首页 > 最新文献

2018 IEEE International Symposium on Circuits and Systems (ISCAS)最新文献

英文 中文
Deep CNNs for microscopic image classification by exploiting transfer learning and feature concatenation 利用迁移学习和特征拼接的深度cnn用于显微图像分类
Pub Date : 2018-05-27 DOI: 10.1109/ISCAS.2018.8351550
Long D. Nguyen, Dongyun Lin, Zhiping Lin, Jiuwen Cao
Deep convolutional neural networks (CNNs) have become one of the state-of-the-art methods for image classification in various domains. For biomedical image classification where the number of training images is generally limited, transfer learning using CNNs is often applied. Such technique extracts generic image features from nature image datasets and these features can be directly adopted for feature extraction in smaller datasets. In this paper, we propose a novel deep neural network architecture based on transfer learning for microscopic image classification. In our proposed network, we concatenate the features extracted from three pretrained deep CNNs. The concatenated features are then used to train two fully-connected layers to perform classification. In the experiments on both the 2D-Hela and the PAP-smear datasets, our proposed network architecture produces significant performance gains comparing to the neural network structure that uses only features extracted from single CNN and several traditional classification methods.
深度卷积神经网络(cnn)已经成为各个领域图像分类的最新方法之一。对于训练图像数量有限的生物医学图像分类,通常使用cnn进行迁移学习。该技术从自然图像数据集中提取通用的图像特征,这些特征可以直接用于较小数据集的特征提取。在本文中,我们提出了一种新的基于迁移学习的用于显微图像分类的深度神经网络架构。在我们提出的网络中,我们将从三个预训练的深度cnn中提取的特征连接起来。然后使用连接的特征来训练两个完全连接的层来执行分类。在2D-Hela和PAP-smear数据集上的实验中,与仅使用从单个CNN提取的特征和几种传统分类方法的神经网络结构相比,我们提出的网络结构产生了显着的性能提升。
{"title":"Deep CNNs for microscopic image classification by exploiting transfer learning and feature concatenation","authors":"Long D. Nguyen, Dongyun Lin, Zhiping Lin, Jiuwen Cao","doi":"10.1109/ISCAS.2018.8351550","DOIUrl":"https://doi.org/10.1109/ISCAS.2018.8351550","url":null,"abstract":"Deep convolutional neural networks (CNNs) have become one of the state-of-the-art methods for image classification in various domains. For biomedical image classification where the number of training images is generally limited, transfer learning using CNNs is often applied. Such technique extracts generic image features from nature image datasets and these features can be directly adopted for feature extraction in smaller datasets. In this paper, we propose a novel deep neural network architecture based on transfer learning for microscopic image classification. In our proposed network, we concatenate the features extracted from three pretrained deep CNNs. The concatenated features are then used to train two fully-connected layers to perform classification. In the experiments on both the 2D-Hela and the PAP-smear datasets, our proposed network architecture produces significant performance gains comparing to the neural network structure that uses only features extracted from single CNN and several traditional classification methods.","PeriodicalId":6569,"journal":{"name":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","volume":"16 1","pages":"1-5"},"PeriodicalIF":0.0,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82643770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 172
A 0.4 V 6.4 μW 3.3 MHz CMOS Bootstrapped Relaxation Oscillator with ±0.71% Frequency Deviation over −30 to 100 °C for Wearable and Sensing Applications 一种0.4 V 6.4 μW 3.3 MHz CMOS自举弛豫振荡器,频率偏差±0.71%,范围为- 30至100°C,适用于可穿戴和传感应用
Pub Date : 2018-05-27 DOI: 10.1109/ISCAS.2018.8351650
Ka-Meng Lei, Pui-in Mak, R. Martins
Wearable and sensing electronics are evolving towards energy harvesting from the environment (e.g. thermal and solar energy). Ultra-low-voltage (ULV) circuits that allow direct-powering by sub-0.5 V energy sources can maximize the power efficiency. This work is a 0.4 V 65 nm CMOS relaxation oscillator with bootstrapped logic gates and outputs. The bootstrapped logic gates enable an output swing of 1.15 V surmounting the adverse effect of ULV digital circuits without extra voltage source. The ULV comparator with bulk-driven-inputs shows an 18 dB gain with 3 cascaded stages. Also, featuring a background delay-time cancellation scheme, the 3.3 MHz relaxation oscillator with built-in calibration exhibits a frequency deviation of ±0.71% and ±0.57% against temperature (−30 to 100 °C) and voltage (0.36 to 0.44 V) variations, respectively, from Monte-Carlo simulations (N=30). The simulated power consumption is 6.4 μW, resulting in an energy efficiency of 1.9 pJ per cycle.
