a discrete mode, by performing laser ablation raster scans of 4 mm × 4 mm areas, establishing a sampling resolution of 4 mm along an ice core's depth. The water vapour concentration reaching the CRDS analyzer as well as the quality of the water isotopic measurements of <em>δ</em><small><sup>18</sup></small>O and <em>δ</em>D were influenced by laser parameters, such as laser spot size, repetition rate, laser fluence, ablation time as well as by the flow rates of the carrier gas. After optimizing the experimental conditions for water vapour formation, three ice standards samples were analyzed for calibration purposes on the VSMOW-SLAP scale and a section of an ice core sample was also tested. Critical parameters influencing the precision and accuracy of water isotopic measurements were investigated, and isotopic fractionation phenomena were identified, pointing to essential considerations for the technique's further development.","PeriodicalId":63,"journal":{"name":"Analyst","volume":"9 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142600047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Md Raduanul H. Chowdhury, Clementinah Oladun, Nuwandi M. Ariyasingha, Anna Samoilenko, Tarek Bawardi, Dudari B. Burueva, Oleg G. Salnikov, Larisa M. Kovtunova, Valerii I. Bukhtiyarov, Zhongjie Shi, Kehuan Luo, Sidhartha Tan, Juri G. Gelovani, Igor V. Koptyug, Boyd M. Goodson, Eduard Y. Chekmenev
Proton-hyperpolarized contrast agents are attractive because they can be imaged on virtually any clinical MRI scanner, which is typically equipped to scan only protons rather than heteronuclei (i.e., anything besides protons, e.g., 13C, 15N, 129Xe, 23Na, etc.). Even though the lifetime of the proton spin hyperpolarization is only a few seconds, it is sufficient for inhalation and scanning of proton-hyperpolarized gas media. We demonstrate the utility of producing hyperpolarized propane gas via heterogeneous parahydrogen-induced polarization for the purpose of ventilation imaging in an excised rabbit lung model. The magnetization of protons in hyperpolarized propane gas is similar to that of tissue water protons, making it possible to rapidly perform lung ventilation imaging with a 0.35 T clinical MRI scanner. Here, we demonstrate the feasibility of rapid (2 s) lung ventilation MRI in excised rabbit lungs using hyperpolarized propane gas with a 1 × 1 mm2 pixel size using a 50 mm slice thickness, and a 1.7 × 1.7 mm2 pixel size using a 9 mm slice thickness.
{"title":"Rapid lung ventilation MRI using parahydrogen-induced polarization of propane gas","authors":"Md Raduanul H. Chowdhury, Clementinah Oladun, Nuwandi M. Ariyasingha, Anna Samoilenko, Tarek Bawardi, Dudari B. Burueva, Oleg G. Salnikov, Larisa M. Kovtunova, Valerii I. Bukhtiyarov, Zhongjie Shi, Kehuan Luo, Sidhartha Tan, Juri G. Gelovani, Igor V. Koptyug, Boyd M. Goodson, Eduard Y. Chekmenev","doi":"10.1039/d4an01029a","DOIUrl":"https://doi.org/10.1039/d4an01029a","url":null,"abstract":"Proton-hyperpolarized contrast agents are attractive because they can be imaged on virtually any clinical MRI scanner, which is typically equipped to scan only protons rather than heteronuclei (<em>i.e.</em>, anything besides protons, <em>e.g.</em>, <small><sup>13</sup></small>C, <small><sup>15</sup></small>N, <small><sup>129</sup></small>Xe, <small><sup>23</sup></small>Na, <em>etc</em>.). Even though the lifetime of the proton spin hyperpolarization is only a few seconds, it is sufficient for inhalation and scanning of proton-hyperpolarized gas media. We demonstrate the utility of producing hyperpolarized propane gas <em>via</em> heterogeneous parahydrogen-induced polarization for the purpose of ventilation imaging in an excised rabbit lung model. The magnetization of protons in hyperpolarized propane gas is similar to that of tissue water protons, making it possible to rapidly perform lung ventilation imaging with a 0.35 T clinical MRI scanner. Here, we demonstrate the feasibility of rapid (2 s) lung ventilation MRI in excised rabbit lungs using hyperpolarized propane gas with a 1 × 1 mm<small><sup>2</sup></small> pixel size using a 50 mm slice thickness, and a 1.7 × 1.7 mm<small><sup>2</sup></small> pixel size using a 9 mm slice thickness.","PeriodicalId":63,"journal":{"name":"Analyst","volume":"36 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142600048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anil Sharma, Thomas Hulse, Aymen H. Qatamin, Monica Moreno, Klester S. Souza, Marcelo B. Pereira, Fabricio S. Campos, Leandro B. Carneiro, Antonio M. H. de Andrade, Paulo M. Roehe, Flavio Horowitz, Sergio B. Mendes
