Kwanhwi Ko, Hajun Yoo, Sangheon Han, Won Seok Chang and Donghyun Kim
When exposed to an alternating current (AC) electric field, a polarized microparticle is moved by the interaction between the voltage-induced dipoles and the AC electric field under dielectrophoresis (DEP). The DEP force is widely used for manipulation of microparticles in diverse practical applications such as 3D manipulation, sorting, transfer, and separation of various particles such as living cells. In this study, we propose the integration of surface-enhanced Raman spectroscopy (SERS), an extremely sensitive and versatile technique based on the Raman scattering of molecules supported by nanostructured materials, with DEP using a microfluidic device. The microfluidic device combines microelectrodes with gold nanohole arrays to characterize the electrophysiological and biochemical properties of biological cells. The movement of particles, which varies depending on the electrical properties such as conductivity and permittivity of particles, can be manipulated by the cross-frequency change. For proof of concept, Raman spectroscopy using the DEP–SERS integration was performed for polystyrene beads and biological cells and resulted in an improved signal-to-noise ratio by determining the direction of the DEP force applied to the cells with respect to the applied AC power and collecting them on the nanohole arrays. The result illustrates the potential of the concept for simultaneously examining the electrical and biochemical properties of diverse chemical and biological microparticles in the microfluidic environment.
当暴露在交流(AC)电场中时,极化微粒会在电压引起的偶极子与交流电场的相互作用下发生介电泳(DEP)运动。介电泳力被广泛应用于各种实际应用中的微颗粒操纵,如各种颗粒(如活细胞)的三维操纵、分拣、转移和分离。在本研究中,我们提出利用微流体设备将表面增强拉曼光谱(SERS)与 DEP 相结合,SERS 是一种基于纳米结构材料支持的分子拉曼散射的极其灵敏且用途广泛的技术。该微流体装置将微电极与金纳米孔阵列相结合,用于表征生物细胞的电生理和生化特性。颗粒的运动因颗粒的电特性(如电导率和介电常数)而异,可通过交叉频率变化来操控。为了验证概念,利用 DEP-SERS 集成对聚苯乙烯珠和生物细胞进行了拉曼光谱分析,通过确定施加到细胞上的 DEP 力相对于施加的交流电的方向,并将其收集到纳米孔阵列上,从而提高了信噪比。结果表明,这一概念具有在微流体环境中同时检测各种化学和生物微粒的电学和生物化学特性的潜力。
{"title":"Surface-enhanced Raman spectroscopy with single cell manipulation by microfluidic dielectrophoresis†","authors":"Kwanhwi Ko, Hajun Yoo, Sangheon Han, Won Seok Chang and Donghyun Kim","doi":"10.1039/D4AN00983E","DOIUrl":"10.1039/D4AN00983E","url":null,"abstract":"<p >When exposed to an alternating current (AC) electric field, a polarized microparticle is moved by the interaction between the voltage-induced dipoles and the AC electric field under dielectrophoresis (DEP). The DEP force is widely used for manipulation of microparticles in diverse practical applications such as 3D manipulation, sorting, transfer, and separation of various particles such as living cells. In this study, we propose the integration of surface-enhanced Raman spectroscopy (SERS), an extremely sensitive and versatile technique based on the Raman scattering of molecules supported by nanostructured materials, with DEP using a microfluidic device. The microfluidic device combines microelectrodes with gold nanohole arrays to characterize the electrophysiological and biochemical properties of biological cells. The movement of particles, which varies depending on the electrical properties such as conductivity and permittivity of particles, can be manipulated by the cross-frequency change. For proof of concept, Raman spectroscopy using the DEP–SERS integration was performed for polystyrene beads and biological cells and resulted in an improved signal-to-noise ratio by determining the direction of the DEP force applied to the cells with respect to the applied AC power and collecting them on the nanohole arrays. The result illustrates the potential of the concept for simultaneously examining the electrical and biochemical properties of diverse chemical and biological microparticles in the microfluidic environment.</p>","PeriodicalId":63,"journal":{"name":"Analyst","volume":" 23","pages":" 5649-5656"},"PeriodicalIF":3.6,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142440528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amanda French, Kirby P Hobbs, Richard M Cox, Isaac J Arnquist
Interference removal in inductively coupled plasma tandem mass spectrometry (ICP-MS/MS) is strongly dependent on the gas selected for use within the collision/reaction cell. There has been little investigation on the effects that reaction gas impurities may have on the resulting spectra. The reactivity of 60 elements was evaluated using nitric oxide (NO 99.5%) with and without a gas purifier to reduce H2O impurities to < 100 pptV. Experiments were performed using V, Ce, Tl and Th to investigate the effects of purified NO at various flowrates (0.22 – 1.49 mL min-1). Purified NO was shown to significantly mitigate oxy-hydride interferences, improve total ion sensitivity (notable at high gas flows), and shift product distributions advantageously. The reduction in oxy-hydride species results in a product distribution favoring the major expected products, where signals were shown to increase by an order of magnitude. Reduced background and increased signal for the major expected products provides avenues for improving various analytical applications of ICP-MS/MS.