可穿戴和传感电子设备正朝着从环境中收集能量(例如热能和太阳能)的方向发展。超低电压(ULV)电路允许通过低于0.5 V的能量源直接供电,可以最大限度地提高功率效率。这项工作是一个0.4 V 65 nm CMOS弛缓振荡器,具有自举逻辑门和输出。自举逻辑门使输出摆幅为1.15 V,克服了无额外电压源的超低电压数字电路的不利影响。具有批量驱动输入的ULV比较器具有3级联级,增益为18db。此外,内置校准的3.3 MHz弛豫振荡器具有背景延迟时间抵消方案,与蒙特卡罗模拟(N=30)相比,对温度(- 30至100°C)和电压(0.36至0.44 V)变化的频率偏差分别为±0.71%和±0.57%。模拟功耗为6.4 μW,每周期的能效为1.9 pJ。
{"title":"A 0.4 V 6.4 μW 3.3 MHz CMOS Bootstrapped Relaxation Oscillator with ±0.71% Frequency Deviation over −30 to 100 °C for Wearable and Sensing Applications","authors":"Ka-Meng Lei, Pui-in Mak, R. Martins","doi":"10.1109/ISCAS.2018.8351650","DOIUrl":"https://doi.org/10.1109/ISCAS.2018.8351650","url":null,"abstract":"Wearable and sensing electronics are evolving towards energy harvesting from the environment (e.g. thermal and solar energy). Ultra-low-voltage (ULV) circuits that allow direct-powering by sub-0.5 V energy sources can maximize the power efficiency. This work is a 0.4 V 65 nm CMOS relaxation oscillator with bootstrapped logic gates and outputs. The bootstrapped logic gates enable an output swing of 1.15 V surmounting the adverse effect of ULV digital circuits without extra voltage source. The ULV comparator with bulk-driven-inputs shows an 18 dB gain with 3 cascaded stages. Also, featuring a background delay-time cancellation scheme, the 3.3 MHz relaxation oscillator with built-in calibration exhibits a frequency deviation of ±0.71% and ±0.57% against temperature (−30 to 100 °C) and voltage (0.36 to 0.44 V) variations, respectively, from Monte-Carlo simulations (N=30). The simulated power consumption is 6.4 μW, resulting in an energy efficiency of 1.9 pJ per cycle.","PeriodicalId":6569,"journal":{"name":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","volume":"19 1","pages":"1-5"},"PeriodicalIF":0.0,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81228065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Live Demonstration: Body-Bias Based Performance Monitoring and Compensation for a Near-Threshold Multi-Core Cluster in 28nm FD-SOI Technology 现场演示:基于体偏置的28nm FD-SOI技术近阈值多核集群的性能监测和补偿
Pub Date : 2018-05-27 DOI: 10.1109/ISCAS.2018.8351586
Alfio Di Mauro, D. Rossi, A. Pullini, P. Flatresse, L. Benini
Energy efficiency is a crucial aspect in modern SoCs. Common strategies like aggressive voltage scaling and parallel processing have enabled major improvements in active energy efficiency. However, the big impact of process variations, as well as the temperature sensitivity of devices operating in near threshold force digital designers to adopt very conservative margins for timing closure.
