Pub Date : 2023-06-06DOI: 10.1109/EuCNC/6GSummit58263.2023.10188348
P. Talmola, Juha Kalliovaara, T. Jokela, J. Auranen, Juhani Hallio, Juho Koskinen, Antti Arajärvi, H. Himmanen
Local wireless mobile networks using LTE or 5G technology have recently gained interest in many industrial applications. Using drones opens up possibilities for many novel services to be deployed in local networks. From the network point of view, having a mobile User Equipment (UE) in the air poses additional source of interference towards neighbouring local networks. This paper develops a calculation model for the interference and verifies the model with a field measurement campaign.
{"title":"Drone Interference in Geographically Limited Local Mobile TDD Networks","authors":"P. Talmola, Juha Kalliovaara, T. Jokela, J. Auranen, Juhani Hallio, Juho Koskinen, Antti Arajärvi, H. Himmanen","doi":"10.1109/EuCNC/6GSummit58263.2023.10188348","DOIUrl":"https://doi.org/10.1109/EuCNC/6GSummit58263.2023.10188348","url":null,"abstract":"Local wireless mobile networks using LTE or 5G technology have recently gained interest in many industrial applications. Using drones opens up possibilities for many novel services to be deployed in local networks. From the network point of view, having a mobile User Equipment (UE) in the air poses additional source of interference towards neighbouring local networks. This paper develops a calculation model for the interference and verifies the model with a field measurement campaign.","PeriodicalId":65870,"journal":{"name":"公共管理高层论坛","volume":"1 1","pages":"549-554"},"PeriodicalIF":0.0,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91220773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-06DOI: 10.1109/EuCNC/6GSummit58263.2023.10188241
G. Makropoulos, D. Fragkos, H. Koumaras, Jaka Cijan, Luka Korsic, R. Sušnik
Given the large amount of data usage and diverse business models in the current market, 5G and B5G networks are forecasted to manage and support a variety of new business solutions with respect to high-performance needs, while also allowing existing services to be enhanced and optimized. One effective way to accomplish this is by fully utilizing the network's openness and programmability in terms of both business and technical level coordination. A cornerstone to the above mentioned premise is the implementation of the Network Exposure Function (NEF) interfaces that are required in order for NEF to expose the standardized APIs. In this context, the paper presents the concept of network exposure via a simulation tool that enables application developers to experiment with the northbound APIs under a simulated and configurable environment. Moreover, the required software that interacts with the exposed APIs, namely the Network Application, is introduced and validated on top of the Internet of Things (IoT) and Machine to Machine (M2M) use case, which falls under the scope of the Factory of the Future and Industry 4.0 concept.
{"title":"5G and B5G NEF exposure capabilities towards an Industrial IoT use case","authors":"G. Makropoulos, D. Fragkos, H. Koumaras, Jaka Cijan, Luka Korsic, R. Sušnik","doi":"10.1109/EuCNC/6GSummit58263.2023.10188241","DOIUrl":"https://doi.org/10.1109/EuCNC/6GSummit58263.2023.10188241","url":null,"abstract":"Given the large amount of data usage and diverse business models in the current market, 5G and B5G networks are forecasted to manage and support a variety of new business solutions with respect to high-performance needs, while also allowing existing services to be enhanced and optimized. One effective way to accomplish this is by fully utilizing the network's openness and programmability in terms of both business and technical level coordination. A cornerstone to the above mentioned premise is the implementation of the Network Exposure Function (NEF) interfaces that are required in order for NEF to expose the standardized APIs. In this context, the paper presents the concept of network exposure via a simulation tool that enables application developers to experiment with the northbound APIs under a simulated and configurable environment. Moreover, the required software that interacts with the exposed APIs, namely the Network Application, is introduced and validated on top of the Internet of Things (IoT) and Machine to Machine (M2M) use case, which falls under the scope of the Factory of the Future and Industry 4.0 concept.","PeriodicalId":65870,"journal":{"name":"公共管理高层论坛","volume":"1 1","pages":"647-651"},"PeriodicalIF":0.0,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91018267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-06DOI: 10.1109/EuCNC/6GSummit58263.2023.10188285
J. A. Apolo, Othman Isam Younus, B. Ortega, V. Almenar, Zabih Ghassemlooy
This paper presents a proof-of-concept of a luminaire-free visible light communications (VLC) link with real-time tracking based on a single micro-electro-mechanical systems (MEMS) mirror. The optical signal is applied to a polymer optical fiber (POF) and the collimated light is launched to the free space channel. The experimental setup includes a camera-based motion detection system and a MEMS mirror. The detection of the object is accomplished through the implementation of a background subtraction algorithm that utilizes Gaussian mixture models, followed by blob analysis and the application of geometrical transformations. Besides, the proposed system offers immunity against the receiver movement since it utilizes a single MEMS mirror to redirect the beam light and maintain a line-of-sight between the transmitter and receiver. The system is evaluated based on the bit error rate (BER) performance for different modulation bandwidths and detector gains. The results demonstrate the capability of the system to achieve speeds up to 10 Mbps using a non-return-to-zero on-off keying (NRZ-OOK) modulation format.