This work reports on a comparative analysis of electrical and optical measurements for structural characterization and for assessing signal transduction performance of a redox-labeled DNA-based sensing platform. We conducted complementary investigations employing conventional electrochemical techniques with electric current measurements in cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) and confronted those results with optical measurements using surface plasmon waves while the redox assembly was undergoing similar electrochemical modulation as in the electrical CV and EIS measurements. The specific sensor configuration deployed here was composed of a methylene blue (MB)-modified single-stranded DNA (ssDNA) signaling probe and an unlabeled capture ssDNA probe that complements the signaling probe. Two types of signaling probes were employed: one with MB attached to the 3′ end, which positions the redox marker closer to the electrode surface upon hybridization with the capture probe, and the other with MB attached to the 5′ end, which places the redox marker farther from the electrode surface. For each molecular assembly and for each electrochemical modulation protocol, both the electrical and optical experimental data were quantitatively analyzed to determine the surface density of electro-active species and the rate of electron transfer between the redox marker and the electrode surface. Our experimental results highlight the consistency of the confronted methodologies and indicate that optical impedance spectroscopy utilizing electrochemically modulated surface plasmon waves, which is a transduction protocol immune from non-faradaic interferents that invariably are present in the electrical methodology, can provide a powerful route for developing a redox-labeled DNA-hybridization biosensing strategy.
本研究报告对电学和光学测量进行了比较分析,以确定基于氧化还原标记 DNA 的传感平台的结构特征并评估其信号传导性能。我们采用传统的电化学技术,在循环伏安法(CV)和电化学阻抗谱法(EIS)中进行电流测量,并将这些结果与使用表面等离子体波的光学测量结果进行对比,同时氧化还原组件也在进行与 CV 和 EIS 电测量类似的电化学调制。这里采用的特定传感器配置由亚甲蓝(MB)修饰的单链 DNA(ssDNA)信号探针和未标记的捕获 ssDNA 探针组成,后者是信号探针的补充。我们使用了两种信号探针:一种探针的 3′端附有甲基溴,在与捕获探针杂交时,可使氧化还原标记物更靠近电极表面;另一种探针的 5′端附有甲基溴,可使氧化还原标记物远离电极表面。对于每种分子组装和每种电化学调制方案,我们都对电学和光学实验数据进行了定量分析,以确定电活性物种的表面密度以及氧化还原标记与电极表面之间的电子转移率。我们的实验结果凸显了两种方法的一致性,并表明利用电化学调制表面等离子体波的光学阻抗光谱法是一种不受电学方法中必然存在的非法拉第干扰因素影响的传导方案,它可以为开发氧化还原标记 DNA 杂交生物传感策略提供一条强有力的途径。
{"title":"Electrochemically modulated surface plasmon waves for characterization and interrogation of DNA-based sensors","authors":"Anil Sharma, Thomas Hulse, Aymen H. Qatamin, Monica Moreno, Klester S. Souza, Marcelo B. Pereira, Fabricio S. Campos, Leandro B. Carneiro, Antonio M. H. de Andrade, Paulo M. Roehe, Flavio Horowitz, Sergio B. Mendes","doi":"10.1039/d4an01164c","DOIUrl":"https://doi.org/10.1039/d4an01164c","url":null,"abstract":"This work reports on a comparative analysis of electrical and optical measurements for structural characterization and for assessing signal transduction performance of a redox-labeled DNA-based sensing platform. We conducted complementary investigations employing conventional electrochemical techniques with electric current measurements in cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) and confronted those results with optical measurements using surface plasmon waves while the redox assembly was undergoing similar electrochemical modulation as in the electrical CV and EIS measurements. The specific sensor configuration deployed here was composed of a methylene blue (MB)-modified single-stranded DNA (ssDNA) signaling probe and an unlabeled capture ssDNA probe that complements the signaling probe. Two types of signaling probes were employed: one with MB attached to the 3′ end, which positions the redox marker closer to the electrode surface upon hybridization with the capture probe, and the other with MB attached to the 5′ end, which places the redox marker farther from the electrode surface. For each molecular assembly and for each electrochemical modulation protocol, both the electrical and optical experimental data were quantitatively analyzed to determine the surface density of electro-active species and the rate of electron transfer between the redox marker and the electrode surface. Our experimental results highlight the consistency of the confronted methodologies and indicate that