电感耦合等离子体串联质谱法(ICP-MS/MS)的干扰消除在很大程度上取决于碰撞/反应池中选择使用的气体。关于反应气体杂质对所产生光谱的影响的研究还很少。我们使用一氧化氮(NO 99.5%)对 60 种元素的反应性进行了评估,使用或不使用气体净化器将 H2O 杂质降至 100 pptV。使用 V、Ce、Tl 和 Th 进行了实验,以研究纯化的 NO 在不同流速(0.22 - 1.49 mL min-1)下的效果。结果表明,纯化的氮氧化物能明显减轻氧氢干扰,提高总离子灵敏度(在高气体流量下尤为明显),并使产物分布发生有利的变化。氧酸酐种类的减少导致产物分布偏向于主要的预期产物,其信号增加了一个数量级。本底的减少和主要预期产物信号的增加为改进 ICP-MS/MS 的各种分析应用提供了途径。
{"title":"The impact of gas purity on observed reactivity with NO using inductively coupled plasma tandem mass spectrometry","authors":"Amanda French, Kirby P Hobbs, Richard M Cox, Isaac J Arnquist","doi":"10.1039/d4an01227e","DOIUrl":"https://doi.org/10.1039/d4an01227e","url":null,"abstract":"Interference removal in inductively coupled plasma tandem mass spectrometry (ICP-MS/MS) is strongly dependent on the gas selected for use within the collision/reaction cell. There has been little investigation on the effects that reaction gas impurities may have on the resulting spectra. The reactivity of 60 elements was evaluated using nitric oxide (NO 99.5%) with and without a gas purifier to reduce H2O impurities to < 100 pptV. Experiments were performed using V, Ce, Tl and Th to investigate the effects of purified NO at various flowrates (0.22 – 1.49 mL min-1). Purified NO was shown to significantly mitigate oxy-hydride interferences, improve total ion sensitivity (notable at high gas flows), and shift product distributions advantageously. The reduction in oxy-hydride species results in a product distribution favoring the major expected products, where signals were shown to increase by an order of magnitude. Reduced background and increased signal for the major expected products provides avenues for improving various analytical applications of ICP-MS/MS.","PeriodicalId":63,"journal":{"name":"Analyst","volume":"1 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142440579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In the face of worsening water quality and escalating water environmental emergencies, this study developed a paper-based microfluidic disk for rapid, on-site determination of ammonia nitrogen, nitrates, nitrites, and phosphates in water. The method utilizes centrifugal microfluidics and paper-based technology, thus simplifying the operation while eliminating the need for on-site reagent preparation. Experimental results demonstrate that the disk requires only 80 microliters of a water sample and 2 minutes to complete the quantitative analysis of the four nutrients, with a coefficient of variation below 1.72% and spike recoveries ranging from 92% to 113%. The development of the disk provides an effective and rapid, on-site testing tool for water quality analysis.
