首页 > 最新文献

Journal of Mathematical Chemistry最新文献

英文 中文
Correction to: Evaluation of incomplete gamma functions using downward recursion and analytical relations
IF 1.7 3区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-11-02 DOI: 10.1007/s10910-024-01686-6
I. I. Guseinov, B. A. Mamedov
{"title":"Correction to: Evaluation of incomplete gamma functions using downward recursion and analytical relations","authors":"I. I. Guseinov, B. A. Mamedov","doi":"10.1007/s10910-024-01686-6","DOIUrl":"10.1007/s10910-024-01686-6","url":null,"abstract":"","PeriodicalId":648,"journal":{"name":"Journal of Mathematical Chemistry","volume":"63 2","pages":"650 - 650"},"PeriodicalIF":1.7,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143373179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonlinear dispersion analysis using dynamic traveling wave model in chemical kinetics
IF 1.7 3区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-28 DOI: 10.1007/s10910-024-01683-9
Asıf Yokuş

The Thomas equation, which controls ion exchange as well as chemical kinetics and advection processes in chemical systems, has its coefficients expanded as functions of time in this work. The goal of this modification is to produce simulations of advection and kinetic processes that are more precise and lifelike. In order to examine the nonlinear distribution and interaction features, the dynamic traveling wave solution of the time-dependent variable coefficient Thomas equation has been successfully achieved. The physical properties of the constants and functions in the wave model presented with certain initial and boundary conditions have been examined. Constants and functions are designed to be as close to reality as possible in order to improve our understanding of the distribution of ions over time in the chemical process. With this design, the newly introduced dynamic traveling wave model is better adapted to the ion exchange process. The coefficient functions that have a direct effect on the stability of the physical mechanism are analyzed under which conditions the system will remain stable. It is envisaged that ion exchange processes in water treatment plants can be optimized by using the wave model introduced for the first time in this study. The gradual damping of ion motions in the chemical process and the trend towards equilibrium over time were investigated using the proposed model.

{"title":"Nonlinear dispersion analysis using dynamic traveling wave model in chemical kinetics","authors":"Asıf Yokuş","doi":"10.1007/s10910-024-01683-9","DOIUrl":"10.1007/s10910-024-01683-9","url":null,"abstract":"<div><p>The Thomas equation, which controls ion exchange as well as chemical kinetics and advection processes in chemical systems, has its coefficients expanded as functions of time in this work. The goal of this modification is to produce simulations of advection and kinetic processes that are more precise and lifelike. In order to examine the nonlinear distribution and interaction features, the dynamic traveling wave solution of the time-dependent variable coefficient Thomas equation has been successfully achieved. The physical properties of the constants and functions in the wave model presented with certain initial and boundary conditions have been examined. Constants and functions are designed to be as close to reality as possible in order to improve our understanding of the distribution of ions over time in the chemical process. With this design, the newly introduced dynamic traveling wave model is better adapted to the ion exchange process. The coefficient functions that have a direct effect on the stability of the physical mechanism are analyzed under which conditions the system will remain stable. It is envisaged that ion exchange processes in water treatment plants can be optimized by using the wave model introduced for the first time in this study. The gradual damping of ion motions in the chemical process and the trend towards equilibrium over time were investigated using the proposed model.</p></div>","PeriodicalId":648,"journal":{"name":"Journal of Mathematical Chemistry","volume":"63 2","pages":"474 - 491"},"PeriodicalIF":1.7,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143373327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Significance of Arrhenius activation energy on three-dimensional unsteady nanofluid flow with nonlinear thermal radiation and Joule heating via wavelet technique
IF 1.7 3区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-26 DOI: 10.1007/s10910-024-01680-y
M. P. Preetham, S. Kumbinarasaiah

This investigation focuses on the unsteady three-dimensional electrically conducting nanofluid flow over a bilateral nonlinear stretching sheet. A novel mathematical model is developed to incorporate the influences of Arrhenius activation energy, nonlinear thermal radiation, and Joule heating. The Taylor wavelet series collocation method (TWSCM) is employed for analysis. The governing partial differential equations (PDEs) are transformed by applying suitable similarity transformation into nonlinear coupled ordinary differential equations (ODEs). These ODEs are then solved using the TWSCM approach. This method allows us to explore how various physical parameters influence mass and heat transfer in the nanofluid flow. The findings reveal that the thermal Biot number and activation energy parameter significantly enhance the concentration field. Moreover, the heat transfer rate is found to increase with the temperature ratio and thermal Biot parameters while decreasing with the activation energy parameter.