{"title":"Real-Time MEMS-assisted Beam Steering for Visible Light Communication System","authors":"J. A. Apolo, Othman Isam Younus, B. Ortega, V. Almenar, Zabih Ghassemlooy","doi":"10.1109/EuCNC/6GSummit58263.2023.10188285","DOIUrl":"https://doi.org/10.1109/EuCNC/6GSummit58263.2023.10188285","url":null,"abstract":"This paper presents a proof-of-concept of a luminaire-free visible light communications (VLC) link with real-time tracking based on a single micro-electro-mechanical systems (MEMS) mirror. The optical signal is applied to a polymer optical fiber (POF) and the collimated light is launched to the free space channel. The experimental setup includes a camera-based motion detection system and a MEMS mirror. The detection of the object is accomplished through the implementation of a background subtraction algorithm that utilizes Gaussian mixture models, followed by blob analysis and the application of geometrical transformations. Besides, the proposed system offers immunity against the receiver movement since it utilizes a single MEMS mirror to redirect the beam light and maintain a line-of-sight between the transmitter and receiver. The system is evaluated based on the bit error rate (BER) performance for different modulation bandwidths and detector gains. The results demonstrate the capability of the system to achieve speeds up to 10 Mbps using a non-return-to-zero on-off keying (NRZ-OOK) modulation format.","PeriodicalId":65870,"journal":{"name":"公共管理高层论坛","volume":"68 6 1","pages":"329-334"},"PeriodicalIF":0.0,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83563918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Use of high frequency millimeter wave (mmWave) bands as the communication solution for a variety of new verticals has been of interest over the past several years. While the inherent range limitation of mmWave bands make them the perfect candidate for building localized private indoor networks, transmissions at these high frequencies are also susceptible to absorption losses. Hence, despite the availability of large bandwidths, there has been a relatively slow uptake of these bands for licensed services. To address this, we explore the feasibility of mmWave by experimentally validating the performance of closed-loop control applications with indoor mobility requirements over hybrid combinations of wired and 5G networks. Our experiments, executed over an indoor non-standalone (NSA) 5G deployment at 28GHz, revealed comparable performance of industrial robotics systems when communicating over 5G mmWave or Ethernet.
