Timothy T. Salomons, David Simon and Richard Oleschuk
We report a micro-fractionation device for high performance liquid chromatography-mass spectrometry to archive chromatographic separations on an array of optimized surface energy traps (SETs). The method has the potential to significantly alter nanoflow LC-MS workflow, decoupling separation and analysis. The wetting characteristics of the SETs cause the HPLC eluent stream to spontaneously split into droplet microfractions. The droplet mirofractions are then dried down to enable facile storage and transport of the archived separation. Discontinuously dewetting array parameters were explored to maximize array volume and resolution using a combination of SET design, shape, size, and spacing. Mass spectrometry analysis is performed utilizing a liquid micro-junction surface sampling probe to extract dried analytes from the surface of the SETs followed by electrospray ionisation. A reverse phase separation of pharmaceutical compounds is “recorded” using the micro-fractionation device followed by “reading” the chromatographic trace with a mass spectrometer 24 hours after the separation was performed/archived, demonstrating a true decoupling of LC, and MS. Additionally, we demonstrate the ability to collect microfractions with sub-one-second integration time, approaching the scan time of a mass spectrometer or UV-Vis detector. With further improvements to the device, sub-1-second micro-fractionation may enable seamless reconstruction of archived chromatograms indistinguishable from online LC-MS data, while also providing the benefits of easy storage and transport of archived separations.
我们报告了一种用于高效液相色谱-质谱联用技术的微型分馏装置,可将色谱分离过程归档到优化的表面能阱(SET)阵列上。该方法有望显著改变纳升液相色谱-质谱工作流程,实现分离与分析的解耦。SET 的润湿特性可使 HPLC 洗脱液流自发分裂成液滴微馏分。然后对液滴微馏分进行干燥,以便于存档分离的储存和运输。通过结合 SET 的设计、形状、大小和间距,探索了间断脱水阵列参数,以最大限度地提高阵列体积和分辨率。利用液态微结表面取样探针从 SET 表面提取干燥的分析物,然后进行电喷雾离子化,从而进行质谱分析。使用微分馏装置 "记录 "药物化合物的反相分离,然后在分离/存档 24 小时后使用质谱仪 "读取 "色谱跟踪,从而展示了液相色谱和质谱的真正解耦。此外,我们还展示了以亚一秒积分时间收集微馏分的能力,接近质谱仪或紫外可见检测器的扫描时间。随着设备的进一步改进,1 秒以下的微馏分可实现与在线 LC-MS 数据无异的存档色谱图的无缝重建,同时还具有便于存储和运输存档分离物的优点。
{"title":"Storing liquid chromatographic separations on surface energy traps: decoupling the LC and the mass spectrometer†","authors":"Timothy T. Salomons, David Simon and Richard Oleschuk","doi":"10.1039/D4AN00828F","DOIUrl":"10.1039/D4AN00828F","url":null,"abstract":"<p >We report a micro-fractionation device for high performance liquid chromatography-mass spectrometry to archive chromatographic separations on an array of optimized surface energy traps (SETs). The method has the potential to significantly alter nanoflow LC-MS workflow, decoupling separation and analysis. The wetting characteristics of the SETs cause the HPLC eluent stream to spontaneously split into droplet microfractions. The droplet mirofractions are then dried down to enable facile storage and transport of the archived separation. Discontinuously dewetting array parameters were explored to maximize array volume and resolution using a combination of SET design, shape, size, and spacing. Mass spectrometry analysis is performed utilizing a liquid micro-junction surface sampling probe to extract dried analytes from the surface of the SETs followed by electrospray ionisation. A reverse phase separation of pharmaceutical compounds is “recorded” using the micro-fractionation device followed by “reading” the chromatographic trace with a mass spectrometer 24 hours after the separation was performed/archived, demonstrating a true decoupling of LC, and MS. Additionally, we demonstrate the ability to collect microfractions with sub-one-second integration time, approaching the scan time of a mass spectrometer or UV-Vis detector. With further improvements to the device, sub-1-second micro-fractionation may enable seamless reconstruction of archived chromatograms indistinguishable from online LC-MS data, while also providing the benefits of easy storage and transport of archived separations.</p>","PeriodicalId":63,"journal":{"name":"Analyst","volume":" 21","pages":" 5336-5343"},"PeriodicalIF":3.6,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142321503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The bacterial load (BL), or total viable count, of aerobes can be measured using micro-respirometry, %O2-μR, in which the consumption of dissolved O2 is monitored with respect to incubation time, t. In %O2-μR the ‘bioreactor’ often comprises a canonical plastic tube with a small %O2 sensor; it is simple, fast and accurate and used in automated, commercial instruments for measuring BL. Here we show that it is also possible to measure BL using a new form of micro-respirometry, %CO2-μR, in which the production of CO2 in the growth medium is monitored. In %CO2-μR, the ‘bioreactor’ is the same as that used in %O2-μR, but with a small 3D printed, colour-based %CO2 indicator set in its base and its apparent absorbance, A′, is measured at any t, as it is related to the %CO2 dissolved in the inoculated growth medium. Under aerobic conditions, different inoculations of the facultative anaerobe, E. coli, of different concentrations (101–108 colony forming units (CFU) per mL) are used to generate a series of A′ vs. t profiles, and a straight-line calibration curve. Statistical comparative analysis of the results generated in the above %CO2-μR study, to those generated for the same system but using a commercial %O2-μR system, is used to demonstrate method equivalence. A study of the same system, under anaerobic conditions, using %CO2-μR, shows that %CO2-μR is suitable for measuring the BL of anaerobes. The potential of %CO2-μR for measuring the bacterial load of CO2-generating aerobes and anaerobes is discussed briefly.