{"title":"Designing a novel paper-based microfluidic disc for rapid and simultaneous determination of multiple nutrient salts in water†","authors":"Zhentao Sun, Youquan Zhao, Yameng Liu, Chen Chen and Hao Chen","doi":"10.1039/D4AN01127A","DOIUrl":"10.1039/D4AN01127A","url":null,"abstract":"<p >In the face of worsening water quality and escalating water environmental emergencies, this study developed a paper-based microfluidic disk for rapid, on-site determination of ammonia nitrogen, nitrates, nitrites, and phosphates in water. The method utilizes centrifugal microfluidics and paper-based technology, thus simplifying the operation while eliminating the need for on-site reagent preparation. Experimental results demonstrate that the disk requires only 80 microliters of a water sample and 2 minutes to complete the quantitative analysis of the four nutrients, with a coefficient of variation below 1.72% and spike recoveries ranging from 92% to 113%. The development of the disk provides an effective and rapid, on-site testing tool for water quality analysis.</p>","PeriodicalId":63,"journal":{"name":"Analyst","volume":" 22","pages":" 5563-5571"},"PeriodicalIF":3.6,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142439205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Erli Cai, Yage Chen, Jing Zhang, Haozheng Li, Yiran Li, Shuai Yan, Zhiyong He, Quan Yuan and Ping Wang
Fluorescence labeling via fluorescent proteins (FPs) or immunofluorescence has been routinely applied for microscopic imaging of specific proteins. However, due to these over-weight and oversized labels (e.g. GFP, 238 aa, 27 kDa, ∼4 nm in size), the potential physiological malfunctions of the target proteins are largely underestimated in living cells. Herein, for living cells, we report a small and minimally-invasive Raman reporter (about 2 aa and <1 kDa), which can be site-specifically introduced into proteins by genetic codon expansion. After a single unnatural amino acid (UAA) is precisely incorporated into the target protein, the strained alkyne can rapidly undergo copper-free Diels–Alder cycloaddition reactions with the tetrazine-functionalized Raman reporter, which features a fine vibrational spectrum in contrast to fluorescence. In our experimental results, the UAA-based Raman tag was successfully incorporated into vimentin, histone 3.3 and huntingtin (Htt74Q) proteins in living HeLa cells and further utilized for stimulated Raman imaging. The site-specific bioorthogonal fusion of small Raman tags with intracellular proteins will pave the way for minimally-invasive protein labeling and multi-color imaging in living cells.
通过荧光蛋白(FPs)或免疫荧光进行荧光标记已被常规应用于特定蛋白质的显微成像。然而,由于这些标签重量过重、体积过大(如 GFP,238 aa,27 kDa,大小∼4 nm),目标蛋白质在活细胞中的潜在生理功能失常在很大程度上被低估了。在此,我们报告了一种针对活细胞的小型微创拉曼报告物(约 2 aa 和 1 kDa),该报告物可通过基因密码子扩增特异性地引入蛋白质中。将单个非天然氨基酸(UAA)精确地加入目标蛋白质后,受约束的炔烃可与四嗪功能化的拉曼报告物迅速发生无铜的 Diels-Alder 环加成反应,与荧光相比,拉曼报告物具有精细的振动光谱。根据我们的实验结果,基于 UAA 的拉曼标签被成功整合到活体 HeLa 细胞中的波形蛋白、组蛋白 3.3 和亨廷蛋白(Htt74Q)中,并进一步用于刺激拉曼成像。小型拉曼标签与细胞内蛋白质的特定位点生物正交融合将为活细胞中的微创蛋白质标记和多色成像铺平道路。
{"title":"Imaging specific proteins in living cells with small unnatural amino acid attached Raman reporters†","authors":"Erli Cai, Yage Chen, Jing Zhang, Haozheng Li, Yiran Li, Shuai Yan, Zhiyong He, Quan Yuan and Ping Wang","doi":"10.1039/D4AN00758A","DOIUrl":"10.1039/D4AN00758A","url":null,"abstract":"<p >Fluorescence labeling <em>via</em> fluorescent proteins (FPs) or immunofluorescence has been routinely applied for microscopic imaging of specific proteins. However, due to these over-weight and oversized labels (<em>e.g.</em> GFP, 238 aa, 27 kDa, ∼4 nm in size), the potential physiological malfunctions of the target proteins are largely underestimated in living cells. Herein, for living cells, we report a small and minimally-invasive Raman reporter (about 2 aa and <1 kDa), which can be site-specifically introduced into proteins by genetic codon expansion. After a single unnatural amino acid (UAA) is precisely incorporated into the target protein, the strained alkyne can rapidly undergo copper-free Diels–Alder cycloaddition reactions with the tetrazine-functionalized Raman reporter, which features a fine vibrational spectrum in contrast to fluorescence. In our experimental results, the UAA-based Raman tag was successfully incorporated into vimentin, histone 3.3 and huntingtin (Htt74Q) proteins in living HeLa cells and further utilized for stimulated Raman imaging. The site-specific bioorthogonal fusion of small Raman tags with intracellular proteins will pave the way for minimally-invasive protein labeling and multi-color imaging in living cells.</p>","PeriodicalId":63,"journal":{"name":"Analyst","volume":" 22","pages":" 5476-5481"},"PeriodicalIF":3.6,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142431164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Non-specific amplification (NSA, amplification in the absence of a target analyte) in bioanalytical rolling circle amplification (RCA) assays, especially those involving pre-synthesized circular DNA (cDNA), affects its analytical sensitivity. Despite extensive development of RCA-based bioanalytical methods, the NSA in RCA remains uncharacterized in terms of its magnitude or origin. NSA may originate from inefficient ligation or succeeding cDNA purification steps. This study comprehensively quantifies NSA across several ligation and digestion techniques for the first time since the innovation of RCA. To quantify the NSA in RCA, cDNAs were prepared using self-annealing, splint-padlock, or cohesive end ligations. The cDNAs were then subjected to nine different exonuclease digestion steps and quantified for NSA under linear as well as hyperbranched RCA conditions. We investigated buffer compositions, divalent ion concentrations, single or dual enzyme digestion, cohesive end lengths, and splint lengths. The optimized conditions successfully mitigated absolute NSA by 30–100-fold and relative NSA (normalized against primer-assisted RCA) to ∼5%. Besides understanding the mechanistic origin of NSA, novel aspects of enzyme–substrate selectivity, buffer composition, and the role of divalent ions were discovered. With increasing bioanalytical RCA applications, this study will help standardize NSA-free assays.