{"title":"Experiments with industrial robotics systems over an indoor 5G-NSA mmWave deployment","authors":"Vicknesan Ayadurai, Revathy Narayanan, Bengt-Erik Olsson","doi":"10.1109/EuCNC/6GSummit58263.2023.10188364","DOIUrl":"https://doi.org/10.1109/EuCNC/6GSummit58263.2023.10188364","url":null,"abstract":"Use of high frequency millimeter wave (mmWave) bands as the communication solution for a variety of new verticals has been of interest over the past several years. While the inherent range limitation of mmWave bands make them the perfect candidate for building localized private indoor networks, transmissions at these high frequencies are also susceptible to absorption losses. Hence, despite the availability of large bandwidths, there has been a relatively slow uptake of these bands for licensed services. To address this, we explore the feasibility of mmWave by experimentally validating the performance of closed-loop control applications with indoor mobility requirements over hybrid combinations of wired and 5G networks. Our experiments, executed over an indoor non-standalone (NSA) 5G deployment at 28GHz, revealed comparable performance of industrial robotics systems when communicating over 5G mmWave or Ethernet.","PeriodicalId":65870,"journal":{"name":"公共管理高层论坛","volume":"32 1","pages":"561-566"},"PeriodicalIF":0.0,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82937301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-06DOI: 10.1109/EuCNC/6GSummit58263.2023.10188380
Nina Slamnik-Kriještorac, W. Vandenberghe, Najmeh Masoudi-Dione, Stijn Van Staeyen, Xiangyu Lian, Rakshith Kusumakar, J. Márquez-Barja
As the shipping sector has been one of the major impact factors on economic growth over the past decades, its digitalization is expected to make unprecedented improvements in the safety and reliability of ship control, thereby ultimately enabling the autonomous operations of ships. The automated control of ships will not only mitigate the risks of human mistakes but will also improve the efficiency of operations by preventing unexpected delays while being environmentally sustainable. With the advent of the Internet of Ships (IoS) sector, well-known and mature concepts of the Internet of Things (IoT) are being applied to ships and ports, thereby making them more and more equipped with sensing and communication capabilities that set the ground for improved situational awareness and better decision-making. However, there are many challenges that need to be thoroughly studied, such as the communication between barges, ports, and services, as increased network latency and limitations on the bandwidth imposed by satellite communications could introduce significant risks for accident occurrence, ultimately affecting the overall automated operation/teleoperation of barges. In this paper, we present one of the first attempts to test the potential of 5G systems for automating barge operations, starting from teleoperation as an enabler of automation, thereby creating and validating a cellular-based automated barge control system in a real-life environment. In this system, the barge is sailing in a busy port area such as one of the Port of Antwerp Bruges, while being connected to the 5G network. We assess the quality of the 5G communication system and present and discuss our initial results on the enhancements that 5G could bring to teleoperation and automation of the barge control.
{"title":"On Assessing the Potential of 5G and beyond for Enhancing Automated Barge Control","authors":"Nina Slamnik-Kriještorac, W. Vandenberghe, Najmeh Masoudi-Dione, Stijn Van Staeyen, Xiangyu Lian, Rakshith Kusumakar, J. Márquez-Barja","doi":"10.1109/EuCNC/6GSummit58263.2023.10188380","DOIUrl":"https://doi.org/10.1109/EuCNC/6GSummit58263.2023.10188380","url":null,"abstract":"As the shipping sector has been one of the major impact factors on economic growth over the past decades, its digitalization is expected to make unprecedented improvements in the safety and reliability of ship control, thereby ultimately enabling the autonomous operations of ships. The automated control of ships will not only mitigate the risks of human mistakes but will also improve the efficiency of operations by preventing unexpected delays while being environmentally sustainable. With the advent of the Internet of Ships (IoS) sector, well-known and mature concepts of the Internet of Things (IoT) are being applied to ships and ports, thereby making them more and more equipped with sensing and communication capabilities that set the ground for improved situational awareness and better decision-making. However, there are many challenges that need to be thoroughly studied, such as the communication between barges, ports, and services, as increased network latency and limitations on the bandwidth imposed by satellite communications could introduce significant risks for accident occurrence, ultimately affecting the overall automated operation/teleoperation of barges. In this paper, we present one of the first attempts to test the potential of 5G systems for automating barge operations, starting from teleoperation as an enabler of automation, thereby creating and validating a cellular-based automated barge control system in a real-life environment. In this system, the barge is sailing in a busy port area such as one of the Port of Antwerp Bruges, while being connected to the 5G network. We assess the quality of the 5G communication system and present and discuss our initial results on the enhancements that 5G could bring to teleoperation and automation of the barge control.","PeriodicalId":65870,"journal":{"name":"公共管理高层论坛","volume":"51 1","pages":"693-698"},"PeriodicalIF":0.0,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77827923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-06DOI: 10.1109/EuCNC/6GSummit58263.2023.10188300
Juan Sebastian Camargo, Estefanía Coronado, Claudia Torres-Pérez, Javier Palomares, M. S. Siddiqui
In 5G Multi-access Edge Computing (MEC) is critical to bring computing and processing closer to users and enable ultra-low latency communications. When instantiating an application, selecting the MEC host that minimizes the latency but still fulfills the application's requirements is critical. However, as future 6G networks are expected to become even more geo-distributed, and handled by multiple levels of management entities, this labor becomes extremely difficult and Machine Learning (ML) is meant to be a native part of this process. In this context, we propose a Reinforcement Learning model that selects the best possible host to instantiate a MEC application, looking to minimize the end-to-end delay while fulfilling the application requirements. The proposed ML method uses Deep Q-Learning through several stages of environment state, taking an action and rewarding the model when it chooses correctly and penalizing it otherwise. By modifying the reward incentives, we have successfully trained a model that chooses the best host possible delay-wise on a multi-level orchestration scenario, while meeting the applications' requirements. The results obtained via simulation over a series of MEC scenarios show a success rate of up to 96%, optimizing the delay in the long term.
