The state-of-the-art High Efficiency Video Coding (HEVC) standard adopts the bi-prediction to improve the coding efficiency for B frame. However, the underlying assumption of this technique is that the motion field is characterized by the block-wise translational motion model, which may not be efficient in the challenging scenarios such as rotation and deformation. Inspired by the excellent signal level prediction capability of deep learning, we propose a bi-directional motion compensation algorithm with convolutional neural network, which is further incorporated into the video coding pipeline to improve the performance of video compression. Our network consists of six convolutional layers and a skip connection, which integrates the prediction error detection and non-linear signal prediction into an end-to-end framework. Experimental results show that by incorporating the proposed scheme into HEVC, up to 10.5% BD-rate savings and 3.1% BD-rate savings on average for random access (RA) configuration have been observed.
高效视频编码(High Efficiency Video Coding, HEVC)标准采用双预测技术来提高B帧的编码效率。然而,该技术的基本假设是运动场以块方向的平移运动模型为特征,这在旋转和变形等具有挑战性的场景中可能不是有效的。受深度学习出色的信号电平预测能力的启发,我们提出了一种基于卷积神经网络的双向运动补偿算法,并将其进一步整合到视频编码管道中,以提高视频压缩性能。我们的网络由六个卷积层和一个跳跃连接组成,它将预测误差检测和非线性信号预测集成到一个端到端框架中。实验结果表明,将所提出的方案纳入HEVC后,在随机接入(RA)配置下,平均可节省10.5%的bd速率和3.1%的bd速率。
{"title":"CNN-Based Bi-Directional Motion Compensation for High Efficiency Video Coding","authors":"Zhenghui Zhao, Shiqi Wang, Shanshe Wang, Xinfeng Zhang, Siwei Ma, Jiansheng Yang","doi":"10.1109/ISCAS.2018.8351189","DOIUrl":"https://doi.org/10.1109/ISCAS.2018.8351189","url":null,"abstract":"The state-of-the-art High Efficiency Video Coding (HEVC) standard adopts the bi-prediction to improve the coding efficiency for B frame. However, the underlying assumption of this technique is that the motion field is characterized by the block-wise translational motion model, which may not be efficient in the challenging scenarios such as rotation and deformation. Inspired by the excellent signal level prediction capability of deep learning, we propose a bi-directional motion compensation algorithm with convolutional neural network, which is further incorporated into the video coding pipeline to improve the performance of video compression. Our network consists of six convolutional layers and a skip connection, which integrates the prediction error detection and non-linear signal prediction into an end-to-end framework. Experimental results show that by incorporating the proposed scheme into HEVC, up to 10.5% BD-rate savings and 3.1% BD-rate savings on average for random access (RA) configuration have been observed.","PeriodicalId":6569,"journal":{"name":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","volume":"7 1","pages":"1-4"},"PeriodicalIF":0.0,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89661427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-05-27DOI: 10.1109/ISCAS.2018.8351756
William Hwang, W. Wan, S. Mitra, H. Wong
As two-dimensional scaling of Si CMOS crosses the nanometer threshold, from 7 nm, 5 nm, 3 nm, toward 1 nm technology nodes, will it continue to provide the energy efficiency required of future computing systems? A scalable, fast, and energy-efficient computation platform that may provide another 1,000× in computing energy efficiency (energy-execution time product) will have massive on-chip memory co-located with highly energy-efficient computing logic, enabled by 3D integration (e.g., monolithic) with ultra-dense and fine-grained connectivity. There will be multiple layers of memories interleaved with computing logic, sensors, and application-specific devices. We call this technology platform N3XT, Nano-engineered Computing Systems Technology. In this paper, we give an overview of the nanoscale memory and logic technologies that enable N3XT.
