首页 > 最新文献

Journal of Sol-Gel Science and Technology最新文献

英文 中文
“Sol-gel auto combustion synthesis of Al3+-Gd3+ ions co-doped cobalt ferrite nanoparticles for nanoelectronics applications” "用于纳米电子应用的 Al3+-Gd3+ 离子共掺杂钴铁氧体纳米粒子的溶胶-凝胶自燃合成"
IF 2.3 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS Pub Date : 2024-10-05 DOI: 10.1007/s10971-024-06571-x
Vaibhav K. Raut, Sandeep B. Somvanshi, Elmuez A. Dawi, Chandrakant T. Birajdar

This study focused on investigating cobalt ferrite nanoparticles doped with trivalent Al3+ and Gd3+ ions across compositions ranging from CoFe2-2xAlxGdxO4 (x = 0.00, 0.02, 0.04, 0.06, 0.08). The nanoparticles were synthesized using the sol-gel auto-ignition method with citric acid as a chelating agent. Structural analysis via Rietveld-refined X-ray diffraction confirmed the formation of single-phase nanoparticles with a cubic spinel structure. Morphological examination through scanning electron microscopy revealed spherical-shaped grains. Elemental analysis using energy-dispersive X-ray analysis indicated consistent composition and high purity. Infrared spectra analysis verified the presence of characteristic modes typical of spinel ferrite structures. Magnetic properties assessed by vibrating sample magnetometry demonstrated soft magnetic behavior with lower coercivity. DC electrical resistivity measurements indicated a decrease in resistivity with increasing Al3+-Gd3+ co-doping, while dielectric studies showed enhanced properties in this regard. Overall, the findings suggest that these co-doped cobalt ferrite nanoparticles hold promise for applications in magneto-electronic devices.

Graphical Abstract

本研究重点研究了掺杂三价 Al3+ 和 Gd3+ 离子的钴铁氧体纳米粒子,其组成范围为 CoFe2-2xAlxGdxO4 (x = 0.00, 0.02, 0.04, 0.06, 0.08)。这些纳米粒子是以柠檬酸为螯合剂,采用溶胶-凝胶自燃法合成的。通过 Rietveld-refined X 射线衍射进行的结构分析证实,单相纳米粒子的形成具有立方尖晶石结构。通过扫描电子显微镜进行的形态学检查发现了球形颗粒。利用能量色散 X 射线分析法进行的元素分析表明,该物质成分一致,纯度很高。红外光谱分析证实了尖晶石铁氧体结构的典型特征模式。通过振动样品磁力计评估的磁性能表明,该材料具有较低矫顽力的软磁特性。直流电阻率测量结果表明,随着 Al3+-Gd3+ 共掺量的增加,电阻率有所下降,而介电研究则显示这方面的特性有所增强。总之,研究结果表明,这些共掺杂钴铁氧体纳米粒子有望应用于磁电子器件。
{"title":"“Sol-gel auto combustion synthesis of Al3+-Gd3+ ions co-doped cobalt ferrite nanoparticles for nanoelectronics applications”","authors":"Vaibhav K. Raut,&nbsp;Sandeep B. Somvanshi,&nbsp;Elmuez A. Dawi,&nbsp;Chandrakant T. Birajdar","doi":"10.1007/s10971-024-06571-x","DOIUrl":"10.1007/s10971-024-06571-x","url":null,"abstract":"<div><p>This study focused on investigating cobalt ferrite nanoparticles doped with trivalent Al<sup>3+</sup> and Gd<sup>3+</sup> ions across compositions ranging from CoFe<sub>2-2x</sub>Al<sub>x</sub>Gd<sub>x</sub>O<sub>4</sub> (x = 0.00, 0.02, 0.04, 0.06, 0.08). The nanoparticles were synthesized using the sol-gel auto-ignition method with citric acid as a chelating agent. Structural analysis via Rietveld-refined X-ray diffraction confirmed the formation of single-phase nanoparticles with a cubic spinel structure. Morphological examination through scanning electron microscopy revealed spherical-shaped grains. Elemental analysis using energy-dispersive X-ray analysis indicated consistent composition and high purity. Infrared spectra analysis verified the presence of characteristic modes typical of spinel ferrite structures. Magnetic properties assessed by vibrating sample magnetometry demonstrated soft magnetic behavior with lower coercivity. DC electrical resistivity measurements indicated a decrease in resistivity with increasing Al<sup>3+</sup>-Gd<sup>3+</sup> co-doping, while dielectric studies showed enhanced properties in this regard. Overall, the findings suggest that these co-doped cobalt ferrite nanoparticles hold promise for applications in magneto-electronic devices.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"112 3","pages":"738 - 751"},"PeriodicalIF":2.3,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis of ZnO nanostructure via CBD and solvothermal method using seed technique 利用种子技术,通过 CBD 和溶热法合成氧化锌纳米结构
IF 2.3 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS Pub Date : 2024-10-04 DOI: 10.1007/s10971-024-06557-9
Nongmaithem Century Luwang, Devendra Kumar Rana, M. K. Yadav, Himanshu Sharma, Arun Kumar, Sarvendra Kumar,  Surbhi

