Pub Date : 2024-05-02DOI: 10.1007/s12031-024-02227-1
Anowarul Islam, Zeeshan Shaukat, Rashid Hussain, Michael G. Ricos, Leanne M. Dibbens, Stephen L. Gregory
Aneuploidy, having an aberrant genome, is gaining increasing attention in neurodegenerative diseases. It gives rise to proteotoxic stress as well as a stereotypical oxidative shift which makes these cells sensitive to internal and environmental stresses. A growing body of research from numerous laboratories suggests that many neurodegenerative disorders, especially Alzheimer’s disease and frontotemporal dementia, are characterised by neuronal aneuploidy and the ensuing apoptosis, which may contribute to neuronal loss. Using Drosophila as a model, we investigated the effect of induced aneuploidy in GABAergic neurons. We found an increased proportion of aneuploidy due to Mad2 depletion in the third-instar larval brain and increased cell death. Depletion of Mad2 in GABAergic neurons also gave a defective climbing and seizure phenotype. Feeding animals an antioxidant rescued the climbing and seizure phenotype. These findings suggest that increased aneuploidy leads to higher oxidative stress in GABAergic neurons which causes cell death, climbing defects, and seizure phenotype. Antioxidant feeding represents a potential therapy to reduce the aneuploidy-driven neurological phenotype.
{"title":"Aneuploidy is Linked to Neurological Phenotypes Through Oxidative Stress","authors":"Anowarul Islam, Zeeshan Shaukat, Rashid Hussain, Michael G. Ricos, Leanne M. Dibbens, Stephen L. Gregory","doi":"10.1007/s12031-024-02227-1","DOIUrl":"10.1007/s12031-024-02227-1","url":null,"abstract":"<div><p>Aneuploidy, having an aberrant genome, is gaining increasing attention in neurodegenerative diseases. It gives rise to proteotoxic stress as well as a stereotypical oxidative shift which makes these cells sensitive to internal and environmental stresses. A growing body of research from numerous laboratories suggests that many neurodegenerative disorders, especially Alzheimer’s disease and frontotemporal dementia, are characterised by neuronal aneuploidy and the ensuing apoptosis, which may contribute to neuronal loss. Using <i>Drosophila</i> as a model, we investigated the effect of induced aneuploidy in GABAergic neurons. We found an increased proportion of aneuploidy due to <i>Mad2</i> depletion in the third-instar larval brain and increased cell death. Depletion of <i>Mad2</i> in GABAergic neurons also gave a defective climbing and seizure phenotype. Feeding animals an antioxidant rescued the climbing and seizure phenotype. These findings suggest that increased aneuploidy leads to higher oxidative stress in GABAergic neurons which causes cell death, climbing defects, and seizure phenotype. Antioxidant feeding represents a potential therapy to reduce the aneuploidy-driven neurological phenotype.</p></div>","PeriodicalId":652,"journal":{"name":"Journal of Molecular Neuroscience","volume":"74 2","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12031-024-02227-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140829411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-26DOI: 10.1007/s12031-024-02214-6
Vincent Fong, Babunageswararao Kanuri, Owen Traubert, Min Lui, Shailendra B. Patel
The pathogenesis of Alzheimer’s disease (AD) is complex and involves an imbalance between production and clearance of amyloid-ß peptides (Aß), resulting in accumulation of Aß in senile plaques. Hypercholesterolemia is a major risk factor for developing AD, with cholesterol shown to accumulate in senile plaques and increase production of Aß. ABCG4 is a member of the ATP-binding cassette transporters predominantly expressed in the CNS and has been suggested to play a role in cholesterol and Aß efflux from the brain. In this study, we bred Abcg4 knockout (KO) with the APPSwe,Ind (J9) mouse model of AD to test the hypothesis that loss of Abcg4 would exacerbate the AD phenotype. Unexpectedly, no differences were observed in novel object recognition (NOR) and novel object placement (NOP) behavioral tests, or on histologic examinations of brain tissues for senile plaque numbers. Furthermore, clearance of radiolabeled Aß from the brains did not differ between Abcg4 KO and control mice. Metabolic testing by indirect calorimetry, glucose tolerance test (GTT), and insulin tolerance test (ITT) were also mostly similar between groups with only a few mild metabolic differences noted. Overall, these data suggest that the loss of ABCG4 did not exacerbate the AD phenotype.