{"title":"Probing the role of ligation and exonuclease digestion towards non-specific amplification in bioanalytical RCA assays†","authors":"Vandana Kuttappan Nair, Chandrika Sharma, Shrawan Kumar, Mrittika Sengupta and Souradyuti Ghosh","doi":"10.1039/D4AN00866A","DOIUrl":"10.1039/D4AN00866A","url":null,"abstract":"<p >Non-specific amplification (NSA, amplification in the absence of a target analyte) in bioanalytical rolling circle amplification (RCA) assays, especially those involving pre-synthesized circular DNA (cDNA), affects its analytical sensitivity. Despite extensive development of RCA-based bioanalytical methods, the NSA in RCA remains uncharacterized in terms of its magnitude or origin. NSA may originate from inefficient ligation or succeeding cDNA purification steps. This study comprehensively quantifies NSA across several ligation and digestion techniques for the first time since the innovation of RCA. To quantify the NSA in RCA, cDNAs were prepared using self-annealing, splint-padlock, or cohesive end ligations. The cDNAs were then subjected to nine different exonuclease digestion steps and quantified for NSA under linear as well as hyperbranched RCA conditions. We investigated buffer compositions, divalent ion concentrations, single or dual enzyme digestion, cohesive end lengths, and splint lengths. The optimized conditions successfully mitigated absolute NSA by 30–100-fold and relative NSA (normalized against primer-assisted RCA) to ∼5%. Besides understanding the mechanistic origin of NSA, novel aspects of enzyme–substrate selectivity, buffer composition, and the role of divalent ions were discovered. With increasing bioanalytical RCA applications, this study will help standardize NSA-free assays.</p>","PeriodicalId":63,"journal":{"name":"Analyst","volume":" 22","pages":" 5491-5503"},"PeriodicalIF":3.6,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142397725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qi Wang, Pei Liu, Ke Xiao, Wenying Zhou, Jinfeng Li and Yun Xi
Group A streptococcus (GAS) is a pathogen typically transmitted through respiratory droplets and skin contact, causing an estimated 700 million mild non-invasive infections worldwide each year. There are approximately 650 000 infections that progress to severe invasive infections, even resulting in death. Therefore, the ability to detect GAS rapidly, accurately and in real time is important. Herein, we developed a nanozyme linked multi-array gas driven sensor (NLMAGS) to point-of-care testing of GAS within 2 h. The NLMAGS demonstrated excellent performance as it combined the advantages of nanozyme techniques, immunoassay techniques, and 3D printing techniques. Platinum- and palladium-rich nanozyme particles (Au@Pt@PdNPs) were synthesized and used to label monocloning antibodies as detection probes. Magnetic beads were labeled with monocloning antibodies as capture probes to establish a double-antibody sandwich immunoassay for the detection of GAS. The sandwich immune complex can catalyze the H2O2 substrate and produce O2. GAS quantification can be achieved by measuring the distance that the O2 pushes the ink drops forward in the sensor. Under optimized conditions, the NLMAGS quantitatively detected 24 spiked samples with a limit of detection (LOD) of 62 CFU mL−1, which was 5 times lower than that of ELISA (334 CFU mL−1). A strong correlation with the conventional ELISA was found (r = 0.99, P < 0.001). In comparison, the traditional lateral flow immunoassay based on Au@Pt@PdNPs-mAb2 (Au@Pt@PdNPs-LFIA) had a LOD of 104 CFU mL−1, which was significantly higher than that of NLMAGS. The NLMAGS demonstrated excellent sensitivity to GAS. The intra- and inter-assay precisions of the sensor were below 15%. Overall, the established NLMAGS has promising potential as a rapid and quantitative method for detecting GAS and can also be used to detect various pathogens.