有氧菌的细菌负荷(BL)或总存活数可通过微呼吸测定法(%O2-R)进行测量,其中溶解氧的消耗量随培养时间 t 而变化。在%O2-R 中,"生物反应器 "通常包括一个带有小型%O2 传感器的普通塑料管;该方法简单、快速、准确,可用于测量 BL 的自动商业仪器中。在这里,我们展示了使用新形式的微呼吸测量法(%CO2-R)测量 BL 的可能性,在这种测量法中,生长介质中二氧化碳的生成量受到监控。在 %CO2-R 中,"生物反应器 "与 %O2-R 中使用的生物反应器相同,但在其底座上设置了一个小型 3D 打印彩色 %CO2 指示器,其表观吸光度 A' 可在任何时间测量,因为它与接种生长介质中溶解的 %CO2 有关。在有氧条件下,接种不同浓度(101-108 菌落总数(CFU)/毫升)的兼性厌氧菌大肠杆菌,生成一系列 A' vs t 曲线和直线校准曲线。对上述 %CO2-R 研究中产生的结果与使用商业 %O2-R 系统的同一系统产生的结果进行统计比较分析,以证明方法的等效性。在厌氧条件下,使用 %CO2-R 对同一系统进行的研究表明,%CO2-R 适用于测量厌氧菌的 BL。此外,还简要讨论了 %CO2-R 在测量产生 CO2 的需氧菌和厌氧菌的细菌负荷方面的潜力。
{"title":"CO2-Based micro-respirometry for measuring bacterial load under aerobic and anaerobic conditions†","authors":"L. McDonnell, D. Yusufu and A. Mills","doi":"10.1039/D4AN01016G","DOIUrl":"10.1039/D4AN01016G","url":null,"abstract":"<p >The bacterial load (BL), or total viable count, of aerobes can be measured using micro-respirometry, %O<small><sub>2</sub></small>-μR, in which the consumption of dissolved O<small><sub>2</sub></small> is monitored with respect to incubation time, <em>t</em>. In %O<small><sub>2</sub></small>-μR the ‘bioreactor’ often comprises a canonical plastic tube with a small %O<small><sub>2</sub></small> sensor; it is simple, fast and accurate and used in automated, commercial instruments for measuring BL. Here we show that it is also possible to measure BL using a new form of micro-respirometry, %CO<small><sub>2</sub></small>-μR, in which the production of CO<small><sub>2</sub></small> in the growth medium is monitored. In %CO<small><sub>2</sub></small>-μR, the ‘bioreactor’ is the same as that used in %O<small><sub>2</sub></small>-μR, but with a small 3D printed, colour-based %CO<small><sub>2</sub></small> indicator set in its base and its apparent absorbance, <em>A</em>′, is measured at any <em>t</em>, as it is related to the %CO<small><sub>2</sub></small> dissolved in the inoculated growth medium. Under <em>aerobic</em> conditions, different inoculations of the facultative anaerobe, <em>E. coli</em>, of different concentrations (10<small><sup>1</sup></small>–10<small><sup>8</sup></small> colony forming units (CFU) per mL) are used to generate a series of <em>A</em>′ <em>vs</em>. <em>t</em> profiles, and a straight-line calibration curve. Statistical comparative analysis of the results generated in the above %CO<small><sub>2</sub></small>-μR study, to those generated for the same system but using a commercial %O<small><sub>2</sub></small>-μR system, is used to demonstrate method equivalence. A study of the same system, under anaerobic conditions, using %CO<small><sub>2</sub></small>-μR, shows that %CO<small><sub>2</sub></small>-μR is suitable for measuring the BL of anaerobes. The potential of %CO<small><sub>2</sub></small>-μR for measuring the bacterial load of CO<small><sub>2</sub></small>-generating aerobes and anaerobes is discussed briefly.</p>","PeriodicalId":63,"journal":{"name":"Analyst","volume":" 23","pages":" 5582-5590"},"PeriodicalIF":3.6,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/an/d4an01016g?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142317690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kaihao Mao, Ye Tao, Wenshang Guo, Qisheng Yang, Meiying Zhao, Xiangyu Meng, Yinghao Zhang and Yukun Ren
Droplet digital PCR (ddPCR) is recognized as a high-precision method for nucleic acid quantification, extensively utilized in biomedical research and clinical diagnostics. This technique employs microfluidic technology to partition the nucleic acid-containing reaction mixture into discrete droplets for amplification, achieving absolute quantification by identifying and enumerating the number of fluorescent droplets. The accuracy of droplet quantification is pivotal to the success of the assay. However, current image-processing tools are operationally complex, and commercial instruments are costly. Moreover, the designed algorithms exhibit a need for enhanced accuracy and are often restricted to use by trained personnel with specific microscopy equipment. In response to these challenges, we introduce an automated device (A-MMD), capable of detecting fluorescent droplets in ddPCR images captured by multiple microscopes. The device integrates three distinct algorithms tailored for the image processing of Laser Scanning Confocal Microscopy (LSCM), inverted microscopy, and self-assembled microscopy. Experimental validation using λ DNA demonstrated a 100.00% identification rate for positive droplets across all three image types, and the average identification rates for total droplets being 99.27% for LSCM, 98.96% for inverted microscopy, and 99.08% for self-assembled microscopy. Furthermore, the A-MMD is equipped with a user-friendly interface (UI) that streamlines the operational process, enabling non-specialists to efficiently perform droplet detection tasks. Our device not only has good environmental adaptability and identification accuracy, but also significantly reduces costs and operational complexity. It offers an economical, efficient, and user-friendly solution for ddPCR image analysis, thereby further propelling the advancement and application of nucleic acid detection technology.