阿尔茨海默病(AD)的发病机制十分复杂,涉及淀粉样蛋白-ß肽(Aß)的产生和清除之间的失衡,导致Aß在老年斑中积聚。高胆固醇血症是罹患老年痴呆症的主要风险因素,胆固醇会在老年斑中积聚并增加Aß的生成。ABCG4是主要在中枢神经系统中表达的ATP结合盒转运体的一个成员,被认为在胆固醇和Aß从大脑外流中发挥作用。在这项研究中,我们将 Abcg4 基因敲除(KO)小鼠与 APPSwe,Ind (J9) AD 模型小鼠饲养在一起,以验证 Abcg4 缺失会加重 AD 表型的假设。出乎意料的是,在新物体识别(NOR)和新物体放置(NOP)行为测试中,或在脑组织组织学检查中的老年斑数量上,均未观察到差异。此外,Abcg4 KO与对照组小鼠大脑中放射性标记Aß的清除率也没有差异。通过间接热量测定法、葡萄糖耐量试验(GTT)和胰岛素耐量试验(ITT)进行的代谢测试结果也显示,各组之间基本相似,只有少数几个组存在轻微的代谢差异。总之,这些数据表明,ABCG4 的缺失并不会加剧注意力缺失症的表型。
{"title":"Behavioral and Metabolic Effects of ABCG4 KO in the APPswe,Ind (J9) Mouse Model of Alzheimer’s Disease","authors":"Vincent Fong, Babunageswararao Kanuri, Owen Traubert, Min Lui, Shailendra B. Patel","doi":"10.1007/s12031-024-02214-6","DOIUrl":"10.1007/s12031-024-02214-6","url":null,"abstract":"<div><p>The pathogenesis of Alzheimer’s disease (AD) is complex and involves an imbalance between production and clearance of amyloid-ß peptides (Aß), resulting in accumulation of Aß in senile plaques. Hypercholesterolemia is a major risk factor for developing AD, with cholesterol shown to accumulate in senile plaques and increase production of Aß. ABCG4 is a member of the ATP-binding cassette transporters predominantly expressed in the CNS and has been suggested to play a role in cholesterol and Aß efflux from the brain. In this study, we bred <i>Abcg4</i> knockout (KO) with the APP<sup>Swe,Ind</sup> (J9) mouse model of AD to test the hypothesis that loss of <i>Abcg4</i> would exacerbate the AD phenotype. Unexpectedly, no differences were observed in novel object recognition (NOR) and novel object placement (NOP) behavioral tests, or on histologic examinations of brain tissues for senile plaque numbers. Furthermore, clearance of radiolabeled Aß from the brains did not differ between <i>Abcg4</i> KO and control mice. Metabolic testing by indirect calorimetry, glucose tolerance test (GTT), and insulin tolerance test (ITT) were also mostly similar between groups with only a few mild metabolic differences noted. Overall, these data suggest that the loss of ABCG4 did not exacerbate the AD phenotype.</p></div>","PeriodicalId":652,"journal":{"name":"Journal of Molecular Neuroscience","volume":"74 2","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12031-024-02214-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140652710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-25DOI: 10.1007/s12031-024-02203-9
Gustavo Lovatto Michaelsen, Lívia dos Reis Edinger da Silva, Douglas Silva de Lima, Mariane da Cunha Jaeger, André Tesainer Brunetto, Rodrigo Juliani Siqueira Dalmolin, Marialva Sinigaglia
Medulloblastoma (MB) is one of the most common pediatric brain tumors and it is estimated that one-third of patients will not achieve long-term survival. Conventional prognostic parameters have limited and unreliable correlations with MB outcome, presenting a major challenge for patients’ clinical improvement. Acknowledging this issue, our aim was to build a gene signature and evaluate its potential as a new prognostic model for patients with the disease. In this study, we used six datasets totaling 1679 samples including RNA gene expression and DNA methylation data from primary MB as well as control samples from healthy cerebellum. We identified methylation-driven genes (MDGs) in MB, genes whose expression is correlated with their methylation. We employed LASSO regression, incorporating the MDGs as a parameter to develop the prognostic model. Through this approach, we derived a two-gene signature (GS-2) of candidate prognostic biomarkers for MB (CEMIP and NCBP3). Using a risk score model, we confirmed the GS-2 impact on overall survival (OS) with Kaplan-Meier analysis. We evaluated its robustness and accuracy with receiver operating characteristic curves predicting OS at 1, 3, and 5 years in multiple independent datasets. The GS-2 showed highly significant results as an independent prognostic biomarker compared to traditional MB markers. The methylation-regulated GS-2 risk score model can effectively classify patients with MB into high and low-risk, reinforcing the importance of this epigenetic modification in the disease. Such genes stand out as promising prognostic biomarkers with potential application for MB treatment.