optical impedance spectroscopy utilizing electrochemically modulated surface plasmon waves, which is a transduction protocol immune from non-faradaic interferents that invariably are present in the electrical methodology, can provide a powerful route for developing a redox-labeled DNA-hybridization biosensing strategy.","PeriodicalId":63,"journal":{"name":"Analyst","volume":"43 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142600050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Inflammation is a complex physiological response involving various cellular and molecular events. Sulfur dioxide (SO2), which is usually in the form of HSO3- and SO32- under physiological conditions, plays a crucial role in the regulation of inflammation and diseases. Frequency upconversion luminescence (FUCL) can realize the unique anti-Stokes process of long-wavelength excitation to short-wavelength emission; thus, it is a highly promising optical method for in vivo imaging due to its deep tissue penetration, low photo-damage, etc. Therefore, we developed a near-infrared FUCL probe NIRX-1 for the detection of HSO3-. NIRX-1 had a fast response (80 s), a low detection limit (0.43 μM), and a high selectivity towards HSO3-. In addition, NIRX-1 had a deep light penetration ability due to the near-infrared excitation at 808 nm, and was able to detection of HSO3- in living cells and mice. Lastly, NIRX-1 was employed in the imaging of HSO3- in an inflammation mouse model through FUCL imaging techniques. All these features make NIRX-1 a good candidate for the investigate of SO2-associated physiological and pathological processes.
{"title":"Near-infrared frequency upconversion fluorescent probe for rapid and sensitive visual detection of sulfur dioxide","authors":"Hong Zeng, Xiao Ma, Shufen Pan, Yuting Han, Yanyan Tang, Yulan Fan, Yongquan Wu","doi":"10.1039/d4an01269k","DOIUrl":"https://doi.org/10.1039/d4an01269k","url":null,"abstract":"Inflammation is a complex physiological response involving various cellular and molecular events. Sulfur dioxide (SO2), which is usually in the form of HSO3- and SO32- under physiological conditions, plays a crucial role in the regulation of inflammation and diseases. Frequency upconversion luminescence (FUCL) can realize the unique anti-Stokes process of long-wavelength excitation to short-wavelength emission; thus, it is a highly promising optical method for in vivo imaging due to its deep tissue penetration, low photo-damage, etc. Therefore, we developed a near-infrared FUCL probe NIRX-1 for the detection of HSO3-. NIRX-1 had a fast response (80 s), a low detection limit (0.43 μM), and a high selectivity towards HSO3-. In addition, NIRX-1 had a deep light penetration ability due to the near-infrared excitation at 808 nm, and was able to detection of HSO3- in living cells and mice. Lastly, NIRX-1 was employed in the imaging of HSO3- in an inflammation mouse model through FUCL imaging techniques. All these features make NIRX-1 a good candidate for the investigate of SO2-associated physiological and pathological processes.","PeriodicalId":63,"journal":{"name":"Analyst","volume":"10 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142600051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yi-Xuan Li, Yu-Xuan Dai, Ju-Zheng Wang, Jérôme Chauvin, Xueji Zhang, Serge Cosnier, Robert Marks, Dan Shan
The concentration of zinc ions in semen is significantly correlated to the sperm viability and male fertility. In this work, a reliable ratiometric fluorescence probe (ZIF-9-TCPP) based on the efficient Förster resonance energy transfer (FRET) process be-tween two luminophores, benzimidazole (BIM) and meso-tetra (4-carboxyphenyl) porphyrin (TCPP) for Zn2+ detection has been constructed, where the emission of BIM and TCPP are used as reference and detection signals. The proximity of BIM and TCPP in one framework (ZIF-9-TCPP) and the overlapped spectra between BIM and TCPP afford the attainment of a highly efficient FRET (around 90% efficiency). Efficient FRET improves the fluorescence intensity of porphyrin to enhance the sensitivity of detection. The unique spectral shift resulting from Zn2+ binding to the porphyrin ring ensures the selectivity of detection. In addition, the response mechanism of the proposed ratiometric probes to Zn2+ has been investigated. This work provides a convenient way to design an efficient FRET system and a promising method for sperm mobility detection.