{"title":"Significance of Arrhenius activation energy on three-dimensional unsteady nanofluid flow with nonlinear thermal radiation and Joule heating via wavelet technique","authors":"M. P. Preetham,&nbsp;S. Kumbinarasaiah","doi":"10.1007/s10910-024-01680-y","DOIUrl":"10.1007/s10910-024-01680-y","url":null,"abstract":"<div><p>This investigation focuses on the unsteady three-dimensional electrically conducting nanofluid flow over a bilateral nonlinear stretching sheet. A novel mathematical model is developed to incorporate the influences of Arrhenius activation energy, nonlinear thermal radiation, and Joule heating. The Taylor wavelet series collocation method (TWSCM) is employed for analysis. The governing partial differential equations (PDEs) are transformed by applying suitable similarity transformation into nonlinear coupled ordinary differential equations (ODEs). These ODEs are then solved using the TWSCM approach. This method allows us to explore how various physical parameters influence mass and heat transfer in the nanofluid flow. The findings reveal that the thermal Biot number and activation energy parameter significantly enhance the concentration field. Moreover, the heat transfer rate is found to increase with the temperature ratio and thermal Biot parameters while decreasing with the activation energy parameter.</p></div>","PeriodicalId":648,"journal":{"name":"Journal of Mathematical Chemistry","volume":"63 2","pages":"456 - 473"},"PeriodicalIF":1.7,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143373325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Guest editorial for the special collection of mathematical chemistry papers 数学化学论文特辑》特约编辑
IF 1.7 3区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-16 DOI: 10.1007/s10910-024-01676-8
Subhash C. Basak, Tanmoy Chakraborty
{"title":"Guest editorial for the special collection of mathematical chemistry papers","authors":"Subhash C. Basak,&nbsp;Tanmoy Chakraborty","doi":"10.1007/s10910-024-01676-8","DOIUrl":"10.1007/s10910-024-01676-8","url":null,"abstract":"","PeriodicalId":648,"journal":{"name":"Journal of Mathematical Chemistry","volume":"62 10","pages":"2371 - 2372"},"PeriodicalIF":1.7,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142518493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On a multi-fractional model for biogas production for a cellulose-based substrate
IF 1.7 3区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-01 DOI: 10.1007/s10910-024-01678-6
Marline Ilha da Silva, Joice Chaves Marques, Adriano De Cezaro

This article describes the production of biogas in a cellulose-based substrate using a multifractional dynamic model. The objective is to give more precise depiction of the nonlinear characteristics of the chemical reactions involved in anaerobic digestion. In addition well-posedness and consistency, we present the sensitivity analysis used to determine which system equations follow non-integer order dynamics. We illustrate the efficacy of the model with numerical simulations that compare experimental data with the conventional model. The multifractional model’s outputs are in good agreement with the biogas production process’s overall response, which may lead to more effective control strategies.

{"title":"On a multi-fractional model for biogas production for a cellulose-based substrate","authors":"Marline Ilha da Silva,&nbsp;Joice Chaves Marques,&nbsp;Adriano De Cezaro","doi":"10.1007/s10910-024-01678-6","DOIUrl":"10.1007/s10910-024-01678-6","url":null,"abstract":"<div><p>This article describes the production of biogas in a cellulose-based substrate using a multifractional dynamic model. The objective is to give more precise depiction of the nonlinear characteristics of the chemical reactions involved in anaerobic digestion. In addition well-posedness and consistency, we present the sensitivity analysis used to determine which system equations follow non-integer order dynamics. We illustrate the efficacy of the model with numerical simulations that compare experimental data with the conventional model. The multifractional model’s outputs are in good agreement with the biogas production process’s overall response, which may lead to more effective control strategies.</p></div>","PeriodicalId":648,"journal":{"name":"Journal of Mathematical Chemistry","volume":"63 2","pages":"435 - 455"},"PeriodicalIF":1.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143373176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of a general reaction–diffusion model using Lie symmetries and conservation laws
IF 1.7 3区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-01 DOI: 10.1007/s10910-024-01679-5
Sol Sáez-Martínez