{"title":"Coming Up N3XT, After 2D Scaling of Si CMOS","authors":"William Hwang, W. Wan, S. Mitra, H. Wong","doi":"10.1109/ISCAS.2018.8351756","DOIUrl":"https://doi.org/10.1109/ISCAS.2018.8351756","url":null,"abstract":"As two-dimensional scaling of Si CMOS crosses the nanometer threshold, from 7 nm, 5 nm, 3 nm, toward 1 nm technology nodes, will it continue to provide the energy efficiency required of future computing systems? A scalable, fast, and energy-efficient computation platform that may provide another 1,000× in computing energy efficiency (energy-execution time product) will have massive on-chip memory co-located with highly energy-efficient computing logic, enabled by 3D integration (e.g., monolithic) with ultra-dense and fine-grained connectivity. There will be multiple layers of memories interleaved with computing logic, sensors, and application-specific devices. We call this technology platform N3XT, Nano-engineered Computing Systems Technology. In this paper, we give an overview of the nanoscale memory and logic technologies that enable N3XT.","PeriodicalId":6569,"journal":{"name":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","volume":"81 1","pages":"1-5"},"PeriodicalIF":0.0,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83983281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-05-27DOI: 10.1109/ISCAS.2018.8351314
Gemma Taverni, Diederik Paul Moeys, Chenghan Li, T. Delbrück, C. Cavaco, V. Motsnyi, D. S. S. Bello
The demonstration shows the differences between two novel Dynamic and Active Pixel Vision Sensors (DAVIS). While both sensors are based on the same circuits and have the same resolution (346×260), they differ in their manufacturing. The first sensor is a DAVIS with standard Front Side Illuminated (FSI) technology and the second sensor is the first Back Side Illuminated (BSI) DAVIS sensor.
{"title":"Live Demonstration: Front and Back Illuminated Dynamic and Active Pixel Vision Sensors Comparison","authors":"Gemma Taverni, Diederik Paul Moeys, Chenghan Li, T. Delbrück, C. Cavaco, V. Motsnyi, D. S. S. Bello","doi":"10.1109/ISCAS.2018.8351314","DOIUrl":"https://doi.org/10.1109/ISCAS.2018.8351314","url":null,"abstract":"The demonstration shows the differences between two novel Dynamic and Active Pixel Vision Sensors (DAVIS). While both sensors are based on the same circuits and have the same resolution (346×260), they differ in their manufacturing. The first sensor is a DAVIS with standard Front Side Illuminated (FSI) technology and the second sensor is the first Back Side Illuminated (BSI) DAVIS sensor.","PeriodicalId":6569,"journal":{"name":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","volume":"71 1","pages":"1-1"},"PeriodicalIF":0.0,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84015848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-05-27DOI: 10.1109/ISCAS.2018.8351491
G. Magazzú, G. Ciarpi, S. Saponara
This paper presents the integrated circuit design, targeting a CMOS 65 nm 1.2 V technology, of a high-speed driver that provides the differential input signals to a Mach Zender Modulator (MZM), and allows tuning of the MZM operating point through adjustment of the bias voltage. A multi-voltage domain circuit is proposed, where each domain is isolated through deep n-well trenches, to face the high voltage swing and the bias regulation requirements of the MZM. The MZM device, whose prototype has been implemented in silicon photonics iSiPP50G technology, is emerging as a promising solution for radiation tolerant, several hundreds of Mrad, and high-speed, in the range of 10 Gbps, optical links. These stringent requirements are needed in high energy physics experiments in the upgrade of the Large Hadron Collider or in future Linear Colliders.