能源效率是现代soc的一个重要方面。诸如积极的电压缩放和并行处理等常见策略使主动能源效率得到了重大改进。然而,工艺变化的巨大影响,以及在阈值附近运行的设备的温度敏感性,迫使数字设计师采用非常保守的时间关闭余量。
{"title":"Live Demonstration: Body-Bias Based Performance Monitoring and Compensation for a Near-Threshold Multi-Core Cluster in 28nm FD-SOI Technology","authors":"Alfio Di Mauro, D. Rossi, A. Pullini, P. Flatresse, L. Benini","doi":"10.1109/ISCAS.2018.8351586","DOIUrl":"https://doi.org/10.1109/ISCAS.2018.8351586","url":null,"abstract":"Energy efficiency is a crucial aspect in modern SoCs. Common strategies like aggressive voltage scaling and parallel processing have enabled major improvements in active energy efficiency. However, the big impact of process variations, as well as the temperature sensitivity of devices operating in near threshold force digital designers to adopt very conservative margins for timing closure.","PeriodicalId":6569,"journal":{"name":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","volume":"19 1","pages":"1-1"},"PeriodicalIF":0.0,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85158156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Robust Pinning Synchronization of Complex Network with Non-linear Coupling using Switching Control 基于开关控制的非线性耦合复杂网络鲁棒固定同步
Pub Date : 2018-05-27 DOI: 10.1109/ISCAS.2018.8351137
J. Mishra, M. Jalili, Xinghuo Yu
This paper describes pinning synchronization of a complex dynamical network consisting of N identical nodes. The nodes are interconnected by a time-varying non-linear coupling terms, which has a general type with some constraints. Many non-linear coupling forms can be modeled as the one considered in this work. The network synchronization is achieved by using non-linear switching control. The stability of the synchronization is proven mathematically using Lyapunov analysis. It is shown that the proposed controller performs well in the presence of disturbances. Finally, simulation examples of Lorenz oscillator networks are given to verify the theoretical results. The simulations show that the proposed switching control outperforms classical linear control by providing not only faster synchronization, but also better robustness against external disturbances.
本文讨论了由N个相同节点组成的复杂动态网络的钉住同步问题。节点之间通过时变的非线性耦合项相互连接,该耦合项具有一般类型并带有一定的约束。许多非线性耦合形式都可以像本文所考虑的那样建模。采用非线性开关控制实现网络同步。利用李雅普诺夫分析从数学上证明了同步的稳定性。结果表明,该控制器在存在干扰的情况下具有良好的控制性能。最后,给出了洛伦兹振子网络的仿真实例来验证理论结果。仿真结果表明,所提出的切换控制不仅具有更快的同步速度,而且具有更好的对外部干扰的鲁棒性,优于传统的线性控制。
{"title":"Robust Pinning Synchronization of Complex Network with Non-linear Coupling using Switching Control","authors":"J. Mishra, M. Jalili, Xinghuo Yu","doi":"10.1109/ISCAS.2018.8351137","DOIUrl":"https://doi.org/10.1109/ISCAS.2018.8351137","url":null,"abstract":"This paper describes pinning synchronization of a complex dynamical network consisting of N identical nodes. The nodes are interconnected by a time-varying non-linear coupling terms, which has a general type with some constraints. Many non-linear coupling forms can be modeled as the one considered in this work. The network synchronization is achieved by using non-linear switching control. The stability of the synchronization is proven mathematically using Lyapunov analysis. It is shown that the proposed controller performs well in the presence of disturbances. Finally, simulation examples of Lorenz oscillator networks are given to verify the theoretical results. The simulations show that the proposed switching control outperforms classical linear control by providing not only faster synchronization, but also better robustness against external disturbances.","PeriodicalId":6569,"journal":{"name":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","volume":"1 1","pages":"1-5"},"PeriodicalIF":0.0,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89590413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CNN-Based Bi-Directional Motion Compensation for High Efficiency Video Coding 基于cnn的双向运动补偿高效视频编码
Pub Date : 2018-05-27 DOI: 10.1109/ISCAS.2018.8351189
Zhenghui Zhao, Shiqi Wang, Shanshe Wang, Xinfeng Zhang, Siwei Ma, Jiansheng Yang
The state-of-the-art High Efficiency Video Coding (HEVC) standard adopts the bi-prediction to improve the coding efficiency for B frame. However, the underlying assumption of this technique is that the motion field is characterized by the block-wise translational motion model, which may not be efficient in the challenging scenarios such as rotation and deformation. Inspired by the excellent signal level prediction capability of deep learning, we propose a bi-directional motion compensation algorithm with convolutional neural network, which is further incorporated into the video coding pipeline to improve the performance of video compression. Our network consists of six convolutional layers and a skip connection, which integrates the prediction error detection and non-linear signal prediction into an end-to-end framework. Experimental results show that by incorporating the proposed scheme into HEVC, up to 10.5% BD-rate savings and 3.1% BD-rate savings on average for random access (RA) configuration have been observed.