A 组链球菌(GAS)是一种病原体,通常通过呼吸道飞沫和皮肤接触传播,估计每年在全球造成 7 亿例轻度非侵入性感染。约有 65 万例感染发展为严重的侵入性感染,甚至导致死亡。因此,快速、准确和实时检测 GAS 的能力非常重要。在此,我们开发了一种纳米酶链接多阵列气体驱动传感器(NLMAGS),可在 2 小时内对 GAS 进行床旁检测。NLMAGS 结合了纳米酶技术、免疫测定技术和 3D 打印技术的优势,表现出卓越的性能。合成了富含铂和钯的纳米酶颗粒(Au@Pt@PdNPs),用于标记单克隆抗体作为检测探针。用单克隆抗体标记磁珠作为捕获探针,建立了一种检测 GAS 的双抗体夹心免疫分析法。夹心免疫复合物可催化 H2O2 底物并产生 O2。通过测量 O2 在传感器中推动墨滴前进的距离,可以实现 GAS 定量。在优化条件下,NLMAGS 可定量检测 24 种添加样品,检测限(LOD)为 62 CFU mL-1,比 ELISA(334 CFU mL-1)低 5 倍。该方法与传统的酶联免疫吸附法有很强的相关性(r = 0.99,P < 0.001)。相比之下,基于 Au@Pt@PdNPs-mAb2 的传统侧流免疫测定(Au@Pt@PdNPs-LFIA)的检测限为 104 CFU mL-1,明显高于 NLMAGS。NLMAGS 对 GAS 的灵敏度极高。传感器的测定内和测定间精度均低于 15%。总之,已建立的 NLMAGS 作为一种快速定量检测 GAS 的方法具有广阔的前景,也可用于检测各种病原体。
{"title":"Nanozyme linked multi-array gas driven sensor for real-time quantitative detection of Group A streptococcus†","authors":"Qi Wang, Pei Liu, Ke Xiao, Wenying Zhou, Jinfeng Li and Yun Xi","doi":"10.1039/D4AN00787E","DOIUrl":"10.1039/D4AN00787E","url":null,"abstract":"<p > <em>Group A streptococcus</em> (<em>GAS</em>) is a pathogen typically transmitted through respiratory droplets and skin contact, causing an estimated 700 million mild non-invasive infections worldwide each year. There are approximately 650 000 infections that progress to severe invasive infections, even resulting in death. Therefore, the ability to detect <em>GAS</em> rapidly, accurately and in real time is important. Herein, we developed a nanozyme linked multi-array gas driven sensor (NLMAGS) to point-of-care testing of <em>GAS</em> within 2 h. The NLMAGS demonstrated excellent performance as it combined the advantages of nanozyme techniques, immunoassay techniques, and 3D printing techniques. Platinum- and palladium-rich nanozyme particles (Au@Pt@PdNPs) were synthesized and used to label monocloning antibodies as detection probes. Magnetic beads were labeled with monocloning antibodies as capture probes to establish a double-antibody sandwich immunoassay for the detection of <em>GAS</em>. The sandwich immune complex can catalyze the H<small><sub>2</sub></small>O<small><sub>2</sub></small> substrate and produce O<small><sub>2</sub></small>. <em>GAS</em> quantification can be achieved by measuring the distance that the O<small><sub>2</sub></small> pushes the ink drops forward in the sensor. Under optimized conditions, the NLMAGS quantitatively detected 24 spiked samples with a limit of detection (LOD) of 62 CFU mL<small><sup>−1</sup></small>, which was 5 times lower than that of ELISA (334 CFU mL<small><sup>−1</sup></small>). A strong correlation with the conventional ELISA was found (<em>r</em> = 0.99, <em>P</em> < 0.001). In comparison, the traditional lateral flow immunoassay based on Au@Pt@PdNPs-mAb2 (Au@Pt@PdNPs-LFIA) had a LOD of 10<small><sup>4</sup></small> CFU mL<small><sup>−1</sup></small>, which was significantly higher than that of NLMAGS. The NLMAGS demonstrated excellent sensitivity to <em>GAS</em>. The intra- and inter-assay precisions of the sensor were below 15%. Overall, the established NLMAGS has promising potential as a rapid and quantitative method for detecting <em>GAS</em> and can also be used to detect various pathogens.</p>","PeriodicalId":63,"journal":{"name":"Analyst","volume":" 22","pages":" 5433-5442"},"PeriodicalIF":3.6,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142385075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Spatially offset Raman spectroscopy (SORS) is a transformative method for probing subsurface chemical compositions in turbid media. This systematic study of Monte Carlo simulations provides closed-form characterizations of key SORS parameters, such as the distribution of spatial origins of collected Raman photons and optimal SORS geometry to selectively interrogate a subsurface region of interest. These results are unified across an extensive range of material properties by multiplying spatial dimensions by the medium's effective attenuation coefficient, which can be calculated when the absorption and reduced scattering coefficients are known from the literature or experimentation. This method of spatial nondimensionalization is validated via goodness-of-fit analysis on the aggregate models and by training a subsurface sample localization model on a heterogeneous population of materials. The findings reported here advance the understanding of SORS phenomena while providing a quantitative and widely applicable foundation for designing and interpreting SORS experiments, facilitating its application in disciplines such as biomedical, materials science, and cultural heritage fields.