Turing’s model to explains the formation of patterns in morphogenesis considered a system of chemicals, termed morphogens, that react and diffuse through tissues. These reaction–diffusion systems can start homogeneously but later develop patterns due to instabilities triggered by random disturbances. Building on this foundation, Kepper realized the Chlorite-Iodide Malonic-Acid reaction, an example of an oscillatory reaction in a homogeneous solution that forms spatial patterns in a non-homogeneous environment. This work led to further studies, such as the Lengyel-Epstein reaction–diffusion model, which describes the dynamics of chemical concentrations of activator and inhibitor species. This paper extends these classical models by investigating a general reaction–diffusion system through the lens of Lie symmetries. We analyze the system using Lie point symmetry generators and Lie symmetry groups, enabling us to reduce the equations via these symmetries. Furthermore, we compute the conservation laws for the general reaction–diffusion model using the multipliers approach, involving dependent variables, independent variables, and their derivatives up to a certain order. By applying various symmetry groups, we derive new solutions from known ones, offering deeper insights into the dynamics of pattern formation in biological systems.

{"title":"Analysis of a general reaction–diffusion model using Lie symmetries and conservation laws","authors":"Sol Sáez-Martínez","doi":"10.1007/s10910-024-01679-5","DOIUrl":"10.1007/s10910-024-01679-5","url":null,"abstract":"<div><p>Turing’s model to explains the formation of patterns in morphogenesis considered a system of chemicals, termed morphogens, that react and diffuse through tissues. These reaction–diffusion systems can start homogeneously but later develop patterns due to instabilities triggered by random disturbances. Building on this foundation, Kepper realized the Chlorite-Iodide Malonic-Acid reaction, an example of an oscillatory reaction in a homogeneous solution that forms spatial patterns in a non-homogeneous environment. This work led to further studies, such as the Lengyel-Epstein reaction–diffusion model, which describes the dynamics of chemical concentrations of activator and inhibitor species. This paper extends these classical models by investigating a general reaction–diffusion system through the lens of Lie symmetries. We analyze the system using Lie point symmetry generators and Lie symmetry groups, enabling us to reduce the equations via these symmetries. Furthermore, we compute the conservation laws for the general reaction–diffusion model using the multipliers approach, involving dependent variables, independent variables, and their derivatives up to a certain order. By applying various symmetry groups, we derive new solutions from known ones, offering deeper insights into the dynamics of pattern formation in biological systems.\u0000</p></div>","PeriodicalId":648,"journal":{"name":"Journal of Mathematical Chemistry","volume":"63 2","pages":"419 - 434"},"PeriodicalIF":1.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143373175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bounds for the Gutman–Milovanović index and some applications
IF 1.7 3区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-30 DOI: 10.1007/s10910-024-01677-7
Ana Granados, Ana Portilla, Yamilet Quintana, Eva Tourís

In this paper, we examine the Gutman–Milovanović index and establish new upper and lower bounds for it. These bounds include terms related to the general sum connectivity index, the general second Zagreb index, and the hyperbolicity constant of the underlying graph. Also, we model physicochemical properties of polyaromatic hydrocarbons using the Gutman–Milovanović index.

{"title":"Bounds for the Gutman–Milovanović index and some applications","authors":"Ana Granados,&nbsp;Ana Portilla,&nbsp;Yamilet Quintana,&nbsp;Eva Tourís","doi":"10.1007/s10910-024-01677-7","DOIUrl":"10.1007/s10910-024-01677-7","url":null,"abstract":"<div><p>In this paper, we examine the Gutman–Milovanović index and establish new upper and lower bounds for it. These bounds include terms related to the general sum connectivity index, the general second Zagreb index, and the hyperbolicity constant of the underlying graph. Also, we model physicochemical properties of polyaromatic hydrocarbons using the Gutman–Milovanović index.</p></div>","PeriodicalId":648,"journal":{"name":"Journal of Mathematical Chemistry","volume":"63 2","pages":"406 - 418"},"PeriodicalIF":1.7,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10910-024-01677-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143373348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stability analysis and dynamical behavior of optimal mean-based iterative methods
IF 1.7 3区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-25 DOI: 10.1007/s10910-024-01674-w
Himani Sharma, Munish Kansal