{"title":"DQN-based Intelligent Application Placement with Delay-Priority in Multi MEC Systems","authors":"Juan Sebastian Camargo, Estefanía Coronado, Claudia Torres-Pérez, Javier Palomares, M. S. Siddiqui","doi":"10.1109/EuCNC/6GSummit58263.2023.10188300","DOIUrl":"https://doi.org/10.1109/EuCNC/6GSummit58263.2023.10188300","url":null,"abstract":"In 5G Multi-access Edge Computing (MEC) is critical to bring computing and processing closer to users and enable ultra-low latency communications. When instantiating an application, selecting the MEC host that minimizes the latency but still fulfills the application's requirements is critical. However, as future 6G networks are expected to become even more geo-distributed, and handled by multiple levels of management entities, this labor becomes extremely difficult and Machine Learning (ML) is meant to be a native part of this process. In this context, we propose a Reinforcement Learning model that selects the best possible host to instantiate a MEC application, looking to minimize the end-to-end delay while fulfilling the application requirements. The proposed ML method uses Deep Q-Learning through several stages of environment state, taking an action and rewarding the model when it chooses correctly and penalizing it otherwise. By modifying the reward incentives, we have successfully trained a model that chooses the best host possible delay-wise on a multi-level orchestration scenario, while meeting the applications' requirements. The results obtained via simulation over a series of MEC scenarios show a success rate of up to 96%, optimizing the delay in the long term.","PeriodicalId":65870,"journal":{"name":"公共管理高层论坛","volume":"52 1","pages":"460-465"},"PeriodicalIF":0.0,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75951910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-06DOI: 10.1109/EuCNC/6GSummit58263.2023.10188251
Somayeh Bazin, K. Navaie
In the Received Signal Strength (RSS) based Indoor Positioning Systems (IPS), the position of a receiver is estimated by comparing its RSS values with a fingerprint. The fingerprint is a dataset including the measured RSS values at pre-planned Reference Points (RP) for a set of reference transmitters. For a given RPs' spatial distribution, the RSS values are however affected by the intrinsic temporal and spatial uncertainties in the indoor wireless channel, hence constraining the positioning accuracy. To address this issue, we propose an algorithm to predesign the RSS values at each RP using Reconfigurable Intelligent Surface (RIS) technology. In the proposed method, the RIS reflection coefficients are obtained to maximize the difference between the RSS values between the RPs. The simulation results confirm that even with a relatively small number of RIS elements, the proposed method significantly improves the IPS efficiency.