{"title":"Automatic detection of fluorescent droplets for droplet digital PCR: a device capable of processing multiple microscope images†","authors":"Kaihao Mao, Ye Tao, Wenshang Guo, Qisheng Yang, Meiying Zhao, Xiangyu Meng, Yinghao Zhang and Yukun Ren","doi":"10.1039/D4AN01028K","DOIUrl":"10.1039/D4AN01028K","url":null,"abstract":"<p >Droplet digital PCR (ddPCR) is recognized as a high-precision method for nucleic acid quantification, extensively utilized in biomedical research and clinical diagnostics. This technique employs microfluidic technology to partition the nucleic acid-containing reaction mixture into discrete droplets for amplification, achieving absolute quantification by identifying and enumerating the number of fluorescent droplets. The accuracy of droplet quantification is pivotal to the success of the assay. However, current image-processing tools are operationally complex, and commercial instruments are costly. Moreover, the designed algorithms exhibit a need for enhanced accuracy and are often restricted to use by trained personnel with specific microscopy equipment. In response to these challenges, we introduce an automated device (A-MMD), capable of detecting fluorescent droplets in ddPCR images captured by multiple microscopes. The device integrates three distinct algorithms tailored for the image processing of Laser Scanning Confocal Microscopy (LSCM), inverted microscopy, and self-assembled microscopy. Experimental validation using λ DNA demonstrated a 100.00% identification rate for positive droplets across all three image types, and the average identification rates for total droplets being 99.27% for LSCM, 98.96% for inverted microscopy, and 99.08% for self-assembled microscopy. Furthermore, the A-MMD is equipped with a user-friendly interface (UI) that streamlines the operational process, enabling non-specialists to efficiently perform droplet detection tasks. Our device not only has good environmental adaptability and identification accuracy, but also significantly reduces costs and operational complexity. It offers an economical, efficient, and user-friendly solution for ddPCR image analysis, thereby further propelling the advancement and application of nucleic acid detection technology.</p>","PeriodicalId":63,"journal":{"name":"Analyst","volume":" 21","pages":" 5213-5224"},"PeriodicalIF":3.6,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142313909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Derya Yaman, Melanie Jimenez, Sofia Ferreira Gonzalez and Damion Corrigan
Aspartate aminotransferase (AST), alanine aminotransferase (ALT), bilirubin, gamma-glutamyl transferase (GGT), alkaline phosphatase (ALP), and albumin are well-established liver biomarkers with significant physiological functions. Alterations in these liver function tests can be indicative of the presence and progression of acute and chronic liver conditions such as liver cirrhosis, non-alcoholic fatty liver disease, biliary disease, and liver failure. Therefore, accurate and quantitative detection of these biomarkers is crucial for diagnosing and monitoring liver disease. There are several commercially available chemistry analyzers capable of simultaneously detecting all these biomarkers, as well as numerous biosensors designed for individual detection. Various techniques have been employed, including colorimetry, surface-enhanced Raman spectroscopy (SERS), electrochemiluminescence (ECL), fluorescence-based techniques, and electrochemical methods. Among these, electrochemical detection stands out due to its simplicity, cost-effectiveness, low sample volume requirement, label-free detection, high sensitivity, fast response times, miniaturization, and portability. Information on recently developed electrochemical biosensors is summarized through detailed tables and is intended to guide future research and development efforts in this area.