ZnO nanorods were synthesized by using the seeds technique. The seeds were synthesized by the low-cost synthesis technique, the Chemical Bath Deposition (CBD) method. Further, CBD and solvothermal methods used these seeds in the next deposition to coating. The XRD results confirm the formation of the ZnO hexagonal phase. FESEM high magnification images confirm the formation of hexagonal-shaped nanorods for Samples 1 and 3 and for Sample 2 mixed nanostructures of disk-like nanoparticles and nanorods were observed. Further, these nanorods were used as the catalytic material under the halogen lamp to study dye degradation. Samples 1 and 3 show degradation up to 55% and 68%, whereas Sample 3 showed a higher catalytic rate which degraded methyl orange 90% dye in 40 min. The enhancement in catalytic activity is explained by structural, morphological, and optical properties. The deposition using the seeds technique enhanced the degradation efficiency.

Graphical abstract

利用种子技术合成了氧化锌纳米棒。种子是通过低成本合成技术--化学沉积法(CBD)合成的。此外,CBD 法和溶热法还将这些种子用于下一步的沉积镀膜。XRD 结果证实了氧化锌六方相的形成。样品 1 和 3 的 FESEM 高倍率图像证实了六角形纳米棒的形成,而样品 2 则观察到了盘状纳米颗粒和纳米棒的混合纳米结构。此外,这些纳米棒被用作卤素灯下的催化材料来研究染料降解。样品 1 和 3 的降解率分别达到 55% 和 68%,而样品 3 的催化率更高,在 40 分钟内降解了 90% 的甲基橙染料。催化活性的提高可以从结构、形态和光学特性上得到解释。使用种子沉积技术提高了降解效率。
{"title":"Synthesis of ZnO nanostructure via CBD and solvothermal method using seed technique","authors":"Nongmaithem Century Luwang,&nbsp;Devendra Kumar Rana,&nbsp;M. K. Yadav,&nbsp;Himanshu Sharma,&nbsp;Arun Kumar,&nbsp;Sarvendra Kumar,&nbsp; Surbhi","doi":"10.1007/s10971-024-06557-9","DOIUrl":"10.1007/s10971-024-06557-9","url":null,"abstract":"<div><p>ZnO nanorods were synthesized by using the seeds technique. The seeds were synthesized by the low-cost synthesis technique, the Chemical Bath Deposition (CBD) method. Further, CBD and solvothermal methods used these seeds in the next deposition to coating. The XRD results confirm the formation of the ZnO hexagonal phase. FESEM high magnification images confirm the formation of hexagonal-shaped nanorods for Samples 1 and 3 and for Sample 2 mixed nanostructures of disk-like nanoparticles and nanorods were observed. Further, these nanorods were used as the catalytic material under the halogen lamp to study dye degradation. Samples 1 and 3 show degradation up to 55% and 68%, whereas Sample 3 showed a higher catalytic rate which degraded methyl orange 90% dye in 40 min. The enhancement in catalytic activity is explained by structural, morphological, and optical properties. The deposition using the seeds technique enhanced the degradation efficiency.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"112 3","pages":"728 - 737"},"PeriodicalIF":2.3,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comparative study of Nd and Sm doping on the structural, magnetic, and electromagnetic traits of Mg-Zn spinel nanoferrites 掺杂钕和钐对镁锌尖晶石纳米铁氧体的结构、磁性和电磁特性的比较研究
IF 2.3 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS Pub Date : 2024-09-30 DOI: 10.1007/s10971-024-06559-7
Anand Sharma, Rohit Jasrotia, Nisha Kumari, Jahangeer Ahmed, Saad M. Alshehri, Rajesh Kumar