{"title":"A Prognostic Methylation-Driven Two-Gene Signature in Medulloblastoma","authors":"Gustavo Lovatto Michaelsen, Lívia dos Reis Edinger da Silva, Douglas Silva de Lima, Mariane da Cunha Jaeger, André Tesainer Brunetto, Rodrigo Juliani Siqueira Dalmolin, Marialva Sinigaglia","doi":"10.1007/s12031-024-02203-9","DOIUrl":"10.1007/s12031-024-02203-9","url":null,"abstract":"<div><p>Medulloblastoma (MB) is one of the most common pediatric brain tumors and it is estimated that one-third of patients will not achieve long-term survival. Conventional prognostic parameters have limited and unreliable correlations with MB outcome, presenting a major challenge for patients’ clinical improvement. Acknowledging this issue, our aim was to build a gene signature and evaluate its potential as a new prognostic model for patients with the disease. In this study, we used six datasets totaling 1679 samples including RNA gene expression and DNA methylation data from primary MB as well as control samples from healthy cerebellum. We identified methylation-driven genes (MDGs) in MB, genes whose expression is correlated with their methylation. We employed LASSO regression, incorporating the MDGs as a parameter to develop the prognostic model. Through this approach, we derived a two-gene signature (GS-2) of candidate prognostic biomarkers for MB (<i>CEMIP</i> and <i>NCBP3</i>). Using a risk score model, we confirmed the GS-2 impact on overall survival (OS) with Kaplan-Meier analysis. We evaluated its robustness and accuracy with receiver operating characteristic curves predicting OS at 1, 3, and 5 years in multiple independent datasets. The GS-2 showed highly significant results as an independent prognostic biomarker compared to traditional MB markers. The methylation-regulated GS-2 risk score model can effectively classify patients with MB into high and low-risk, reinforcing the importance of this epigenetic modification in the disease. Such genes stand out as promising prognostic biomarkers with potential application for MB treatment.</p></div>","PeriodicalId":652,"journal":{"name":"Journal of Molecular Neuroscience","volume":"74 2","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140653924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We aimed to develop and validate a predictive model for identifying long-term survivors (LTS) among glioblastoma (GB) patients, defined as those with an overall survival (OS) of more than 3 years. A total of 293 GB patients from CGGA and 169 from TCGA database were assigned to training and validation cohort, respectively. The differences in expression of immune checkpoint genes (ICGs) and immune infiltration landscape were compared between LTS and short time survivor (STS) (OS<1.5 years). The differentially expressed genes (DEGs) and weighted gene co-expression network analysis (WGCNA) were used to identify the genes differentially expressed between LTS and STS. Three different machine learning algorithms were employed to select the predictive genes from the overlapping region of DEGs and WGCNA to construct the nomogram. The comparison between LTS and STS revealed that STS exhibited an immune-resistant status, with higher expression of ICGs (P<0.05) and greater infiltration of immune suppression cells compared to LTS (P<0.05). Four genes, namely, OSMR, FMOD, CXCL14, and TIMP1, were identified and incorporated into the nomogram, which possessed good potential in predicting LTS probability among GB patients both in the training (C-index, 0.791; 0.772–0.817) and validation cohort (C-index, 0.770; 0.751–0.806). STS was found to be more likely to exhibit an immune-cold phenotype. The identified predictive genes were used to construct the nomogram with potential to identify LTS among GB patients.