{"title":"Current trends in electrochemical approaches for liver biomarker detection: a mini-review","authors":"Derya Yaman, Melanie Jimenez, Sofia Ferreira Gonzalez and Damion Corrigan","doi":"10.1039/D4AN01109K","DOIUrl":"10.1039/D4AN01109K","url":null,"abstract":"<p >Aspartate aminotransferase (AST), alanine aminotransferase (ALT), bilirubin, gamma-glutamyl transferase (GGT), alkaline phosphatase (ALP), and albumin are well-established liver biomarkers with significant physiological functions. Alterations in these liver function tests can be indicative of the presence and progression of acute and chronic liver conditions such as liver cirrhosis, non-alcoholic fatty liver disease, biliary disease, and liver failure. Therefore, accurate and quantitative detection of these biomarkers is crucial for diagnosing and monitoring liver disease. There are several commercially available chemistry analyzers capable of simultaneously detecting all these biomarkers, as well as numerous biosensors designed for individual detection. Various techniques have been employed, including colorimetry, surface-enhanced Raman spectroscopy (SERS), electrochemiluminescence (ECL), fluorescence-based techniques, and electrochemical methods. Among these, electrochemical detection stands out due to its simplicity, cost-effectiveness, low sample volume requirement, label-free detection, high sensitivity, fast response times, miniaturization, and portability. Information on recently developed electrochemical biosensors is summarized through detailed tables and is intended to guide future research and development efforts in this area.</p>","PeriodicalId":63,"journal":{"name":"Analyst","volume":" 21","pages":" 5156-5164"},"PeriodicalIF":3.6,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/an/d4an01109k?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142276806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nor Dyana Zakaria, Ibrahim Luqman Salih, Hairul Hisham Hamzah, Turgut Sönmez, Muhamad Huzaifah Omar, Noorhashimah Mohamad Nor, Khairunisak Abdul Razak and Venugopal Balakrishnan
Sulfuric acid is commonly used to electrochemically activate gold electrodes in a variety of electrochemical applications. This work provides the first evaluations of the electrochemical behaviors and a 3D image of an activated screen-printed gold electrode (SPGE, purchased commercially) through electrochemical and imaging analyses. The activated SPGE surface appears rougher than the unactivated SPGE surface when viewed through microtopography images using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Nevertheless, the roughened microscopy structure does not exhibit any substantial changes in roughness factor for the activated SPGE, as indicated by capacitive current analyses. The significant improvement in electrochemical responsiveness of the activated SPGE is mainly attributed to the presence of surface pores created in the microscopic structure as a result of gold oxide layer formation. The presence of surface pores on the activated surface has significantly improved its conductivity by 10-fold. As a result, electron transfer kinetics and mass transports of the activated SPGE are greatly improved. The results presented in this work indicate that the surface of the activated SPGE greatly increased its intrinsic surface pores, and conductivity of the electrode surface and uncovered the electrocatalytic active sites. This significantly improves the activated SPGE's performance in electrochemical applications such as oxygen reduction reaction (ORR). An activated SPGE considerably enhanced limiting current density as well as ∼172 mV versus Ag shifted onset potential to more positive potentials compared to unactivated SPGE.