{"title":"Material-agnostic characterization of spatially offset Raman spectroscopy in turbid media via Monte Carlo simulations†","authors":"Zuriel Erikson Joven, Piyush Raj and Ishan Barman","doi":"10.1039/D4AN01044B","DOIUrl":"10.1039/D4AN01044B","url":null,"abstract":"<p >Spatially offset Raman spectroscopy (SORS) is a transformative method for probing subsurface chemical compositions in turbid media. This systematic study of Monte Carlo simulations provides closed-form characterizations of key SORS parameters, such as the distribution of spatial origins of collected Raman photons and optimal SORS geometry to selectively interrogate a subsurface region of interest. These results are unified across an extensive range of material properties by multiplying spatial dimensions by the medium's effective attenuation coefficient, which can be calculated when the absorption and reduced scattering coefficients are known from the literature or experimentation. This method of spatial nondimensionalization is validated <em>via</em> goodness-of-fit analysis on the aggregate models and by training a subsurface sample localization model on a heterogeneous population of materials. The findings reported here advance the understanding of SORS phenomena while providing a quantitative and widely applicable foundation for designing and interpreting SORS experiments, facilitating its application in disciplines such as biomedical, materials science, and cultural heritage fields.</p>","PeriodicalId":63,"journal":{"name":"Analyst","volume":" 22","pages":" 5463-5475"},"PeriodicalIF":3.6,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142384140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Larissa Garcia Velasco, Danielly Santos Rocha, Richard P. S. de Campos, Wendell Karlos Tomazelli Coltro
Digital microfluidics (DMF) is a platform that enables the automated manipulation of individual droplets of sizes ranging from nano- to microliter and can be coupled with numerous techniques, including colorimetry. However, although DMF electrode architecture is highly versatile, its integration with different analytical methods often requires either changes in sample access, top plate design, or the integration of supplementary equipment into the system. As an alternative to overcome these challenges, this study proposes a simple integration between paper-based analytical devices (PADs) and DMF for automated and eco-friendly sample processing aiming at the colorimetric detection of creatinine (an important biomarker for kidney disease) in artificial urine. Optimized and selective Jaffé reaction was performed on the device, and reaction products were delivered to the PAD, which was subsequently analyzed with a bench scanner. The optimal operational parameters on DMF were 45 s reaction time with circular mixing and capture of the image after 5 min. Under optimized conditions, a linear behavior was obtained for creatinine concentrations ranging from 2 to 32 mg dL-1, with limits of detection and quantitation equal to 1.4 mg dL-1 and 3.1 mg dL-1, respectively. For the concentration range tested, the relative standard deviation varied from 2.5 to 11.0%, considering four measurements per concentration. Creatinine-spiked synthetic urine samples were subjected to analysis via DMF-PAD and the spectrophotometric reference method. The concentrations of CR determined using both analytical techniques were close to the theoretical values, with the resultant standard deviations of 2-9% and 1-4% for DMF-PAD and spectrophotometry, respectively. Furthermore, the recovery values were within the acceptable range, with DMF-PAD yielding 96-108% and spectrophotometry producing 95-102%. Finally, the greenness levels of DMF-PAD and spectrophotometric methods were evaluated using the Analytical Greenness Metric software, in which 0.71 and 0.51 scores were obtained, respectively. This indicates that the proposed method presents a higher greenness level, mainly due to its miniaturized characteristic using a smaller volume of reagent and sample and the possibility of automation, thus reducing user exposure to potentially toxic substances. Therefore, the DMF-PADs demonstrated great potential for application in the clinical analysis of creatinine, aiding in routine tests by introducing an automated, simple, and environmentally friendly process.