{"title":"Design of a radiation-tolerant high-speed driver for Mach Zender Modulators in High Energy Physics","authors":"G. Magazzú, G. Ciarpi, S. Saponara","doi":"10.1109/ISCAS.2018.8351491","DOIUrl":"https://doi.org/10.1109/ISCAS.2018.8351491","url":null,"abstract":"This paper presents the integrated circuit design, targeting a CMOS 65 nm 1.2 V technology, of a high-speed driver that provides the differential input signals to a Mach Zender Modulator (MZM), and allows tuning of the MZM operating point through adjustment of the bias voltage. A multi-voltage domain circuit is proposed, where each domain is isolated through deep n-well trenches, to face the high voltage swing and the bias regulation requirements of the MZM. The MZM device, whose prototype has been implemented in silicon photonics iSiPP50G technology, is emerging as a promising solution for radiation tolerant, several hundreds of Mrad, and high-speed, in the range of 10 Gbps, optical links. These stringent requirements are needed in high energy physics experiments in the upgrade of the Large Hadron Collider or in future Linear Colliders.","PeriodicalId":6569,"journal":{"name":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","volume":"1 1","pages":"1-5"},"PeriodicalIF":0.0,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86667077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-05-27DOI: 10.1109/ISCAS.2018.8351459
Alexander Neckar, T. Stewart, B. Benjamin, K. Boahen
Silicon neurons designed using subthreshold analog-circuit techniques offer low power and compact area but are exponentially sensitive to threshold-voltage mismatch in transistors. The resulting heterogeneity in the neurons' responses, however, provides a diverse set of basis functions for smooth nonlinear function approximation. For low-order polynomials, neuron spiking thresholds ought to be distributed uniformly across the function's domain. This uniform distribution is difficult to achieve solely by sizing transistors to titrate mismatch. With too much mismatch, many neuron's thresholds fall outside the domain (i.e. they either always spike or remain silent). With too little mismatch, all their thresholds bunch up in the middle of the domain. Here, we present a silicon-neuron design methodology that minimizes overall area by optimizing transistor sizes in concert with a few locally-stored programmable bits to adjust each neuron's offset (and gain). We validated this methodology in a 28-nm mixed analog-digital CMOS process. Compared to relying on mismatch alone, augmentation with digital correction effectively reduced silicon area by 38%.
{"title":"Optimizing an Analog Neuron Circuit Design for Nonlinear Function Approximation","authors":"Alexander Neckar, T. Stewart, B. Benjamin, K. Boahen","doi":"10.1109/ISCAS.2018.8351459","DOIUrl":"https://doi.org/10.1109/ISCAS.2018.8351459","url":null,"abstract":"Silicon neurons designed using subthreshold analog-circuit techniques offer low power and compact area but are exponentially sensitive to threshold-voltage mismatch in transistors. The resulting heterogeneity in the neurons' responses, however, provides a diverse set of basis functions for smooth nonlinear function approximation. For low-order polynomials, neuron spiking thresholds ought to be distributed uniformly across the function's domain. This uniform distribution is difficult to achieve solely by sizing transistors to titrate mismatch. With too much mismatch, many neuron's thresholds fall outside the domain (i.e. they either always spike or remain silent). With too little mismatch, all their thresholds bunch up in the middle of the domain. Here, we present a silicon-neuron design methodology that minimizes overall area by optimizing transistor sizes in concert with a few locally-stored programmable bits to adjust each neuron's offset (and gain). We validated this methodology in a 28-nm mixed analog-digital CMOS process. Compared to relying on mismatch alone, augmentation with digital correction effectively reduced silicon area by 38%.","PeriodicalId":6569,"journal":{"name":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","volume":"47 1","pages":"1-5"},"PeriodicalIF":0.0,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86923620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-05-27DOI: 10.1109/ISCAS.2018.8351289
Saqib Mohamad, Moaaz Ahmed, Jie Yuan, A. Bermak
Incremental analog to digital converters (IADCs) are aimed at converting low frequency signals with high accuracy. The operational transconductance amplifiers (OTAs) used to implement the integrators are the dominant source of power consumption, since they must settle to a desired accuracy within a given clock period, by driving a capacitive load. Reducing the capacitor size correspondingly increases the thermal noise power which reduces the signal-to-noise ratio (SNR) of the ADC. In this paper, we introduce a capacitor scaling technique which exploits the uneven weightage of the IADC decimation filter on the output bit-stream of the IADC. The power consumption can be scaled down correspondingly but the noise power does not increase by the same extent, leading to greater energy efficiency. A second order feedforward IADC is simulated to demonstrate the idea, which achieves up to a 25% improvement in energy efficiency using the proposed scheme.