We present here the synthesis of Mg0.5Zn0.5RxFe2-xO4 (x = 0.00, 0.05; R = Sm, Nd) spinel ferrite using the sol-gel auto-combustion (SGAC) scheme for examination of physical, electromagnetic, magnetic, and optical traits of Sm and Nd substituted Mg-Zn nanoferrites. The room temperature XRD patterns indicates cubic phase formation with the Fd3m space group. The size of crystallites goes from 29 to 19 nm by doping with Nd but, with the Sm doping, it decreases to 18 nm. FESEM pictures reveal the production of irregular grains with agglomerated morphology in all the undoped and doped nanoferrites. Based on a Fourier transform infrared study, it was shown that there were two distinct peaks at 525.55–529.41 cm−1 and 416.75–418.09 cm−1 representing the metal-oxygen bonds at octa and tetrahedral site locations, respectively. The M-H plots demonstrate a significant decline in the saturation magnetization with the neodymium and samarium substitution from 23.01 to 21.71 emu/g and to 11.63 emu/g, respectively. Low values of coercivity (10.03–58.82 Oe), retentivity (0.81–3.12 emu/g) and squareness ratio (0.037–0.268) confirms the superparamagnetic nature of prepared doped and undoped Mg-Zn nanoferrites and also suggests their potential use in solenoids and transformers applications. The electromagnetic examination of these Mg-Zn nanoferrites were reported within 1–10 GHz range, showing the high real permeability and permittivity with lower magnetic and dielectric losses. With the excellent electromagnetic characteristics, the prepared nanoferrites can be used as the substrate materials for antenna miniaturization application.