高效视频编码(High Efficiency Video Coding, HEVC)标准采用双预测技术来提高B帧的编码效率。然而,该技术的基本假设是运动场以块方向的平移运动模型为特征,这在旋转和变形等具有挑战性的场景中可能不是有效的。受深度学习出色的信号电平预测能力的启发,我们提出了一种基于卷积神经网络的双向运动补偿算法,并将其进一步整合到视频编码管道中,以提高视频压缩性能。我们的网络由六个卷积层和一个跳跃连接组成,它将预测误差检测和非线性信号预测集成到一个端到端框架中。实验结果表明,将所提出的方案纳入HEVC后,在随机接入(RA)配置下,平均可节省10.5%的bd速率和3.1%的bd速率。
{"title":"CNN-Based Bi-Directional Motion Compensation for High Efficiency Video Coding","authors":"Zhenghui Zhao, Shiqi Wang, Shanshe Wang, Xinfeng Zhang, Siwei Ma, Jiansheng Yang","doi":"10.1109/ISCAS.2018.8351189","DOIUrl":"https://doi.org/10.1109/ISCAS.2018.8351189","url":null,"abstract":"The state-of-the-art High Efficiency Video Coding (HEVC) standard adopts the bi-prediction to improve the coding efficiency for B frame. However, the underlying assumption of this technique is that the motion field is characterized by the block-wise translational motion model, which may not be efficient in the challenging scenarios such as rotation and deformation. Inspired by the excellent signal level prediction capability of deep learning, we propose a bi-directional motion compensation algorithm with convolutional neural network, which is further incorporated into the video coding pipeline to improve the performance of video compression. Our network consists of six convolutional layers and a skip connection, which integrates the prediction error detection and non-linear signal prediction into an end-to-end framework. Experimental results show that by incorporating the proposed scheme into HEVC, up to 10.5% BD-rate savings and 3.1% BD-rate savings on average for random access (RA) configuration have been observed.","PeriodicalId":6569,"journal":{"name":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","volume":"7 1","pages":"1-4"},"PeriodicalIF":0.0,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89661427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 25
40 Gop/s/mm2 fixed-point operators for Brain Computer Interface in 65 nm CMOS 65纳米CMOS脑机接口40 Gop/s/mm2定点算子
Pub Date : 2018-05-27 DOI: 10.1109/ISCAS.2018.8351028
Erwan Libessart, M. Arzel, C. Lahuec, F. Andriulli
The performance of non-invasive Brain-Computer Interface (BCI) depends on the computing performance of the system which solves the inverse problem. So the number of basic operations computed per second determines the BCI's resolution. An architecture with pipelined and parallelized flow is then required, and each operator in this architecture must be optimised to reach the highest possible computing performance. This paper presents the implementation of a fixed-point reciprocal and an inverse square root operators for the STMicroelectronics 65 nm CMOS technology. This paper follows previous works that optimise these operators on FPGA target. Each operator reaches a computing performance of about 40 Gop/s/mm2, which improves the literature results by a factor of 5. Thus, this works fits well for portable and high performance BCI applications.