{"title":"Predictive Model to Identify the Long Time Survivor in Patients with Glioblastoma: A Cohort Study Integrating Machine Learning Algorithms","authors":"Xi-Lin Yang, Zheng Zeng, Chen Wang, Yun-Long Sheng, Guang-Yu Wang, Fu-Quan Zhang, Xin Lian","doi":"10.1007/s12031-024-02218-2","DOIUrl":"10.1007/s12031-024-02218-2","url":null,"abstract":"<div><p>We aimed to develop and validate a predictive model for identifying long-term survivors (LTS) among glioblastoma (GB) patients, defined as those with an overall survival (OS) of more than 3 years. A total of 293 GB patients from CGGA and 169 from TCGA database were assigned to training and validation cohort, respectively. The differences in expression of immune checkpoint genes (ICGs) and immune infiltration landscape were compared between LTS and short time survivor (STS) (OS<1.5 years). The differentially expressed genes (DEGs) and weighted gene co-expression network analysis (WGCNA) were used to identify the genes differentially expressed between LTS and STS. Three different machine learning algorithms were employed to select the predictive genes from the overlapping region of DEGs and WGCNA to construct the nomogram. The comparison between LTS and STS revealed that STS exhibited an immune-resistant status, with higher expression of ICGs (<i>P</i><0.05) and greater infiltration of immune suppression cells compared to LTS (<i>P</i><0.05). Four genes, namely, <i>OSMR</i>, <i>FMOD</i>, <i>CXCL14</i>, and <i>TIMP1</i>, were identified and incorporated into the nomogram, which possessed good potential in predicting LTS probability among GB patients both in the training (<i>C</i>-index, 0.791; 0.772–0.817) and validation cohort (<i>C</i>-index, 0.770; 0.751–0.806). STS was found to be more likely to exhibit an immune-cold phenotype. The identified predictive genes were used to construct the nomogram with potential to identify LTS among GB patients.</p></div>","PeriodicalId":652,"journal":{"name":"Journal of Molecular Neuroscience","volume":"74 2","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140656977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-23DOI: 10.1007/s12031-024-02220-8
Hala M. Zeidan, Neveen Hassan Nashaat, Maha Hemimi, Adel F. Hashish, Amal Elsaeid, Nagwa Abd EL-Ghaffar, Suzette I. Helal, Nagwa A. Meguid
ADHD has huge knowledge gaps concerning its etiology. MicroRNAs (miRNAs) provide promising diagnostic biomarkers of human pathophysiology and may be a novel therapeutic option. The aim was to investigate the levels of miR-34c-3p, miR-155, miR-138-1, miR-296-5p, and plasma brain-derived neurotrophic factor (BDNF) in a group of children with ADHD compared to neurotypicals and to explore correlations between these measures and some clinical data. The participants were children with ADHD in Group I (N = 41; age: 8.2 ± 2) and neurotypical ones in Group II (N = 40; age: 8.6 ± 2.5). Group I was subjected to clinical examination, the Stanford Binet intelligence scale-5, the preschool language scale, and Conner’s parent rating scale-R. Measuring the expression levels of the miRNAs was performed by qRT-PCR for all participants. The BDNF level was measured by ELISA. The lowest scores on the IQ subtest were knowledge and working memory. No discrepancies were noticed between the receptive and expressive language ages. The highest scores on the Conner’s scale were those for cognitive problems. Participants with ADHD exhibited higher plasma BDNF levels compared to controls (p = 0.0003). Expression patterns of only miR-34c-3p and miR-138-1 were downregulated with significant statistical differences (p˂0.01). However, expression levels of miR-296-5p showed negative correlation with the total scores of IQ (p = 0.03). MiR-34c-3p, miR-138-1, while BDNF showed good diagnostic potential. The downregulated levels of miR-34c-3p and miR-138-1, together with high BDNF levels, are suggested to be involved in the etiology of ADHD in Egyptian children. Gender differences influenced the expression patterns of miRNAs only in children with ADHD.