Graphical Abstract

我们在此介绍采用溶胶-凝胶自动燃烧(SGAC)方案合成 Mg0.5Zn0.5RxFe2-xO4 (x = 0.00, 0.05; R = Sm, Nd)尖晶石铁氧体的方法,以研究 Sm 和 Nd 取代的 Mg-Zn 纳米铁氧体的物理、电磁、磁性和光学特性。室温 X 射线衍射图显示,该物质形成了具有 Fd3m 空间群的立方相。掺入钕后,晶体尺寸从 29 纳米变为 19 纳米,但掺入钐后,晶体尺寸变为 18 纳米。FESEM 照片显示,在所有未掺杂和掺杂的纳米铁氧体中都产生了具有团聚形态的不规则晶粒。傅立叶变换红外研究表明,在 525.55-529.41 cm-1 和 416.75-418.09 cm-1 处有两个明显的峰值,分别代表八面体和四面体位置的金属氧键。M-H 图显示,随着钕和钐的替代,饱和磁化率明显下降,分别从 23.01 到 21.71 emu/g 和 11.63 emu/g。低矫顽力值(10.03-58.82 Oe)、保持率(0.81-3.12 emu/g)和方正比(0.037-0.268)证实了所制备的掺杂和未掺杂镁锌纳米铁氧体的超顺磁性,同时也表明了它们在电磁阀和变压器应用中的潜在用途。据报道,这些 Mg-Zn 纳米铁氧体的电磁测试结果在 1-10 GHz 范围内,显示出较高的实际磁导率和介电常数,以及较低的磁损耗和介电损耗。制备的纳米铁氧体具有优异的电磁特性,可用作天线微型化应用的基底材料。
{"title":"A comparative study of Nd and Sm doping on the structural, magnetic, and electromagnetic traits of Mg-Zn spinel nanoferrites","authors":"Anand Sharma,&nbsp;Rohit Jasrotia,&nbsp;Nisha Kumari,&nbsp;Jahangeer Ahmed,&nbsp;Saad M. Alshehri,&nbsp;Rajesh Kumar","doi":"10.1007/s10971-024-06559-7","DOIUrl":"10.1007/s10971-024-06559-7","url":null,"abstract":"<div><p>We present here the synthesis of Mg<sub>0.5</sub>Zn<sub>0.5</sub>R<sub><i>x</i></sub>Fe<sub>2-<i>x</i></sub>O<sub>4</sub> (<i>x</i> = 0.00, 0.05; R = Sm, Nd) spinel ferrite using the sol-gel auto-combustion (SGAC) scheme for examination of physical, electromagnetic, magnetic, and optical traits of Sm and Nd substituted Mg-Zn nanoferrites. The room temperature XRD patterns indicates cubic phase formation with the Fd3m space group. The size of crystallites goes from 29 to 19 nm by doping with Nd but, with the Sm doping, it decreases to 18 nm. FESEM pictures reveal the production of irregular grains with agglomerated morphology in all the undoped and doped nanoferrites. Based on a Fourier transform infrared study, it was shown that there were two distinct peaks at 525.55–529.41 cm<sup>−1</sup> and 416.75–418.09 cm<sup>−1</sup> representing the metal-oxygen bonds at octa and tetrahedral site locations, respectively. The M-H plots demonstrate a significant decline in the saturation magnetization with the neodymium and samarium substitution from 23.01 to 21.71 emu/g and to 11.63 emu/g, respectively. Low values of coercivity (10.03–58.82 Oe), retentivity (0.81–3.12 emu/g) and squareness ratio (0.037–0.268) confirms the superparamagnetic nature of prepared doped and undoped Mg-Zn nanoferrites and also suggests their potential use in solenoids and transformers applications. The electromagnetic examination of these Mg-Zn nanoferrites were reported within 1–10 GHz range, showing the high real permeability and permittivity with lower magnetic and dielectric losses. With the excellent electromagnetic characteristics, the prepared nanoferrites can be used as the substrate materials for antenna miniaturization application.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"112 3","pages":"715 - 727"},"PeriodicalIF":2.3,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication of a dual Z-scheme Ag3PO4/g-C3N4/Bi2MoO6 ternary nanocomposite for effective degradation of methylene blue dye 制备有效降解亚甲基蓝染料的双 Z 型 Ag3PO4/g-C3N4/Bi2MoO6 三元纳米复合材料
IF 2.3 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS Pub Date : 2024-09-27 DOI: 10.1007/s10971-024-06556-w
Akanksha Chauhan, Aftab Aslam Parwaz Khan, Anita Sudhaik, Rohit Kumar, Konstantin P. Katin, Savas Kaya, Pankaj Raizada, Pardeep Singh, Naved Azum, Khalid A. Alzahrani