{"title":"Power Reduction in Incremental ΔΣ ADCs Using a Capacitor Scaling Technique","authors":"Saqib Mohamad, Moaaz Ahmed, Jie Yuan, A. Bermak","doi":"10.1109/ISCAS.2018.8351289","DOIUrl":"https://doi.org/10.1109/ISCAS.2018.8351289","url":null,"abstract":"Incremental analog to digital converters (IADCs) are aimed at converting low frequency signals with high accuracy. The operational transconductance amplifiers (OTAs) used to implement the integrators are the dominant source of power consumption, since they must settle to a desired accuracy within a given clock period, by driving a capacitive load. Reducing the capacitor size correspondingly increases the thermal noise power which reduces the signal-to-noise ratio (SNR) of the ADC. In this paper, we introduce a capacitor scaling technique which exploits the uneven weightage of the IADC decimation filter on the output bit-stream of the IADC. The power consumption can be scaled down correspondingly but the noise power does not increase by the same extent, leading to greater energy efficiency. A second order feedforward IADC is simulated to demonstrate the idea, which achieves up to a 25% improvement in energy efficiency using the proposed scheme.","PeriodicalId":6569,"journal":{"name":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","volume":"11 1","pages":"1-4"},"PeriodicalIF":0.0,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86930761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-05-27DOI: 10.1109/ISCAS.2018.8351566
A. Salimath, Giovanni Gonano, E. Bonizzoni, D. Brambilla, E. Botti, F. Maloberti
This paper presents two design considerations for integrated high-voltage DC-DC converters in automobile and industrial applications. The proposed solutions include (i) a quasi soft-start technique using over-current protection (OCP) circuits and limited duty cycle control and (ii) a technique to drive a floating load-side switch that suppresses the effect of bond-wire bouncing on its gate-source voltage. The first technique avoids the conventional, overhead start-up circuits and significantly reduces the converter startup time. The second technique gains importance primarily from device reliability viewpoint in high-voltage (HV) conditions. The effectiveness of the proposed techniques has been verified with simulations at the transistor level using a 110-nm BCD technology.
{"title":"Design Considerations for Integrated, High-Voltage DC-DC Converters","authors":"A. Salimath, Giovanni Gonano, E. Bonizzoni, D. Brambilla, E. Botti, F. Maloberti","doi":"10.1109/ISCAS.2018.8351566","DOIUrl":"https://doi.org/10.1109/ISCAS.2018.8351566","url":null,"abstract":"This paper presents two design considerations for integrated high-voltage DC-DC converters in automobile and industrial applications. The proposed solutions include (i) a quasi soft-start technique using over-current protection (OCP) circuits and limited duty cycle control and (ii) a technique to drive a floating load-side switch that suppresses the effect of bond-wire bouncing on its gate-source voltage. The first technique avoids the conventional, overhead start-up circuits and significantly reduces the converter startup time. The second technique gains importance primarily from device reliability viewpoint in high-voltage (HV) conditions. The effectiveness of the proposed techniques has been verified with simulations at the transistor level using a 110-nm BCD technology.","PeriodicalId":6569,"journal":{"name":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","volume":"16 1","pages":"1-5"},"PeriodicalIF":0.0,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87030151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-05-27DOI: 10.1109/ISCAS.2018.8351135
Miroslav Mirchev, I. Mishkovski, L. Kocarev
Many spreading processes of information and diseases take place over complex networks that are composed of multiple interconnection layers. The relationship between network structure, nodes' activity and spreading dynamics impose a threshold above which an epidemic endures. The network structure of individual layers can take different forms, such as scale-free or random, which significantly impacts the epidemic threshold. Similarly, the nodes' inter-layer transition dynamics largely influences the threshold as well. In this study we consider an inter-layer dynamics following: a Markov process, and a memory based activity creating inter-event times with a heavy-tail distribution, which are typically observed in human behavior. It is shown that by introducing a layer of inactivity the epidemic threshold can be closely predicted with our previously derived expression for multiplex networks.