{"title":"Electrochemical and imaging evaluations of electrochemically activated screen-printed gold electrodes†","authors":"Nor Dyana Zakaria, Ibrahim Luqman Salih, Hairul Hisham Hamzah, Turgut Sönmez, Muhamad Huzaifah Omar, Noorhashimah Mohamad Nor, Khairunisak Abdul Razak and Venugopal Balakrishnan","doi":"10.1039/D4AN00990H","DOIUrl":"10.1039/D4AN00990H","url":null,"abstract":"<p >Sulfuric acid is commonly used to electrochemically activate gold electrodes in a variety of electrochemical applications. This work provides the first evaluations of the electrochemical behaviors and a 3D image of an activated screen-printed gold electrode (SPGE, purchased commercially) through electrochemical and imaging analyses. The activated SPGE surface appears rougher than the unactivated SPGE surface when viewed through microtopography images using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Nevertheless, the roughened microscopy structure does not exhibit any substantial changes in roughness factor for the activated SPGE, as indicated by capacitive current analyses. The significant improvement in electrochemical responsiveness of the activated SPGE is mainly attributed to the presence of surface pores created in the microscopic structure as a result of gold oxide layer formation. The presence of surface pores on the activated surface has significantly improved its conductivity by 10-fold. As a result, electron transfer kinetics and mass transports of the activated SPGE are greatly improved. The results presented in this work indicate that the surface of the activated SPGE greatly increased its intrinsic surface pores, and conductivity of the electrode surface and uncovered the electrocatalytic active sites. This significantly improves the activated SPGE's performance in electrochemical applications such as oxygen reduction reaction (ORR). An activated SPGE considerably enhanced limiting current density as well as ∼172 mV <em>versus</em> Ag shifted onset potential to more positive potentials compared to unactivated SPGE.</p>","PeriodicalId":63,"journal":{"name":"Analyst","volume":" 22","pages":" 5401-5410"},"PeriodicalIF":3.6,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142276807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kelli Moseman, Sasha Noble, Sage Sanders, Huiyuan Guo and John R. Swierk
The Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH) legislation in Europe has limited the use of certain materials in the manufacturing of tattoo inks; in particular, Pigment Blue 15:3 and Pigment Green 7 have been banned for the use in tattoo inks and permanent makeups and all labels must include an accurate list of ingredients. This study analyzed green and blue inks from five different manufacturers distributed to the European market, all of which claim to be REACH compliant. Nine out of ten inks analyzed were found to not be compliant and four contained banned material. The polymorph of Pigment Blue 15 found in four inks was unable to be determined. The majority of inks showed labeling inaccuracies, including the addition of unlisted poly(ethylene glycol) and propylene glycol. This study highlights issues around REACH compliance of tattoo inks on the European market and the need for manufacturing protocols to ensure accurate labeling.
{"title":"Analysis of blue and green REACH compliant tattoo inks†","authors":"Kelli Moseman, Sasha Noble, Sage Sanders, Huiyuan Guo and John R. Swierk","doi":"10.1039/D4AN00793J","DOIUrl":"10.1039/D4AN00793J","url":null,"abstract":"<p >The Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH) legislation in Europe has limited the use of certain materials in the manufacturing of tattoo inks; in particular, Pigment Blue 15:3 and Pigment Green 7 have been banned for the use in tattoo inks and permanent makeups and all labels must include an accurate list of ingredients. This study analyzed green and blue inks from five different manufacturers distributed to the European market, all of which claim to be REACH compliant. Nine out of ten inks analyzed were found to not be compliant and four contained banned material. The polymorph of Pigment Blue 15 found in four inks was unable to be determined. The majority of inks showed labeling inaccuracies, including the addition of unlisted poly(ethylene glycol) and propylene glycol. This study highlights issues around REACH compliance of tattoo inks on the European market and the need for manufacturing protocols to ensure accurate labeling.</p>","PeriodicalId":63,"journal":{"name":"Analyst","volume":" 21","pages":" 5329-5335"},"PeriodicalIF":3.6,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142245946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
David S. Macedo, Mikko Vepsäläinen, Theo Rodopoulos, Stephen Peacock and Conor F. Hogan
Reference electrodes which demonstrate long-term potential stability are essential for many continuous monitoring applications and are commonly based on Ag|AgCl electrodes; however, these electrodes are susceptible to poisoning from aqueous sulphide species which are commonly present in wastewater and natural groundwater. This work presents a sulphide resistant solid-state reference electrode (SSRE) based on a composite material using suspended KCl electrolyte and sacrificial AgCl in a cross-linked polyvinyl acetate polymer matrix. Sulphidation of the sacrificial AgCl produces a stable Ag2S precipitate and prevents further ingress of the poisoning sulphide species through the composite material. A novel SSRE using this material is compared to a control SSRE without suspended AgCl and a typical liquid filled reference electrode. These three reference electrodes are studied using electrochemical impedance spectroscopy (EIS), and their application is also studied in potentiometric pH sensing and cyclic voltammetry (CV). The long-term sulphide resistance of the two SSREs is also studied with potentiometry, and cross-sections of these electrodes were examined using micro X-ray fluorescence (μXRF). Both SSREs demonstrated higher impedance than the liquid reference electrode but were similar to other SSREs reported in the literature. This impedance did not result a meaningful difference in potentiometric pH sensing or CV experiments done using typical scan rates. The KCl/AgCl SSRE exhibited remarkable sulphide resistance, with all samples demonstrating a stable potential without maintenance after ca. 120 days of continuous immersion in 1 g L−1 Na2S solution, whereas KCl SSRE samples all demonstrated significant drift before this time. μXRF sulphur maps revealed that suspended AgCl prevented sulphide ingress, thus protecting the embedded Ag|AgCl electrode. This work presents a reference electrode that could enable long-term monitoring in challenging sulphide solutions, and also highlights a novel approach for preventing reference electrode poisoning which could be more widely explored.