Methylene blue is a recognized carcinogen with detrimental effects on both people and marine life. Henceforth, in this study, the photocatalytic activity of Ag3PO4/g-C3N4/Bi2MoO6 (AP/GCN/BMO) photocatalyst was investigated for the degradation of MB dye from an aqueous system. g-C3N4, BMO and AP photocatalysts bare photocatalysts were synthesized via thermal polycondensation, hydrothermal and co-precipitation methods, respectively. Similarly, binary (GCN/BMO) and ternary heterojunctions (AP/GCN/BMO) was constructed through in-situ hydrothermal and co-precipitation methods, respectively. Morphological and structural analysis validated close interaction amongst Ag3PO4, g-C3N4, and Bi2MoO6 photocatalysts. Furthermore, density functional theory simulations were employed to explore the structural and electronic properties of the bare (Ag3PO4, g-C3N4, and Bi2MoO6) photocatalysts. The photocatalytic degradation experiments revealed that AP/GCN/BMO exhibited highest adsorption and photocatalytic degradation efficacy of methylene blue (MB) dye pollutant as compared to other photocatalysts. The achieved MB dye degradation efficiency of dual Z-scheme AP/GCN/BMO ternary photocatalyst was approx. ~94% within 60 min under visible light exposure which was much greater than pristine and binary photocatalysts. This higher efficiency was accredited to dual Z-scheme type of charge transfer route which boosted photocarriers charge separation and transferal rate. Furthermore, through scavenging experiment, the confirmed reactive species in this type of charge transfer route were O2 and OH radicals that efficiently degraded MB dye pollutant. Additionally, the ternary photocatalyst demonstrated good stability and recyclability for up to five successive catalytic cycles with 81% degradation efficiency. The current work extends our understanding of photocatalytic degradation by providing novel strategies for pollutant degradation that successfully degrade contaminants. Also, it promotes the development of more efficient, environmentally friendly waste treatment methods that uses solar/light energy.

Graphical Abstract

亚甲基蓝是一种公认的致癌物质,对人类和海洋生物都有不利影响。因此,本研究研究了 Ag3PO4/g-C3N4/Bi2MoO6(AP/GCN/BMO)光催化剂降解水体系中甲基溴染料的光催化活性。g-C3N4、BMO 和 AP 光催化剂裸体分别通过热缩聚、水热和共沉淀方法合成。同样,通过原位水热法和共沉淀法分别构建了二元(GCN/BMO)和三元异质结(AP/GCN/BMO)。形态和结构分析验证了 Ag3PO4、g-C3N4 和 Bi2MoO6 光催化剂之间密切的相互作用。此外,还利用密度泛函理论模拟探讨了裸光催化剂(Ag3PO4、g-C3N4 和 Bi2MoO6)的结构和电子特性。光催化降解实验表明,与其他光催化剂相比,AP/GCN/BMO 对亚甲基蓝(MB)染料污染物的吸附和光催化降解效率最高。在可见光照射下,双 Z 型 AP/GCN/BMO 三元光催化剂在 60 分钟内的亚甲基蓝染料降解效率约为 94%,远高于原始光催化剂和二元光催化剂。这种更高的效率归功于双 Z 型电荷转移途径,它提高了光载体的电荷分离和转移率。此外,通过清除实验,确认了这种电荷转移途径中的活性物种为 -O2- 和 -OH 自由基,它们能有效降解甲基溴染料污染物。此外,该三元光催化剂具有良好的稳定性和可回收性,可连续催化五次,降解效率高达 81%。目前的研究工作扩展了我们对光催化降解的理解,提供了成功降解污染物的新型污染物降解策略。此外,它还促进了利用太阳能/光能开发更高效、更环保的废物处理方法。
{"title":"Fabrication of a dual Z-scheme Ag3PO4/g-C3N4/Bi2MoO6 ternary nanocomposite for effective degradation of methylene blue dye","authors":"Akanksha Chauhan,&nbsp;Aftab Aslam Parwaz Khan,&nbsp;Anita Sudhaik,&nbsp;Rohit Kumar,&nbsp;Konstantin P. Katin,&nbsp;Savas Kaya,&nbsp;Pankaj Raizada,&nbsp;Pardeep Singh,&nbsp;Naved Azum,&nbsp;Khalid A. Alzahrani","doi":"10.1007/s10971-024-06556-w","DOIUrl":"10.1007/s10971-024-06556-w","url":null,"abstract":"<div><p>Methylene blue is a recognized carcinogen with detrimental effects on both people and marine life. Henceforth, in this study, the photocatalytic activity of Ag<sub>3</sub>PO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub>/Bi<sub>2</sub>MoO<sub>6</sub> (AP/GCN/BMO) photocatalyst was investigated for the degradation of MB dye from an aqueous system. g-C<sub>3</sub>N<sub>4</sub>, BMO and AP photocatalysts bare photocatalysts were synthesized via thermal polycondensation, hydrothermal and co-precipitation methods, respectively. Similarly, binary (GCN/BMO) and ternary heterojunctions (AP/GCN/BMO) was constructed through in-situ hydrothermal and co-precipitation methods, respectively. Morphological and structural analysis validated close interaction amongst Ag<sub>3</sub>PO<sub>4</sub>, g-C<sub>3</sub>N<sub>4</sub>, and Bi<sub>2</sub>MoO<sub>6</sub> photocatalysts<sub>.</sub> Furthermore, density functional theory simulations were employed to explore the structural and electronic properties of the bare (Ag<sub>3</sub>PO<sub>4</sub>, g-C<sub>3</sub>N<sub>4</sub>, and Bi<sub>2</sub>MoO<sub>6</sub>) photocatalysts. The photocatalytic degradation experiments revealed that AP/GCN/BMO exhibited highest adsorption and photocatalytic degradation efficacy of methylene blue (MB) dye pollutant as compared to other photocatalysts. The achieved MB dye degradation efficiency of dual Z-scheme AP/GCN/BMO ternary photocatalyst was approx. ~94% within 60 min under visible light exposure which was much greater than pristine and binary photocatalysts. This higher efficiency was accredited to dual Z-scheme type of charge transfer route which boosted photocarriers charge separation and transferal rate. Furthermore, through scavenging experiment, the confirmed reactive species in this type of charge transfer route were <sup>•</sup>O<sub>2</sub><sup>−</sup> and <sup>•</sup>OH radicals that efficiently degraded MB dye pollutant. Additionally, the ternary photocatalyst demonstrated good stability and recyclability for up to five successive catalytic cycles with 81% degradation efficiency. The current work extends our understanding of photocatalytic degradation by providing novel strategies for pollutant degradation that successfully degrade contaminants. Also, it promotes the development of more efficient, environmentally friendly waste treatment methods that uses solar/light energy.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"112 3","pages":"688 - 702"},"PeriodicalIF":2.3,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural, optoelectronic, and antibacterial properties of CuxMn1-xS nanoparticles fabricated by co-precipitation approach 共沉淀法制备的 CuxMn1-xS 纳米粒子的结构、光电和抗菌特性
IF 2.3 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS Pub Date : 2024-09-27 DOI: 10.1007/s10971-024-06558-8
Devarshi Vyas, Ketan Parikh, Ravirajsinh Jadav, Vijay Dubey, Bharat Kataria, Suresh Ghotekar