{"title":"Integration of paper-based analytical devices with digital microfluidics for colorimetric detection of creatinine","authors":"Larissa Garcia Velasco, Danielly Santos Rocha, Richard P. S. de Campos, Wendell Karlos Tomazelli Coltro","doi":"10.1039/d4an00688g","DOIUrl":"https://doi.org/10.1039/d4an00688g","url":null,"abstract":"Digital microfluidics (DMF) is a platform that enables the automated manipulation of individual droplets of sizes ranging from nano- to microliter and can be coupled with numerous techniques, including colorimetry. However, although DMF electrode architecture is highly versatile, its integration with different analytical methods often requires either changes in sample access, top plate design, or the integration of supplementary equipment into the system. As an alternative to overcome these challenges, this study proposes a simple integration between paper-based analytical devices (PADs) and DMF for automated and eco-friendly sample processing aiming at the colorimetric detection of creatinine (an important biomarker for kidney disease) in artificial urine. Optimized and selective Jaffé reaction was performed on the device, and reaction products were delivered to the PAD, which was subsequently analyzed with a bench scanner. The optimal operational parameters on DMF were 45 s reaction time with circular mixing and capture of the image after 5 min. Under optimized conditions, a linear behavior was obtained for creatinine concentrations ranging from 2 to 32 mg dL-1, with limits of detection and quantitation equal to 1.4 mg dL-1 and 3.1 mg dL-1, respectively. For the concentration range tested, the relative standard deviation varied from 2.5 to 11.0%, considering four measurements per concentration. Creatinine-spiked synthetic urine samples were subjected to analysis via DMF-PAD and the spectrophotometric reference method. The concentrations of CR determined using both analytical techniques were close to the theoretical values, with the resultant standard deviations of 2-9% and 1-4% for DMF-PAD and spectrophotometry, respectively. Furthermore, the recovery values were within the acceptable range, with DMF-PAD yielding 96-108% and spectrophotometry producing 95-102%. Finally, the greenness levels of DMF-PAD and spectrophotometric methods were evaluated using the Analytical Greenness Metric software, in which 0.71 and 0.51 scores were obtained, respectively. This indicates that the proposed method presents a higher greenness level, mainly due to its miniaturized characteristic using a smaller volume of reagent and sample and the possibility of automation, thus reducing user exposure to potentially toxic substances. Therefore, the DMF-PADs demonstrated great potential for application in the clinical analysis of creatinine, aiding in routine tests by introducing an automated, simple, and environmentally friendly process.","PeriodicalId":63,"journal":{"name":"Analyst","volume":"225 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142384141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hongliang Ma, Shiqi Wang, Gaoxuan Wang, Qilei Zhang, Shenlong Zha, Xueyuan Cai, Lingli Li, Pan Pan, Qiang Liu and Shengbao Zhan
A double-channel methane (CH4) sensor was developed using a dual-pass multipass cell (DP-MPC) and a novel method that combines averaging dual-channel concentration signals with optimized detector gain configuration. This DP-MPC features two input/output coupling holes, resulting in absorption path lengths of approximately 95.8 m and 35.8 m, respectively. By optimizing the photodetector gain configuration and averaging the dual-channel concentration signals, the detection performance of the sensor was further enhanced. Allan deviation analysis indicated that after optimizing the detector gain, the measurement precision after dual-channel averaging reaches 21 ppb with an integration time of 1 s at a concentration of 2 ppm CH4, which is approximately 1.4 times higher than the measurement precision of the long-path channel (31 ppb) and short-path channel (30 ppb). The time required to achieve a measurement precision of 21 ppb is 2.4 s for the long-path channel and 2.1 s for the short-path channel. The response speed of the dual-channel averaging is approximately 2 times that of any single channel. Meanwhile, the sensor demonstrated its stability and reliability through continuous outdoor atmospheric CH4 measurements.