无创脑机接口(BCI)的性能取决于解决逆问题的系统的计算性能。因此,每秒计算的基本操作的数量决定了BCI的分辨率。然后需要一个具有流水线和并行流的体系结构,并且必须优化该体系结构中的每个运算符以达到最高的计算性能。本文介绍了意法半导体65nm CMOS技术的定点倒数算子和平方根逆算子的实现。本文继承了前人在FPGA目标上对这些算子进行优化的工作。每个操作器的计算性能约为40 Gop/s/mm2,这比文献结果提高了5倍。因此,这种工作方式非常适合便携式高性能BCI应用程序。
{"title":"40 Gop/s/mm2 fixed-point operators for Brain Computer Interface in 65 nm CMOS","authors":"Erwan Libessart, M. Arzel, C. Lahuec, F. Andriulli","doi":"10.1109/ISCAS.2018.8351028","DOIUrl":"https://doi.org/10.1109/ISCAS.2018.8351028","url":null,"abstract":"The performance of non-invasive Brain-Computer Interface (BCI) depends on the computing performance of the system which solves the inverse problem. So the number of basic operations computed per second determines the BCI's resolution. An architecture with pipelined and parallelized flow is then required, and each operator in this architecture must be optimised to reach the highest possible computing performance. This paper presents the implementation of a fixed-point reciprocal and an inverse square root operators for the STMicroelectronics 65 nm CMOS technology. This paper follows previous works that optimise these operators on FPGA target. Each operator reaches a computing performance of about 40 Gop/s/mm2, which improves the literature results by a factor of 5. Thus, this works fits well for portable and high performance BCI applications.","PeriodicalId":6569,"journal":{"name":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","volume":"95 1","pages":"1-4"},"PeriodicalIF":0.0,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89507930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design Considerations for Integrated, High-Voltage DC-DC Converters 集成高压DC-DC转换器的设计注意事项
Pub Date : 2018-05-27 DOI: 10.1109/ISCAS.2018.8351566
A. Salimath, Giovanni Gonano, E. Bonizzoni, D. Brambilla, E. Botti, F. Maloberti
This paper presents two design considerations for integrated high-voltage DC-DC converters in automobile and industrial applications. The proposed solutions include (i) a quasi soft-start technique using over-current protection (OCP) circuits and limited duty cycle control and (ii) a technique to drive a floating load-side switch that suppresses the effect of bond-wire bouncing on its gate-source voltage. The first technique avoids the conventional, overhead start-up circuits and significantly reduces the converter startup time. The second technique gains importance primarily from device reliability viewpoint in high-voltage (HV) conditions. The effectiveness of the proposed techniques has been verified with simulations at the transistor level using a 110-nm BCD technology.
本文介绍了汽车和工业应用中集成高压DC-DC变换器的两个设计注意事项。提出的解决方案包括(i)使用过流保护(OCP)电路和有限占空比控制的准软启动技术和(ii)驱动浮动负载侧开关的技术,该开关抑制键线弹跳对其门源电压的影响。第一种技术避免了传统的开销启动电路,并显著缩短了转换器启动时间。第二种技术的重要性主要来自于高压条件下设备可靠性的观点。所提出的技术的有效性已经通过使用110纳米BCD技术在晶体管级的模拟得到验证。
{"title":"Design Considerations for Integrated, High-Voltage DC-DC Converters","authors":"A. Salimath, Giovanni Gonano, E. Bonizzoni, D. Brambilla, E. Botti, F. Maloberti","doi":"10.1109/ISCAS.2018.8351566","DOIUrl":"https://doi.org/10.1109/ISCAS.2018.8351566","url":null,"abstract":"This paper presents two design considerations for integrated high-voltage DC-DC converters in automobile and industrial applications. The proposed solutions include (i) a quasi soft-start technique using over-current protection (OCP) circuits and limited duty cycle control and (ii) a technique to drive a floating load-side switch that suppresses the effect of bond-wire bouncing on its gate-source voltage. The first technique avoids the conventional, overhead start-up circuits and significantly reduces the converter startup time. The second technique gains importance primarily from device reliability viewpoint in high-voltage (HV) conditions. The effectiveness of the proposed techniques has been verified with simulations at the transistor level using a 110-nm BCD technology.","PeriodicalId":6569,"journal":{"name":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","volume":"16 1","pages":"1-5"},"PeriodicalIF":0.0,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87030151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Live Demonstration: Electrotactile feedback from an electronic skin through flexible electrode matrix 现场演示:电子皮肤通过柔性电极矩阵反馈触电
Pub Date : 2018-05-27 DOI: 10.1109/ISCAS.2018.8351822
M. Franceschi, L. Seminara, S. Došen, L. Pinna, Luigi Fares, M. Saleh, M. Valle, D. Farina
Closing the prosthesis control loop by providing tactile sensory feedback to the user is a key point in research on active prosthetics as well as an often cited requirement of the prosthesis users.