{"title":"Expression Patterns of miRNAs in Egyptian Children with ADHD: Clinical Study with Correlation Analysis","authors":"Hala M. Zeidan, Neveen Hassan Nashaat, Maha Hemimi, Adel F. Hashish, Amal Elsaeid, Nagwa Abd EL-Ghaffar, Suzette I. Helal, Nagwa A. Meguid","doi":"10.1007/s12031-024-02220-8","DOIUrl":"10.1007/s12031-024-02220-8","url":null,"abstract":"<div><p>ADHD has huge knowledge gaps concerning its etiology. MicroRNAs (miRNAs) provide promising diagnostic biomarkers of human pathophysiology and may be a novel therapeutic option. The aim was to investigate the levels of miR-34c-3p, miR-155, miR-138-1, miR-296-5p, and plasma brain-derived neurotrophic factor (BDNF) in a group of children with ADHD compared to neurotypicals and to explore correlations between these measures and some clinical data. The participants were children with ADHD in Group I (<i>N</i> = 41; age: 8.2 ± 2) and neurotypical ones in Group II (<i>N</i> = 40; age: 8.6 ± 2.5). Group I was subjected to clinical examination, the Stanford Binet intelligence scale-5, the preschool language scale, and Conner’s parent rating scale-R. Measuring the expression levels of the miRNAs was performed by <i>qRT-PCR</i> for all participants. The BDNF level was measured by ELISA. The lowest scores on the IQ subtest were knowledge and working memory. No discrepancies were noticed between the receptive and expressive language ages. The highest scores on the Conner’s scale were those for cognitive problems. Participants with ADHD exhibited higher plasma BDNF levels compared to controls (<i>p</i> = 0.0003). Expression patterns of only miR-34c-3p and miR-138-1 were downregulated with significant statistical differences (p˂0.01). However, expression levels of miR-296-5p showed negative correlation with the total scores of IQ (<i>p</i> = 0.03). MiR-34c-3p, miR-138-1, while BDNF showed good diagnostic potential. The downregulated levels of miR-34c-3p and miR-138-1, together with high BDNF levels, are suggested to be involved in the etiology of ADHD in Egyptian children. Gender differences influenced the expression patterns of miRNAs only in children with ADHD.</p></div>","PeriodicalId":652,"journal":{"name":"Journal of Molecular Neuroscience","volume":"74 2","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12031-024-02220-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140669019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-18DOI: 10.1007/s12031-024-02219-1
Felicia Jennysdotter Olofsgård, Caroline Ran, Yuyan Qin, Carmen Fourier, Elisabet Waldenlind, Anna Steinberg, Christina Sjöstrand, Andrea Carmine Belin
Up to 25% of individuals who live with cluster headache (CH), an extremely painful primary headache disorder, do not adequately respond to the first-line treatment, triptans. Studies have indicated that genetic variants can play a role in treatment response. Likewise, differences in clinical characteristics can give clues to mechanisms underlying triptan non-response. Our aim was to investigate five genetic variants previously implicated in triptan response and their relation to triptan usage in our Swedish CH cohort and to investigate potential distinctions in clinical characteristics. 545 CH patients were screened for the genetic variants rs1024905, rs6724624, rs4795541, rs5443, and rs2651899 with a case control design based on triptan usage. Analysis of clinical characteristics was based on self-reported questionnaire data from 893 patients. One genetic variant, rs1024905, was significantly associated with triptan non-usage in CH (Pc = 0.010). In addition, multi-allele effector analysis showed that individuals with a higher number of effector variants were less likely to use triptans (P = 0.007). Analysis of clinical characteristics showed that triptan users were more likely to have alcohol as a trigger (57.4% vs 43.4%, P = 0.002), have autonomic symptoms (95.1% vs 88.1%, P = 0.002), and be current smokers (27.0% vs 21.9%, P = 0.033) compared to non-users. These results support the hypothesis that genetic variants can play a role in triptan usage in CH and that patients with a typical CH phenotype are more likely to use triptans.