{"title":"Improving Indoor Positioning Accuracy Using RIS-based RSS Optimization","authors":"Somayeh Bazin, K. Navaie","doi":"10.1109/EuCNC/6GSummit58263.2023.10188251","DOIUrl":"https://doi.org/10.1109/EuCNC/6GSummit58263.2023.10188251","url":null,"abstract":"In the Received Signal Strength (RSS) based Indoor Positioning Systems (IPS), the position of a receiver is estimated by comparing its RSS values with a fingerprint. The fingerprint is a dataset including the measured RSS values at pre-planned Reference Points (RP) for a set of reference transmitters. For a given RPs' spatial distribution, the RSS values are however affected by the intrinsic temporal and spatial uncertainties in the indoor wireless channel, hence constraining the positioning accuracy. To address this issue, we propose an algorithm to predesign the RSS values at each RP using Reconfigurable Intelligent Surface (RIS) technology. In the proposed method, the RIS reflection coefficients are obtained to maximize the difference between the RSS values between the RPs. The simulation results confirm that even with a relatively small number of RIS elements, the proposed method significantly improves the IPS efficiency.","PeriodicalId":65870,"journal":{"name":"公共管理高层论坛","volume":"45 1","pages":"663-668"},"PeriodicalIF":0.0,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78889998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-06DOI: 10.1109/EuCNC/6GSummit58263.2023.10188308
Riccardo Campana, Carla Amatetti, A. Vanelli-Coralli
While 5G networks are already being deployed for commercial applications, Academia and industry are focusing their effort on the development and standardization of the next generations of mobile networks, i.e., 5G-Advance and 6G. Beyond 5G networks will revolutionize communications systems providing seamless connectivity, both in time and in space, to a unique ecosystem consisting of the convergence of the digital, physical, and human domains. In this scenario, Non-Terrestrial Networks (NTN) will play a crucial role by providing ubiquitous, secure, and resilient infrastructure fully integrated into the overall system. The NTN nodes will be organized into a Multi-Layer Multi-dimensional (ML-MD) architecture. This ML-MD network will rely on the interoperability of very different network elements, enabled by the disaggregation and virtualization of network components, their interconnection by open standard interfaces and orchestrated by data-driven network Artificial Intelligence. This paradigm, which has been standardized by the O-RAN Alliance, is now being implemented in Terrestrial Networks (TNs) but has not been fully addressed in NTN, yet. Therefore, this paper aims at exploring the possible implemen-tation of an NTN infrastructure based on the O-RAN approach. By starting with the review of the State of the Art of O-RAN in TNs and flying platforms, we identify a possible architecture solution for an O-RAN-based NTN system and we foresee the O-RAN implementation trends that will increase the NTN system efficiency.
{"title":"O-RAN based Non-Terrestrial Networks: Trends and Challenges","authors":"Riccardo Campana, Carla Amatetti, A. Vanelli-Coralli","doi":"10.1109/EuCNC/6GSummit58263.2023.10188308","DOIUrl":"https://doi.org/10.1109/EuCNC/6GSummit58263.2023.10188308","url":null,"abstract":"While 5G networks are already being deployed for commercial applications, Academia and industry are focusing their effort on the development and standardization of the next generations of mobile networks, i.e., 5G-Advance and 6G. Beyond 5G networks will revolutionize communications systems providing seamless connectivity, both in time and in space, to a unique ecosystem consisting of the convergence of the digital, physical, and human domains. In this scenario, Non-Terrestrial Networks (NTN) will play a crucial role by providing ubiquitous, secure, and resilient infrastructure fully integrated into the overall system. The NTN nodes will be organized into a Multi-Layer Multi-dimensional (ML-MD) architecture. This ML-MD network will rely on the interoperability of very different network elements, enabled by the disaggregation and virtualization of network components, their interconnection by open standard interfaces and orchestrated by data-driven network Artificial Intelligence. This paradigm, which has been standardized by the O-RAN Alliance, is now being implemented in Terrestrial Networks (TNs) but has not been fully addressed in NTN, yet. Therefore, this paper aims at exploring the possible implemen-tation of an NTN infrastructure based on the O-RAN approach. By starting with the review of the State of the Art of O-RAN in TNs and flying platforms, we identify a possible architecture solution for an O-RAN-based NTN system and we foresee the O-RAN implementation trends that will increase the NTN system efficiency.","PeriodicalId":65870,"journal":{"name":"公共管理高层论坛","volume":"130 1","pages":"264-269"},"PeriodicalIF":0.0,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74896789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-06DOI: 10.1109/EuCNC/6GSummit58263.2023.10188279
S. R. C. Magalhães, S. Bayhan, G. Heijenk
The pressing need for more energy-efficient networks requires understanding the trade-offs maintained by emerging technologies that are expected to help serve an increasing number of connected devices and meet their rate requirements. While spectral efficiency is typically a key performance indicator, hence used for optimal resource allocation, energy efficiency and power consumption of a wireless network should also be considered while deciding on the potential adoption of a new technology. In this paper, we focus on non-orthogonal multiple access (NOMA) as it is considered as a candidate radio access scheme due to its promise to improve spectral efficiency. With a goal of understanding whether joint transmission offers benefits over conventional NOMA, we investigate the performance of joint-transmission NOMA and NOMA considering three objectives: throughput maximization (SumRate), energy efficiency maximization (EE), and power minimization (minP). Different from the literature, we incorporate a power consumption model that accounts for the overhead introduced by successive interference cancellation that is necessary to distinguish the intended signal of a NOMA receiver from the interfering signals aimed for other users in the same cluster. After formulating the optimal power allocation problems, we present our solution steps to make the original problems convex for solving them optimally. Our numerical analysis shows that, for the studied two-cell scenario, joint-transmission offers a benefit only in terms of finding a feasible power allocation while NOMA fails in more cases irrespective of the considered objective. Additionally, our investigation of trade-offs between the investigated problems shows orders of magnitude difference in energy efficiency and throughput for small variations in power consumption.