{"title":"A sulphide resistant Ag|AgCl reference electrode for long-term monitoring†","authors":"David S. Macedo, Mikko Vepsäläinen, Theo Rodopoulos, Stephen Peacock and Conor F. Hogan","doi":"10.1039/D4AN01076K","DOIUrl":"10.1039/D4AN01076K","url":null,"abstract":"<p >Reference electrodes which demonstrate long-term potential stability are essential for many continuous monitoring applications and are commonly based on Ag|AgCl electrodes; however, these electrodes are susceptible to poisoning from aqueous sulphide species which are commonly present in wastewater and natural groundwater. This work presents a sulphide resistant solid-state reference electrode (SSRE) based on a composite material using suspended KCl electrolyte and sacrificial AgCl in a cross-linked polyvinyl acetate polymer matrix. Sulphidation of the sacrificial AgCl produces a stable Ag<small><sub>2</sub></small>S precipitate and prevents further ingress of the poisoning sulphide species through the composite material. A novel SSRE using this material is compared to a control SSRE without suspended AgCl and a typical liquid filled reference electrode. These three reference electrodes are studied using electrochemical impedance spectroscopy (EIS), and their application is also studied in potentiometric pH sensing and cyclic voltammetry (CV). The long-term sulphide resistance of the two SSREs is also studied with potentiometry, and cross-sections of these electrodes were examined using micro X-ray fluorescence (μXRF). Both SSREs demonstrated higher impedance than the liquid reference electrode but were similar to other SSREs reported in the literature. This impedance did not result a meaningful difference in potentiometric pH sensing or CV experiments done using typical scan rates. The KCl/AgCl SSRE exhibited remarkable sulphide resistance, with all samples demonstrating a stable potential without maintenance after <em>ca</em>. 120 days of continuous immersion in 1 g L<small><sup>−1</sup></small> Na<small><sub>2</sub></small>S solution, whereas KCl SSRE samples all demonstrated significant drift before this time. μXRF sulphur maps revealed that suspended AgCl prevented sulphide ingress, thus protecting the embedded Ag|AgCl electrode. This work presents a reference electrode that could enable long-term monitoring in challenging sulphide solutions, and also highlights a novel approach for preventing reference electrode poisoning which could be more widely explored.</p>","PeriodicalId":63,"journal":{"name":"Analyst","volume":" 21","pages":" 5225-5231"},"PeriodicalIF":3.6,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/an/d4an01076k?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142245907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Edoardo Farnesi, Matteo Calvarese, Chen Liu, Carl Messerschmidt, MohammadSadegh Vafaeinezhad, Tobias Meyer-Zedler, Dana Cialla-May, Christoph Krafft, Jonas Ballmaier, Orlando Guntinas-Lichius, Michael Schmitt and Jürgen Popp
Cerumen, commonly known as earwax, is a complex mixture composed of secretions from ceruminous glands. These secretions are heterogeneous mixtures mainly composed of lipids and proteins. Despite its prevalence, the potential diagnostic value of cerumen remains largely unexplored. Here, we present an in-depth analysis of cerumen utilizing well-known vibrational approaches such as conventional Raman spectroscopy or surface-enhanced Raman spectroscopy (SERS) together with advanced vibrational spectroscopy techniques such as coherent Raman scattering (CRS), i.e. broadband coherent anti-Stokes Raman scattering (CARS) or stimulated Raman scattering (SRS), as well as optical photothermal infrared (OPTIR) spectroscopy. Through the integration of these vibrational spectroscopic methods, lipids and proteins can be identified as the main components of cerumen; however, they contribute to the final spectral information to various extents depending on the vibrational detection scheme applied. The inherently weak Raman signal could be enhanced by linear (SERS) and non-linear (CRS) processes, resulting in efficient acquisition of fingerprint information and allowing for the detection of marker modes, which cannot be addressed by conventional Raman spectroscopy. OPTIR spectroscopy provides complementary information to Raman spectroscopy, however, without the contribution of a fluorescence background. Our findings underscore the utility of these cutting-edge techniques in unveiling the intricate molecular landscape of cerumen, paving the way for novel point-of-care diagnostic methodologies and therapeutic interventions.