{"title":"Double-channel sensors for high precision measurement of methane based on a dual-path Herriott cell","authors":"Hongliang Ma, Shiqi Wang, Gaoxuan Wang, Qilei Zhang, Shenlong Zha, Xueyuan Cai, Lingli Li, Pan Pan, Qiang Liu and Shengbao Zhan","doi":"10.1039/D4AN01107D","DOIUrl":"10.1039/D4AN01107D","url":null,"abstract":"<p >A double-channel methane (CH<small><sub>4</sub></small>) sensor was developed using a dual-pass multipass cell (DP-MPC) and a novel method that combines averaging dual-channel concentration signals with optimized detector gain configuration. This DP-MPC features two input/output coupling holes, resulting in absorption path lengths of approximately 95.8 m and 35.8 m, respectively. By optimizing the photodetector gain configuration and averaging the dual-channel concentration signals, the detection performance of the sensor was further enhanced. Allan deviation analysis indicated that after optimizing the detector gain, the measurement precision after dual-channel averaging reaches 21 ppb with an integration time of 1 s at a concentration of 2 ppm CH<small><sub>4</sub></small>, which is approximately 1.4 times higher than the measurement precision of the long-path channel (31 ppb) and short-path channel (30 ppb). The time required to achieve a measurement precision of 21 ppb is 2.4 s for the long-path channel and 2.1 s for the short-path channel. The response speed of the dual-channel averaging is approximately 2 times that of any single channel. Meanwhile, the sensor demonstrated its stability and reliability through continuous outdoor atmospheric CH<small><sub>4</sub></small> measurements.</p>","PeriodicalId":63,"journal":{"name":"Analyst","volume":" 22","pages":" 5527-5534"},"PeriodicalIF":3.6,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142383914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nikita Thomas, Mengzhen Lyu, Jadon Khouv, Dhésmon Lima and Sabine Kuss
Scanning Electrochemical Microscopy (SECM) has been used as a non-invasive electrochemical technique for studying cellular processes. SECM enables the quantification of cellular metabolites in real-time providing a deeper understanding of cellular responses to external stimuli. SECM imaging of living cells requires maintaining an ideal physiological environment to ensure reliable data collection on cellular reactivity. The cellular response can be directly influenced by physicochemical parameters including cell media composition, temperature and light exposure. This research demonstrates the effect of media composition on the electrochemical current signal of adenocarcinoma cervical cancer (HeLa) cells during SECM measurements using ferrocenemethanol as a redox mediator. Investigated media that are commonly used as electrolyte, are phosphate buffered saline (PBS), and Dulbecco's modified Eagle's medium (DMEM) in the absence and presence of fetal bovine serum (FBS). In addition, this research demonstrates that fluctuating light illumination impacts the stability of the cellular electrochemical current response. Our findings reveal that media composition and illumination are important parameters that must be carefully considered and monitored during SECM live cell imaging.
{"title":"Effects of media composition and light exposure on the electrochemical current response during scanning electrochemical microscopy live cell imaging†","authors":"Nikita Thomas, Mengzhen Lyu, Jadon Khouv, Dhésmon Lima and Sabine Kuss","doi":"10.1039/D4AN01075B","DOIUrl":"10.1039/D4AN01075B","url":null,"abstract":"<p >Scanning Electrochemical Microscopy (SECM) has been used as a non-invasive electrochemical technique for studying cellular processes. SECM enables the quantification of cellular metabolites in real-time providing a deeper understanding of cellular responses to external stimuli. SECM imaging of living cells requires maintaining an ideal physiological environment to ensure reliable data collection on cellular reactivity. The cellular response can be directly influenced by physicochemical parameters including cell media composition, temperature and light exposure. This research demonstrates the effect of media composition on the electrochemical current signal of adenocarcinoma cervical cancer (HeLa) cells during SECM measurements using ferrocenemethanol as a redox mediator. Investigated media that are commonly used as electrolyte, are phosphate buffered saline (PBS), and Dulbecco's modified Eagle's medium (DMEM) in the absence and presence of fetal bovine serum (FBS). In addition, this research demonstrates that fluctuating light illumination impacts the stability of the cellular electrochemical current response. Our findings reveal that media composition and illumination are important parameters that must be carefully considered and monitored during SECM live cell imaging.</p>","PeriodicalId":63,"journal":{"name":"Analyst","volume":" 22","pages":" 5555-5562"},"PeriodicalIF":3.6,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142383965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}