{"title":"Genetic and Phenotypic Profiling of Triptan Users in a Swedish Cluster Headache Cohort","authors":"Felicia Jennysdotter Olofsgård, Caroline Ran, Yuyan Qin, Carmen Fourier, Elisabet Waldenlind, Anna Steinberg, Christina Sjöstrand, Andrea Carmine Belin","doi":"10.1007/s12031-024-02219-1","DOIUrl":"10.1007/s12031-024-02219-1","url":null,"abstract":"<div><p>Up to 25% of individuals who live with cluster headache (CH), an extremely painful primary headache disorder, do not adequately respond to the first-line treatment, triptans. Studies have indicated that genetic variants can play a role in treatment response. Likewise, differences in clinical characteristics can give clues to mechanisms underlying triptan non-response. Our aim was to investigate five genetic variants previously implicated in triptan response and their relation to triptan usage in our Swedish CH cohort and to investigate potential distinctions in clinical characteristics. 545 CH patients were screened for the genetic variants rs1024905, rs6724624, rs4795541, rs5443, and rs2651899 with a case control design based on triptan usage. Analysis of clinical characteristics was based on self-reported questionnaire data from 893 patients. One genetic variant, rs1024905, was significantly associated with triptan non-usage in CH (<i>Pc</i> = 0.010). In addition, multi-allele effector analysis showed that individuals with a higher number of effector variants were less likely to use triptans (<i>P</i> = 0.007). Analysis of clinical characteristics showed that triptan users were more likely to have alcohol as a trigger (57.4% vs 43.4%, <i>P</i> = 0.002), have autonomic symptoms (95.1% vs 88.1%, <i>P</i> = 0.002), and be current smokers (27.0% vs 21.9%, <i>P</i> = 0.033) compared to non-users. These results support the hypothesis that genetic variants can play a role in triptan usage in CH and that patients with a typical CH phenotype are more likely to use triptans.</p></div>","PeriodicalId":652,"journal":{"name":"Journal of Molecular Neuroscience","volume":"74 2","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12031-024-02219-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140615410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-17DOI: 10.1007/s12031-024-02222-6
Yendubé T. Kantati, Magloire K. Kodjo, Benjamin Lefranc, Magali Basille-Dugay, Sébastien Hupin, Isabelle Schmitz, Jérôme Leprince, Messanvi Gbeassor, David Vaudry
Plants are a valuable source of information for pharmacological research and new drug discovery. The present study aimed to evaluate the neuroprotective potential of the leaves of the medicinal plant Sterculia setigera. In vitro, the effect of Sterculia setigera leaves dry hydroethanolic extract (SSE) was tested on cultured cerebellar granule neurons (CGN) survival when exposed to hydrogen peroxide (H2O2) or 6-hydroxydopamine (6-OHDA), using the viability probe fluorescein diacetate (FDA), a lactate dehydrogenase (LDH) activity assay, an immunocytochemical staining against Gap 43, and the quantification of the expression of genes involved in apoptosis, necrosis, or oxidative stress. In vivo, the effect of intraperitoneal (ip) injection of SSE was assessed on the developing brain of 8-day-old Wistar rats exposed to ethanol neurotoxicity by measuring caspase-3 activity on cerebellum homogenates, the expression of some genes in tissue extracts, the thickness of cerebellar cortical layers and motor coordination. In vitro, SSE protected CGN against H2O2 and 6-OHDA-induced cell death at a dose of 10 µg/mL, inhibited the expression of genes Casp3 and Bad, and upregulated the expression of Cat and Gpx7. In vivo, SSE significantly blocked the deleterious effect of ethanol by reducing the activity of caspase-3, inhibiting the expression of Bax and Tp53, preventing the reduction of the thickness of the internal granule cell layer of the cerebellar cortex, and restoring motor functions. Sterculia setigera exerts neuroactive functions as claimed by traditional medicine and should be a good candidate for the development of a neuroprotective treatment against neurodegenerative diseases.