通过向使用者提供触觉反馈来关闭义肢控制回路是主动义肢研究的重点,也是义肢使用者经常提出的要求。
{"title":"Live Demonstration: Electrotactile feedback from an electronic skin through flexible electrode matrix","authors":"M. Franceschi, L. Seminara, S. Došen, L. Pinna, Luigi Fares, M. Saleh, M. Valle, D. Farina","doi":"10.1109/ISCAS.2018.8351822","DOIUrl":"https://doi.org/10.1109/ISCAS.2018.8351822","url":null,"abstract":"Closing the prosthesis control loop by providing tactile sensory feedback to the user is a key point in research on active prosthetics as well as an often cited requirement of the prosthesis users.","PeriodicalId":6569,"journal":{"name":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","volume":"12 1","pages":"1-1"},"PeriodicalIF":0.0,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89845014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Accurately Forecasting the Health of Energy System Assets 准确预测能源系统资产的健康状况
Pub Date : 2018-05-27 DOI: 10.1109/ISCAS.2018.8351842
Wenshuo Tang, M. Andoni, V. Robu, D. Flynn
In this paper we present a review into data driven prognostics and its relevance to resilience in energy systems. A data driven remaining useful life prediction for Li-ion batteries utilizing data analysis via a relevance vector machine (RVM) model is shown to be within 5% accuracy when applied to large lifecycle datasets. Results demonstrate that due to the agile nature of prognostic models and their accuracy, prognostics and health management methods will be vital to resilient and sustainable energy systems.
在本文中,我们提出了对数据驱动的预测及其与能源系统弹性的相关性的回顾。当应用于大型生命周期数据集时,通过相关向量机(RVM)模型利用数据分析对锂离子电池进行数据驱动的剩余使用寿命预测,其精度在5%以内。结果表明,由于预测模型的敏捷性及其准确性,预测和健康管理方法对弹性和可持续能源系统至关重要。
{"title":"Accurately Forecasting the Health of Energy System Assets","authors":"Wenshuo Tang, M. Andoni, V. Robu, D. Flynn","doi":"10.1109/ISCAS.2018.8351842","DOIUrl":"https://doi.org/10.1109/ISCAS.2018.8351842","url":null,"abstract":"In this paper we present a review into data driven prognostics and its relevance to resilience in energy systems. A data driven remaining useful life prediction for Li-ion batteries utilizing data analysis via a relevance vector machine (RVM) model is shown to be within 5% accuracy when applied to large lifecycle datasets. Results demonstrate that due to the agile nature of prognostic models and their accuracy, prognostics and health management methods will be vital to resilient and sustainable energy systems.","PeriodicalId":6569,"journal":{"name":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","volume":"27 1","pages":"1-5"},"PeriodicalIF":0.0,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90376398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Design and Optimization of Modular Multiplication for SIDH SIDH模乘法的设计与优化
Pub Date : 2018-05-27 DOI: 10.1109/ISCAS.2018.8351082
Chunyang Liu, Jian Ni, Weiqiang Liu, Zhe Liu, Máire O’Neill
Recent progress on quantum physics shows that quantum computers may be a reality in the not too distant future. Based on new mathematical hard problems, post-quantum cryptography (PQC) has been studied to make sure the attacks from quantum computers can be resistant. The latest supersingular isogeny Diffie-Hellman (SIDH) key exchange protocol shows promising security properties among various post-quantum cryptosystems. In this paper, we propose an improved modular multiplication algorithm with special primes that can be used in SIDH key exchange protocol. Both software and hardware implementations are provided and compared with original modular multiplication algorithm. The results show that the software results of improved algorithm can be 24% faster than the original software implementation, while the hardware implementation based on the proposed hardware architecture can be 6 times faster than previous hardware implementation.