{"title":"Epidemic spreading in multiplex networks with Markov and memory based inter-layer dynamics","authors":"Miroslav Mirchev, I. Mishkovski, L. Kocarev","doi":"10.1109/ISCAS.2018.8351135","DOIUrl":"https://doi.org/10.1109/ISCAS.2018.8351135","url":null,"abstract":"Many spreading processes of information and diseases take place over complex networks that are composed of multiple interconnection layers. The relationship between network structure, nodes' activity and spreading dynamics impose a threshold above which an epidemic endures. The network structure of individual layers can take different forms, such as scale-free or random, which significantly impacts the epidemic threshold. Similarly, the nodes' inter-layer transition dynamics largely influences the threshold as well. In this study we consider an inter-layer dynamics following: a Markov process, and a memory based activity creating inter-event times with a heavy-tail distribution, which are typically observed in human behavior. It is shown that by introducing a layer of inactivity the epidemic threshold can be closely predicted with our previously derived expression for multiplex networks.","PeriodicalId":6569,"journal":{"name":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","volume":"40 1","pages":"1-5"},"PeriodicalIF":0.0,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85449069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-05-27DOI: 10.1109/ISCAS.2018.8351665
Y. Uwate, T. Ott, Y. Nishio
In this study, we propose a method of generating complex networks by exploiting synchronization between coupled oscillatory circuits. To each node of a 2D fully connected network a van der Pol oscillator is assigned. We then study the topological evolution of the network in dependence on environmental conditions. These conditions are modeled by considering the distance between the oscillators and some small frequency errors that are added. By carrying out computer simulations, we confirm that different types of complex networks are obtained depending on different environmental conditions.
{"title":"Producing Complex Networks Using Coupled Oscillatory Circuits with Evolutionary Connections","authors":"Y. Uwate, T. Ott, Y. Nishio","doi":"10.1109/ISCAS.2018.8351665","DOIUrl":"https://doi.org/10.1109/ISCAS.2018.8351665","url":null,"abstract":"In this study, we propose a method of generating complex networks by exploiting synchronization between coupled oscillatory circuits. To each node of a 2D fully connected network a van der Pol oscillator is assigned. We then study the topological evolution of the network in dependence on environmental conditions. These conditions are modeled by considering the distance between the oscillators and some small frequency errors that are added. By carrying out computer simulations, we confirm that different types of complex networks are obtained depending on different environmental conditions.","PeriodicalId":6569,"journal":{"name":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","volume":"287 1","pages":"1-5"},"PeriodicalIF":0.0,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86415974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-05-27DOI: 10.1109/ISCAS.2018.8351490
N. Papandreou, A. Sebastian, H. Pozidis
Various resistive memory technologies are finding application in the space of storage-class memory and emerging non-von Neumann computing systems. For both applications, a key enabling technology is the ability to store multiple resistance levels in a single memory cell. The resistance states of these devices are typically measured in the low-field regime, where the electrical transport can be assumed to be Ohmic. However, when biased at slightly higher voltages, they exhibit significantly nonlinear I-V characteristics. In this paper, we demonstrate how this field dependence of the resistance values can be exploited in various applications. We present simulation and experimental results where readout schemes based on the non-linear I-V behavior are used to enhance the readout margin and also to compensate for resistance drift.
{"title":"Exploiting the non-linear current-voltage characteristics for resistive memory readout","authors":"N. Papandreou, A. Sebastian, H. Pozidis","doi":"10.1109/ISCAS.2018.8351490","DOIUrl":"https://doi.org/10.1109/ISCAS.2018.8351490","url":null,"abstract":"Various resistive memory technologies are finding application in the space of storage-class memory and emerging non-von Neumann computing systems. For both applications, a key enabling technology is the ability to store multiple resistance levels in a single memory cell. The resistance states of these devices are typically measured in the low-field regime, where the electrical transport can be assumed to be Ohmic. However, when biased at slightly higher voltages, they exhibit significantly nonlinear I-V characteristics. In this paper, we demonstrate how this field dependence of the resistance values can be exploited in various applications. We present simulation and experimental results where readout schemes based on the non-linear I-V behavior are used to enhance the readout margin and also to compensate for resistance drift.","PeriodicalId":6569,"journal":{"name":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","volume":"2 1","pages":"1-5"},"PeriodicalIF":0.0,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87339908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}