{"title":"Neuroprotective Effect of Sterculia setigera Leaves Hydroethanolic\u0000 Extract","authors":"Yendubé T. Kantati, Magloire K. Kodjo, Benjamin Lefranc, Magali Basille-Dugay, Sébastien Hupin, Isabelle Schmitz, Jérôme Leprince, Messanvi Gbeassor, David Vaudry","doi":"10.1007/s12031-024-02222-6","DOIUrl":"10.1007/s12031-024-02222-6","url":null,"abstract":"<div><p>Plants are a valuable source of information for pharmacological research\u0000 and new drug discovery. The present study aimed to evaluate the neuroprotective\u0000 potential of the leaves of the medicinal plant <i>Sterculia\u0000 setigera</i>. In vitro, the effect of <i>Sterculia\u0000 setigera</i> leaves dry hydroethanolic extract (SSE) was tested on\u0000 cultured cerebellar granule neurons (CGN) survival when exposed to hydrogen peroxide\u0000 (H<sub>2</sub>O<sub>2</sub>) or 6-hydroxydopamine\u0000 (6-OHDA), using the viability probe fluorescein diacetate (FDA), a lactate\u0000 dehydrogenase (LDH) activity assay, an immunocytochemical staining against Gap 43,\u0000 and the quantification of the expression of genes involved in apoptosis, necrosis,\u0000 or oxidative stress. In vivo, the effect of intraperitoneal (ip) injection of SSE\u0000 was assessed on the developing brain of 8-day-old Wistar rats exposed to ethanol\u0000 neurotoxicity by measuring caspase-3 activity on cerebellum homogenates, the\u0000 expression of some genes in tissue extracts, the thickness of cerebellar cortical\u0000 layers and motor coordination. In vitro, SSE protected CGN against\u0000 H<sub>2</sub>O<sub>2</sub> and 6-OHDA-induced cell death\u0000 at a dose of 10 µg/mL, inhibited the expression of genes <i>Casp3</i> and <i>Bad</i>, and upregulated\u0000 the expression of <i>Cat</i> and <i>Gpx7</i>. In vivo, SSE significantly blocked the deleterious effect of\u0000 ethanol by reducing the activity of caspase-3, inhibiting the expression of\u0000 <i>Bax</i> and <i>Tp53</i>, preventing the reduction of the thickness of the internal\u0000 granule cell layer of the cerebellar cortex, and restoring motor functions.\u0000 <i>Sterculia setigera</i> exerts neuroactive\u0000 functions as claimed by traditional medicine and should be a good candidate for the\u0000 development of a neuroprotective treatment against neurodegenerative\u0000 diseases.</p></div>","PeriodicalId":652,"journal":{"name":"Journal of Molecular Neuroscience","volume":"74 2","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140615695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}