In this work, we employed the techniques of complex dynamics to perform stability analysis of an optimal mean-based family of iterative methods of order four. Taking into consideration the stability aspect of the specified method, one can describe the method’s sensitivity to the initial guesses. A rational function corresponding to the iterative family is developed. The convergence and stability of a certain method can be analyzed upon finding the fixed points, critical points, periodic points, etc. of the rational function. Furthermore, the dynamical and parametric planes are drawn which help us to detect the stable as well as non-stable regions. It has been observed that stable iterative methods generally yield better performance on complex problems compared to unstable methods. This observation has been supported by numerical experiments that compare our proposed family with some existing methods for representing some chemistry problems, like conversion in a chemical reactor, equations of state, and continuous stirred tank reactor problem.

{"title":"Stability analysis and dynamical behavior of optimal mean-based iterative methods","authors":"Himani Sharma,&nbsp;Munish Kansal","doi":"10.1007/s10910-024-01674-w","DOIUrl":"10.1007/s10910-024-01674-w","url":null,"abstract":"<div><p>In this work, we employed the techniques of complex dynamics to perform stability analysis of an optimal mean-based family of iterative methods of order four. Taking into consideration the stability aspect of the specified method, one can describe the method’s sensitivity to the initial guesses. A rational function corresponding to the iterative family is developed. The convergence and stability of a certain method can be analyzed upon finding the fixed points, critical points, periodic points, etc. of the rational function. Furthermore, the dynamical and parametric planes are drawn which help us to detect the stable as well as non-stable regions. It has been observed that stable iterative methods generally yield better performance on complex problems compared to unstable methods. This observation has been supported by numerical experiments that compare our proposed family with some existing methods for representing some chemistry problems, like conversion in a chemical reactor, equations of state, and continuous stirred tank reactor problem.</p></div>","PeriodicalId":648,"journal":{"name":"Journal of Mathematical Chemistry","volume":"63 2","pages":"383 - 405"},"PeriodicalIF":1.7,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143373324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Path integral for the quartic oscillator: an accurate analytic formula for the partition function
IF 1.7 3区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-20 DOI: 10.1007/s10910-024-01671-z
Michel Caffarel

In this work an approximate analytic expression for the quantum partition function of the quartic oscillator described by the potential (V(x) = frac{1}{2} omega ^2 x^2 + g x^4) is presented. Using a path integral formalism, the exact partition function is approximated by the partition function of a harmonic oscillator with an effective frequency depending both on the temperature and coupling constant g. By invoking a Principle of Minimal Sensitivity (PMS) of the path integral to the effective frequency, we derive a mathematically well-defined analytic formula for the partition function. Quite remarkably, the formula reproduces qualitatively and quantitatively the key features of the exact partition function. The free energy is accurate to a few percent over the entire range of temperatures and coupling strengths g. Both the harmonic ((grightarrow 0)) and classical (high-temperature) limits are exactly recovered. The divergence of the power series of the ground-state energy at weak coupling, characterized by a factorial growth of the perturbational energies, is reproduced as well as the functional form of the strong-coupling expansion along with accurate coefficients. Explicit accurate expressions for the ground- and first-excited state energies, (E_0(g)) and (E_1(g)) are also presented.