{"title":"Advancing cerumen analysis: exploring innovative vibrational spectroscopy techniques with respect to their potential as new point-of-care diagnostic tools†","authors":"Edoardo Farnesi, Matteo Calvarese, Chen Liu, Carl Messerschmidt, MohammadSadegh Vafaeinezhad, Tobias Meyer-Zedler, Dana Cialla-May, Christoph Krafft, Jonas Ballmaier, Orlando Guntinas-Lichius, Michael Schmitt and Jürgen Popp","doi":"10.1039/D4AN00868E","DOIUrl":"10.1039/D4AN00868E","url":null,"abstract":"<p >Cerumen, commonly known as earwax, is a complex mixture composed of secretions from ceruminous glands. These secretions are heterogeneous mixtures mainly composed of lipids and proteins. Despite its prevalence, the potential diagnostic value of cerumen remains largely unexplored. Here, we present an in-depth analysis of cerumen utilizing well-known vibrational approaches such as conventional Raman spectroscopy or surface-enhanced Raman spectroscopy (SERS) together with advanced vibrational spectroscopy techniques such as coherent Raman scattering (CRS), <em>i.e.</em> broadband coherent anti-Stokes Raman scattering (CARS) or stimulated Raman scattering (SRS), as well as optical photothermal infrared (OPTIR) spectroscopy. Through the integration of these vibrational spectroscopic methods, lipids and proteins can be identified as the main components of cerumen; however, they contribute to the final spectral information to various extents depending on the vibrational detection scheme applied. The inherently weak Raman signal could be enhanced by linear (SERS) and non-linear (CRS) processes, resulting in efficient acquisition of fingerprint information and allowing for the detection of marker modes, which cannot be addressed by conventional Raman spectroscopy. OPTIR spectroscopy provides complementary information to Raman spectroscopy, however, without the contribution of a fluorescence background. Our findings underscore the utility of these cutting-edge techniques in unveiling the intricate molecular landscape of cerumen, paving the way for novel point-of-care diagnostic methodologies and therapeutic interventions.</p>","PeriodicalId":63,"journal":{"name":"Analyst","volume":" 22","pages":" 5381-5393"},"PeriodicalIF":3.6,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/an/d4an00868e?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142236774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ying Gu, Xujun Pu, Jinxin Chen, Lunzhao Yi, Junlong Bi, Fengmin Duan and Kun Ge
Advancements in food-contaminant detection technologies can significantly improve food safety and human health. Surface-enhanced Raman spectroscopy (SERS) has become the preferred analytical method for food-safety detection owing to its numerous advantages, which include unique ‘molecular fingerprinting’ features, high sensitivity, rapid responses, and non-invasive characteristics. Raman-signal enhancements rely heavily on high-performance SERS substrates. In recent years, metal–organic framework (MOF)-based SERS substrates have gained attention as promising candidates for developing SERS technologies owing to their distinctive structures and functions. This review comprehensively examines recent advances in MOF-based SERS substrates, focusing on the main role of MOFs in SERS substrates as well as their typical categories and structures, construction methods, and representative applications in food-contaminant detection. First, the primary roles of MOFs in SERS substrates are briefly introduced. Next, a comprehensive overview of the typical categories and structures of MOF-based SERS substrates is discussed. Subsequently, a fundamental view of the general construction methods for MOF-based SERS substrates is presented. Next, the main applications of MOF-based SERS substrates for food-contaminant detection are summarised. Finally, challenges and perspectives, including improvements in SERS performance and stability, and the unification of SERS mechanisms, are addressed and discussed.