{"title":"A Novel Light-Harvesting ZIF-9-TCPP as a Promising FRET-based Ratiometric Fluorescence Probe for Sperm Mobility","authors":"Yi-Xuan Li, Yu-Xuan Dai, Ju-Zheng Wang, Jérôme Chauvin, Xueji Zhang, Serge Cosnier, Robert Marks, Dan Shan","doi":"10.1039/d4an01305k","DOIUrl":"https://doi.org/10.1039/d4an01305k","url":null,"abstract":"The concentration of zinc ions in semen is significantly correlated to the sperm viability and male fertility. In this work, a reliable ratiometric fluorescence probe (ZIF-9-TCPP) based on the efficient Förster resonance energy transfer (FRET) process be-tween two luminophores, benzimidazole (BIM) and meso-tetra (4-carboxyphenyl) porphyrin (TCPP) for Zn2+ detection has been constructed, where the emission of BIM and TCPP are used as reference and detection signals. The proximity of BIM and TCPP in one framework (ZIF-9-TCPP) and the overlapped spectra between BIM and TCPP afford the attainment of a highly efficient FRET (around 90% efficiency). Efficient FRET improves the fluorescence intensity of porphyrin to enhance the sensitivity of detection. The unique spectral shift resulting from Zn2+ binding to the porphyrin ring ensures the selectivity of detection. In addition, the response mechanism of the proposed ratiometric probes to Zn2+ has been investigated. This work provides a convenient way to design an efficient FRET system and a promising method for sperm mobility detection.","PeriodicalId":63,"journal":{"name":"Analyst","volume":"4 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiafan Ji, Qianqian Yan, Yi Chen, Gaosheng Zhao, Bin Jia, Li Xu, Ping Cheng
Ground-level ozone pollution poses significant risks to both ecosystems and human health, necessitating the implementation of effective control strategies. This investigtion concentrated on a monolithic ozone degradation catalyst composed of powdered α-MnO2 , throughly examining its catalytic performance, moisture resistance, and stability. The monolithic catalyst demonstrated optimal catalytic activity, achieving an ozone conversion rate of 99% following calcination at 400°C for a duration of three hours. Comprehensive characterization of the catalyst’s properties at pH levels of 1, 4, and 7 revealed that residual acid ions negatively impacted catalytic activity. Notably, the catalyst at pH 7 exhibited more oxygen vacancies, which correlated with the reduction of sulfate ion residues and the increased availability of more active sites during the washing process. Under conditons of pH 7 and a space velocity of 900,000 h-1, the α-MnO2 catalyst achieved conversion rates of 100% and 95% for 18 ppm ozone within three hours under 90% relative humidity and dry conditions, respectively. Furthermore, the monolithic catalyst demonstrated remarkable moisture resistance, performing effectively in continuous alternating humidity cycle tests and maintaining high humidity. It sustained 90% ozone decomposition efficiency after three hours of testing in high humidity conditions. Additionally, the α-MnO2 monolithic catalyst showed excellent stability, with an ozone conversion rate exceeding 99% throughout a 50-hour testindg period. These results highlight the significant potential of the α-MnO2 monolithic catalyst for applications in ozone removal.