{"title":"Path integral for the quartic oscillator: an accurate analytic formula for the partition function","authors":"Michel Caffarel","doi":"10.1007/s10910-024-01671-z","DOIUrl":"10.1007/s10910-024-01671-z","url":null,"abstract":"<div><p>In this work an approximate analytic expression for the quantum partition function of the quartic oscillator described by the potential <span>(V(x) = frac{1}{2} omega ^2 x^2 + g x^4)</span> is presented. Using a path integral formalism, the exact partition function is approximated by the partition function of a harmonic oscillator with an effective frequency depending both on the temperature and coupling constant <i>g</i>. By invoking a Principle of Minimal Sensitivity (PMS) of the path integral to the effective frequency, we derive a mathematically well-defined analytic formula for the partition function. Quite remarkably, the formula reproduces qualitatively and quantitatively the key features of the exact partition function. The free energy is accurate to a few percent over the entire range of temperatures and coupling strengths <i>g</i>. Both the harmonic (<span>(grightarrow 0)</span>) and classical (high-temperature) limits are exactly recovered. The divergence of the power series of the ground-state energy at weak coupling, characterized by a factorial growth of the perturbational energies, is reproduced as well as the functional form of the strong-coupling expansion along with accurate coefficients. Explicit accurate expressions for the ground- and first-excited state energies, <span>(E_0(g))</span> and <span>(E_1(g))</span> are also presented.</p></div>","PeriodicalId":648,"journal":{"name":"Journal of Mathematical Chemistry","volume":"63 2","pages":"353 - 382"},"PeriodicalIF":1.7,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10910-024-01671-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143373319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A first-rate fourteenth-order phase-fitting approach to solving chemical problems 解决化学问题的一流十四阶相位拟合方法
IF 1.7 3区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-17 DOI: 10.1007/s10910-024-01668-8
Mei Hong, Chia-Liang Lin, T. E. Simos

Using a technique that accounts for disappearing phase-lag might lead to the elimination of phase-lag and all of its derivatives up to order four. The new technique known as the cost-efficient approach aims to improve algebraic order (AOR) and decrease function evaluations (FEvs). The one-of-a-kind approach is shown by Equation PF4DPHFITN142SPS. This method is endlessly periodic since it is P-Stable. The proposed method may be used to solve many different types of periodic and/or oscillatory problems. This innovative method was used to address the difficult issue of Schrödinger-type coupled differential equations in quantum chemistry. The new technique might be seen as a cost-efficient solution since it only requires 5FEvs to execute each step. We are able to greatly ameliorate our current situation with an AOR of 14.

使用一种考虑到相位滞后消失的技术,可能会消除相位滞后及其所有导数,最高可达四阶。这种被称为 "成本效益方法 "的新技术旨在改善代数阶(AOR)和减少函数求值(FEvs)。这种独一无二的方法如公式 PF4DPHFITN142SPS 所示。由于这种方法是 P-稳定的,因此它具有无穷无尽的周期性。所提出的方法可用于解决许多不同类型的周期和/或振荡问题。这种创新方法被用于解决量子化学中薛定谔型耦合微分方程的难题。新技术可被视为一种经济高效的解决方案,因为它只需要 5FEvs 就能执行每一步。我们能够以 14 的 AOR 大大改善目前的状况。
{"title":"A first-rate fourteenth-order phase-fitting approach to solving chemical problems","authors":"Mei Hong,&nbsp;Chia-Liang Lin,&nbsp;T. E. Simos","doi":"10.1007/s10910-024-01668-8","DOIUrl":"10.1007/s10910-024-01668-8","url":null,"abstract":"<div><p>Using a technique that accounts for disappearing phase-lag might lead to the elimination of phase-lag and all of its derivatives up to order four. The new technique known as the <b>cost-efficient approach</b> aims to improve algebraic order (<i>AOR</i>) and decrease function evaluations (<i>FEvs</i>). The one-of-a-kind approach is shown by Equation <i>PF</i>4<i>DPHFITN</i>142<i>SPS</i>. This method is endlessly periodic since it is <b>P-Stable</b>. The proposed method may be used to solve many different types of periodic and/or oscillatory problems. This innovative method was used to address the difficult issue of Schrödinger-type coupled differential equations in quantum chemistry. The new technique might be seen as a cost-efficient solution since it only requires 5<i>FEvs</i> to execute each step. We are able to greatly ameliorate our current situation with an AOR of 14.</p></div>","PeriodicalId":648,"journal":{"name":"Journal of Mathematical Chemistry","volume":"63 1","pages":"297 - 331"},"PeriodicalIF":1.7,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142269933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Mathematical Chemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1