{"title":"Power Allocation for Multi-Cell Non-Orthogonal Multiple Access Networks: Energy Efficiency vs. Throughput vs. Power Consumption","authors":"S. R. C. Magalhães, S. Bayhan, G. Heijenk","doi":"10.1109/EuCNC/6GSummit58263.2023.10188279","DOIUrl":"https://doi.org/10.1109/EuCNC/6GSummit58263.2023.10188279","url":null,"abstract":"The pressing need for more energy-efficient networks requires understanding the trade-offs maintained by emerging technologies that are expected to help serve an increasing number of connected devices and meet their rate requirements. While spectral efficiency is typically a key performance indicator, hence used for optimal resource allocation, energy efficiency and power consumption of a wireless network should also be considered while deciding on the potential adoption of a new technology. In this paper, we focus on non-orthogonal multiple access (NOMA) as it is considered as a candidate radio access scheme due to its promise to improve spectral efficiency. With a goal of understanding whether joint transmission offers benefits over conventional NOMA, we investigate the performance of joint-transmission NOMA and NOMA considering three objectives: throughput maximization (SumRate), energy efficiency maximization (EE), and power minimization (minP). Different from the literature, we incorporate a power consumption model that accounts for the overhead introduced by successive interference cancellation that is necessary to distinguish the intended signal of a NOMA receiver from the interfering signals aimed for other users in the same cluster. After formulating the optimal power allocation problems, we present our solution steps to make the original problems convex for solving them optimally. Our numerical analysis shows that, for the studied two-cell scenario, joint-transmission offers a benefit only in terms of finding a feasible power allocation while NOMA fails in more cases irrespective of the considered objective. Additionally, our investigation of trade-offs between the investigated problems shows orders of magnitude difference in energy efficiency and throughput for small variations in power consumption.","PeriodicalId":65870,"journal":{"name":"公共管理高层论坛","volume":"166 1","pages":"287-292"},"PeriodicalIF":0.0,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75140893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-06DOI: 10.1109/EuCNC/6GSummit58263.2023.10188261
Khanh Nam Nguyen, K. Takizawa
Deep learning is applied to implement base station switching in physical layer using imaging data for 60 GHz millimeter-wave communications where the received signal is susceptible to blockage. In particular, a predictive model is trained from video frames and received signal data. Accordingly, the video frames are used to predict received power two seconds ahead using three-dimensional convolutional neural networks and long short-term memories, followed by proactive switching decisions. The model can predict the future received power with root-mean-square errors under 2 dB. The proposed prediction-based proactive switching method surpasses the reactive approach in terms of connected duration, maintaining a stable connection in various blockage moving trajectories.
{"title":"Prediction-based Physical Layer Base Station Switching using Imaging Data","authors":"Khanh Nam Nguyen, K. Takizawa","doi":"10.1109/EuCNC/6GSummit58263.2023.10188261","DOIUrl":"https://doi.org/10.1109/EuCNC/6GSummit58263.2023.10188261","url":null,"abstract":"Deep learning is applied to implement base station switching in physical layer using imaging data for 60 GHz millimeter-wave communications where the received signal is susceptible to blockage. In particular, a predictive model is trained from video frames and received signal data. Accordingly, the video frames are used to predict received power two seconds ahead using three-dimensional convolutional neural networks and long short-term memories, followed by proactive switching decisions. The model can predict the future received power with root-mean-square errors under 2 dB. The proposed prediction-based proactive switching method surpasses the reactive approach in terms of connected duration, maintaining a stable connection in various blockage moving trajectories.","PeriodicalId":65870,"journal":{"name":"公共管理高层论坛","volume":"5 1","pages":"72-77"},"PeriodicalIF":0.0,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89828650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}