{"title":"α-MnO2 catalysts with efficient ozone-catalyzed decomposition under high humidity conditions","authors":"Jiafan Ji, Qianqian Yan, Yi Chen, Gaosheng Zhao, Bin Jia, Li Xu, Ping Cheng","doi":"10.1039/d4an01095g","DOIUrl":"https://doi.org/10.1039/d4an01095g","url":null,"abstract":"Ground-level ozone pollution poses significant risks to both ecosystems and human health, necessitating the implementation of effective control strategies. This investigtion concentrated on a monolithic ozone degradation catalyst composed of powdered α-MnO2 , throughly examining its catalytic performance, moisture resistance, and stability. The monolithic catalyst demonstrated optimal catalytic activity, achieving an ozone conversion rate of 99% following calcination at 400°C for a duration of three hours. Comprehensive characterization of the catalyst’s properties at pH levels of 1, 4, and 7 revealed that residual acid ions negatively impacted catalytic activity. Notably, the catalyst at pH 7 exhibited more oxygen vacancies, which correlated with the reduction of sulfate ion residues and the increased availability of more active sites during the washing process. Under conditons of pH 7 and a space velocity of 900,000 h-1, the α-MnO2 catalyst achieved conversion rates of 100% and 95% for 18 ppm ozone within three hours under 90% relative humidity and dry conditions, respectively. Furthermore, the monolithic catalyst demonstrated remarkable moisture resistance, performing effectively in continuous alternating humidity cycle tests and maintaining high humidity. It sustained 90% ozone decomposition efficiency after three hours of testing in high humidity conditions. Additionally, the α-MnO2 monolithic catalyst showed excellent stability, with an ozone conversion rate exceeding 99% throughout a 50-hour testindg period. These results highlight the significant potential of the α-MnO2 monolithic catalyst for applications in ozone removal.","PeriodicalId":63,"journal":{"name":"Analyst","volume":"8 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142594310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fructooligosaccharides (FOS) and raffinose family oligosaccharides (RFOs) are two highly abundant water-soluble carbohydrates in plants. The typical procedures for the FOS and RFO structural determination using mass spectrometry involve permethylation, followed by the hydrolysis of the permethylated oligosaccharides into monosaccharides, and then the identification of linkage positions using GC mass spectrometry. However, the determination of linkage position sequence is not straightforward, thus this method is limited to small oligosaccharides or oligosaccharides with simple linkages. In this study, we employed a new mass spectrometry method, logically derived sequence tandem mass spectrometry, to determine the structures of FOS and RFOs. We first showed that the monosaccharide and disaccharide CID spectra of aldohexose and ketohexose can be rationalized using dissociation mechanisms. Then we demonstrated that the linkage positions of FOS and RFOs can be identified, the sequence of the linkages can be determined, and the ketohexose and aldohexose in FOS and RFOs can be differentiated, suggesting this new method is useful for structural determination of FOS and RFOs.
{"title":"Structural determination of fructooligosaccharides and raffinose family oligosaccharides using logically derived sequence tandem mass spectrometry†","authors":"Chia Yen Liew, Wun-Long Li and Chi-Kung Ni","doi":"10.1039/D4AN00872C","DOIUrl":"10.1039/D4AN00872C","url":null,"abstract":"<p >Fructooligosaccharides (FOS) and raffinose family oligosaccharides (RFOs) are two highly abundant water-soluble carbohydrates in plants. The typical procedures for the FOS and RFO structural determination using mass spectrometry involve permethylation, followed by the hydrolysis of the permethylated oligosaccharides into monosaccharides, and then the identification of linkage positions using GC mass spectrometry. However, the determination of linkage position sequence is not straightforward, thus this method is limited to small oligosaccharides or oligosaccharides with simple linkages. In this study, we employed a new mass spectrometry method, logically derived sequence tandem mass spectrometry, to determine the structures of FOS and RFOs. We first showed that the monosaccharide and disaccharide CID spectra of aldohexose and ketohexose can be rationalized using dissociation mechanisms. Then we demonstrated that the linkage positions of FOS and RFOs can be identified, the sequence of the linkages can be determined, and the ketohexose and aldohexose in FOS and RFOs can be differentiated, suggesting this new method is useful for structural determination of FOS and RFOs.</p>","PeriodicalId":63,"journal":{"name":"Analyst","volume":" 23","pages":" 5714-5727"},"PeriodicalIF":3.6,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142594311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}