{"title":"Recent advances of MOF-based SERS substrates in quantitative analysis of food contaminants: a review","authors":"Ying Gu, Xujun Pu, Jinxin Chen, Lunzhao Yi, Junlong Bi, Fengmin Duan and Kun Ge","doi":"10.1039/D4AN00897A","DOIUrl":"10.1039/D4AN00897A","url":null,"abstract":"<p >Advancements in food-contaminant detection technologies can significantly improve food safety and human health. Surface-enhanced Raman spectroscopy (SERS) has become the preferred analytical method for food-safety detection owing to its numerous advantages, which include unique ‘molecular fingerprinting’ features, high sensitivity, rapid responses, and non-invasive characteristics. Raman-signal enhancements rely heavily on high-performance SERS substrates. In recent years, metal–organic framework (MOF)-based SERS substrates have gained attention as promising candidates for developing SERS technologies owing to their distinctive structures and functions. This review comprehensively examines recent advances in MOF-based SERS substrates, focusing on the main role of MOFs in SERS substrates as well as their typical categories and structures, construction methods, and representative applications in food-contaminant detection. First, the primary roles of MOFs in SERS substrates are briefly introduced. Next, a comprehensive overview of the typical categories and structures of MOF-based SERS substrates is discussed. Subsequently, a fundamental view of the general construction methods for MOF-based SERS substrates is presented. Next, the main applications of MOF-based SERS substrates for food-contaminant detection are summarised. Finally, challenges and perspectives, including improvements in SERS performance and stability, and the unification of SERS mechanisms, are addressed and discussed.</p>","PeriodicalId":63,"journal":{"name":"Analyst","volume":" 20","pages":" 4997-5013"},"PeriodicalIF":3.6,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142236773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A new analytical technique for detection of organic compounds using inductively coupled plasma-tandem mass spectrometry (ICP-MS/MS) is described. Volatile organic compounds (VOCs) were introduced into the collision/reaction cell (CRC), instead of through the ICP ion source, and the molecules were ionised through an ion reaction, induced by collision with the primary ions (Ar+) produced in the ICP. The ionisation characteristics of this new approach were investigated by mass spectrometric analysis of eight VOCs (i.e., benzene, toluene, ethyl acetate, methyl butyrate, ethyl butyrate, pentyl acetate, pyridine, and 2-methylfuran). These molecules were detected as molecular ions (M+), protonated ions ([M + H]+), or deprotonated ions ([M − H]+), demonstrating that soft ionisation was achieved by the present ionisation protocol using ICP-MS/MS. In addition, a volatile selenium-containing organic compound, dimethyl diselenide (Se2(CH3)2), was also analysed to investigate the feasibility of this ionisation protocol to achieve soft and hard ionisation simultaneously. Several Se-related ions such as Se+, SeH+, Se2+, [SeCH3]+, and [Se2CH3]+, together with [Se2(CH3)2]+, were observed, suggesting that while soft ionisation was possible, ion reaction-induced-fragmentation and hard ionisation also occurred. To demonstrate the analytical capability of the present technique, volatile components released from coffee beans were subjected to the present mass spectrometric analysis. Many ion peaks originating from VOCs were detected from the coffee beans. The data obtained here demonstrated that ICP-MS equipped with a CRC can become an effective tool for analyzing both elements and molecules.
{"title":"Detection of several volatile organic compounds through Ar+ induced chemical ionisation using inductively coupled plasma-tandem mass spectrometry (ICP-MS/MS)†","authors":"Takafumi Hirata, Kyoko Kobayashi, Hui Hsin Khoo, Osamu Shikino and Hisashi Asanuma","doi":"10.1039/D4AN00996G","DOIUrl":"10.1039/D4AN00996G","url":null,"abstract":"<p >A new analytical technique for detection of organic compounds using inductively coupled plasma-tandem mass spectrometry (ICP-MS/MS) is described. Volatile organic compounds (VOCs) were introduced into the collision/reaction cell (CRC), instead of through the ICP ion source, and the molecules were ionised through an ion reaction, induced by collision with the primary ions (Ar<small><sup>+</sup></small>) produced in the ICP. The ionisation characteristics of this new approach were investigated by mass spectrometric analysis of eight VOCs (<em>i.e.</em>, benzene, toluene, ethyl acetate, methyl butyrate, ethyl butyrate, pentyl acetate, pyridine, and 2-methylfuran). These molecules were detected as molecular ions (M<small><sup>+</sup></small>), protonated ions ([M + H]<small><sup>+</sup></small>), or deprotonated ions ([M − H]<small><sup>+</sup></small>), demonstrating that soft ionisation was achieved by the present ionisation protocol using ICP-MS/MS. In addition, a volatile selenium-containing organic compound, dimethyl diselenide (Se<small><sub>2</sub></small>(CH<small><sub>3</sub></small>)<small><sub>2</sub></small>), was also analysed to investigate the feasibility of this ionisation protocol to achieve soft and hard ionisation simultaneously. Several Se-related ions such as Se<small><sup>+</sup></small>, SeH<small><sup>+</sup></small>, Se<small><sub>2</sub></small><small><sup>+</sup></small>, [SeCH<small><sub>3</sub></small>]<small><sup>+</sup></small>, and [Se<small><sub>2</sub></small>CH<small><sub>3</sub></small>]<small><sup>+</sup></small>, together with [Se<small><sub>2</sub></small>(CH<small><sub>3</sub></small>)<small><sub>2</sub></small>]<small><sup>+</sup></small>, were observed, suggesting that while soft ionisation was possible, ion reaction-induced-fragmentation and hard ionisation also occurred. To demonstrate the analytical capability of the present technique, volatile components released from coffee beans were subjected to the present mass spectrometric analysis. Many ion peaks originating from VOCs were detected from the coffee beans. The data obtained here demonstrated that ICP-MS equipped with a CRC can become an effective tool for analyzing both elements and molecules.</p>","PeriodicalId":63,"journal":{"name":"Analyst","volume":" 21","pages":" 5174-5183"},"PeriodicalIF":3.6,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142234468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}