Transition metal sulfides have garnered significant attention due to their distinctive properties, including electrical, optical, catalytic, and magnetic capabilities, and their potential for use in various applications. The present work discloses the fabrication of CuxMn1-xS (X = 0, 0.5, and 1) nanoparticles (NPs) using the co-precipitation method. The powder X-ray diffraction (PXRD) technique was utilized to characterize the synthesized sample, confirming that it exhibits cubic and hexagonal crystal structures. The Debye-Scherrer formula was applied to determine the average crystallite size of the nanoparticles, while the Williamson–Hall plot was employed to estimate microstrain and particle size. Energy-dispersive X-ray spectroscopy (EDAX) analysis revealed that Cu, Mn, and S were present in the nanoparticles without any impurities. Field Emission Scanning Electron Microscopy (FESEM) was used to determine the material’s morphology and effective grain size. UV-vis spectroscopy was employed to measure the optical properties of the sample. The optical bandgap, calculated from the Tauc plot, ranged from 1.6 to 2.8 eV, indicating the presence of photovoltaic properties in the sample. The dielectric constant and loss were observed to change for the sample in the frequency range of 10 KHz to 2 MHz at room temperature. The frequency-dependent electrical conductivity, impedance, and modulus spectroscopy of CuxMn1-xS were also analyzed. The dielectric study results showed that increasing frequency decreases the dielectric constant and dielectric loss. Additionally, MnS, CuS, and CuMnS NPs were screened for their antibacterial activity against gram-negative (-ve) pathogenic bacteria. Among them, CuMnS exhibited the maximum antibacterial activity against Salmonella typhi and Salmonella paratyphi A pathogens.