量子物理学的最新进展表明,量子计算机可能在不久的将来成为现实。基于新的数学难题,对后量子密码学(PQC)进行了研究,以确保量子计算机能够抵抗攻击。最新的超奇异同源Diffie-Hellman (SIDH)密钥交换协议在各种后量子密码系统中显示出良好的安全性能。本文提出了一种改进的具有特殊素数的模乘法算法,可用于SIDH密钥交换协议。给出了软件和硬件实现,并与原模乘法算法进行了比较。结果表明,改进算法的软件实现速度比原软件实现速度快24%,而基于所提硬件架构的硬件实现速度比原硬件实现速度快6倍。
{"title":"Design and Optimization of Modular Multiplication for SIDH","authors":"Chunyang Liu, Jian Ni, Weiqiang Liu, Zhe Liu, Máire O’Neill","doi":"10.1109/ISCAS.2018.8351082","DOIUrl":"https://doi.org/10.1109/ISCAS.2018.8351082","url":null,"abstract":"Recent progress on quantum physics shows that quantum computers may be a reality in the not too distant future. Based on new mathematical hard problems, post-quantum cryptography (PQC) has been studied to make sure the attacks from quantum computers can be resistant. The latest supersingular isogeny Diffie-Hellman (SIDH) key exchange protocol shows promising security properties among various post-quantum cryptosystems. In this paper, we propose an improved modular multiplication algorithm with special primes that can be used in SIDH key exchange protocol. Both software and hardware implementations are provided and compared with original modular multiplication algorithm. The results show that the software results of improved algorithm can be 24% faster than the original software implementation, while the hardware implementation based on the proposed hardware architecture can be 6 times faster than previous hardware implementation.","PeriodicalId":6569,"journal":{"name":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","volume":"77 1","pages":"1-5"},"PeriodicalIF":0.0,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90291372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
期刊
2018 IEEE International Symposium on Circuits and Systems (ISCAS)
全部 Geobiology Appl. Clay Sci. Geochim. Cosmochim. Acta J. Hydrol. Org. Geochem. Carbon Balance Manage. Contrib. Mineral. Petrol. Int. J. Biometeorol. IZV-PHYS SOLID EART+ J. Atmos. Chem. Acta Oceanolog. Sin. Acta Geophys. ACTA GEOL POL ACTA PETROL SIN ACTA GEOL SIN-ENGL AAPG Bull. Acta Geochimica Adv. Atmos. Sci. Adv. Meteorol. Am. J. Phys. Anthropol. Am. J. Sci. Am. Mineral. Annu. Rev. Earth Planet. Sci. Appl. Geochem. Aquat. Geochem. Ann. Glaciol. Archaeol. Anthropol. Sci. ARCHAEOMETRY ARCT ANTARCT ALP RES Asia-Pac. J. Atmos. Sci. ATMOSPHERE-BASEL Atmos. Res. Aust. J. Earth Sci. Atmos. Chem. Phys. Atmos. Meas. Tech. Basin Res. Big Earth Data BIOGEOSCIENCES Geostand. Geoanal. Res. GEOLOGY Geosci. J. Geochem. J. Geochem. Trans. Geosci. Front. Geol. Ore Deposits Global Biogeochem. Cycles Gondwana Res. Geochem. Int. Geol. J. Geophys. Prospect. Geosci. Model Dev. GEOL BELG GROUNDWATER Hydrogeol. J. Hydrol. Earth Syst. Sci. Hydrol. Processes Int. J. Climatol. Int. J. Earth Sci. Int. Geol. Rev. Int. J. Disaster Risk Reduct. Int. J. Geomech. Int. J. Geog. Inf. Sci. Isl. Arc J. Afr. Earth. Sci. J. Adv. Model. Earth Syst. J APPL METEOROL CLIM J. Atmos. Oceanic Technol. J. Atmos. Sol. Terr. Phys. J. Clim. J. Earth Sci. J. Earth Syst. Sci. J. Environ. Eng. Geophys. J. Geog. Sci. Mineral. Mag. Miner. Deposita Mon. Weather Rev. Nat. Hazards Earth Syst. Sci. Nat. Clim. Change Nat. Geosci. Ocean Dyn. Ocean and Coastal Research npj Clim. Atmos. Sci. Ocean Modell. Ocean Sci. Ore Geol. Rev. OCEAN SCI J Paleontol. J. PALAEOGEOGR PALAEOCL PERIOD MINERAL PETROLOGY+ Phys. Chem. Miner. Polar Sci. Prog. Oceanogr. Quat. Sci. Rev. Q. J. Eng. Geol. Hydrogeol. RADIOCARBON Pure Appl. Geophys. Resour. Geol. Rev. Geophys. Sediment. Geol.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1