Graphical Abstract

过渡金属硫化物因其独特的性质(包括电学、光学、催化和磁学能力)及其在各种应用中的使用潜力而备受关注。本研究采用共沉淀法制备了 CuxMn1-xS(X = 0、0.5 和 1)纳米粒子(NPs)。粉末 X 射线衍射(PXRD)技术用于表征合成样品,证实其呈现立方和六方晶体结构。应用 Debye-Scherrer 公式确定了纳米颗粒的平均晶粒尺寸,而 Williamson-Hall 图则用于估算微应变和颗粒尺寸。能量色散 X 射线光谱(EDAX)分析表明,纳米粒子中含有铜、锰和硒,没有任何杂质。场发射扫描电子显微镜(FESEM)用于确定材料的形态和有效粒度。紫外可见光谱法用于测量样品的光学特性。根据陶克曲线图计算出的光带隙在 1.6 至 2.8 eV 之间,表明样品具有光伏特性。在室温下的 10 KHz 至 2 MHz 频率范围内,观察到样品的介电常数和损耗发生了变化。此外,还分析了 CuxMn1-xS 随频率变化的电导率、阻抗和模量光谱。介电研究结果表明,频率增加会降低介电常数和介电损耗。此外,还筛选了 MnS、CuS 和 CuMnS NPs 对革兰氏阴性(-ve)致病菌的抗菌活性。其中,CuMnS 对伤寒沙门氏菌和甲型副伤寒沙门氏菌的抗菌活性最高。
{"title":"Structural, optoelectronic, and antibacterial properties of CuxMn1-xS nanoparticles fabricated by co-precipitation approach","authors":"Devarshi Vyas,&nbsp;Ketan Parikh,&nbsp;Ravirajsinh Jadav,&nbsp;Vijay Dubey,&nbsp;Bharat Kataria,&nbsp;Suresh Ghotekar","doi":"10.1007/s10971-024-06558-8","DOIUrl":"10.1007/s10971-024-06558-8","url":null,"abstract":"<div><p>Transition metal sulfides have garnered significant attention due to their distinctive properties, including electrical, optical, catalytic, and magnetic capabilities, and their potential for use in various applications. The present work discloses the fabrication of Cu<sub>x</sub>Mn<sub>1-x</sub>S (X = 0, 0.5, and 1) nanoparticles (NPs) using the co-precipitation method. The powder X-ray diffraction (PXRD) technique was utilized to characterize the synthesized sample, confirming that it exhibits cubic and hexagonal crystal structures. The Debye-Scherrer formula was applied to determine the average crystallite size of the nanoparticles, while the Williamson–Hall plot was employed to estimate microstrain and particle size. Energy-dispersive X-ray spectroscopy (EDAX) analysis revealed that Cu, Mn, and S were present in the nanoparticles without any impurities. Field Emission Scanning Electron Microscopy (FESEM) was used to determine the material’s morphology and effective grain size. UV-vis spectroscopy was employed to measure the optical properties of the sample. The optical bandgap, calculated from the Tauc plot, ranged from 1.6 to 2.8 eV, indicating the presence of photovoltaic properties in the sample. The dielectric constant and loss were observed to change for the sample in the frequency range of 10 KHz to 2 MHz at room temperature. The frequency-dependent electrical conductivity, impedance, and modulus spectroscopy of Cu<sub>x</sub>Mn<sub>1-x</sub>S were also analyzed. The dielectric study results showed that increasing frequency decreases the dielectric constant and dielectric loss. Additionally, MnS, CuS, and CuMnS NPs were screened for their antibacterial activity against gram-negative (-ve) pathogenic bacteria. Among them, CuMnS exhibited the maximum antibacterial activity against <i>Salmonella typhi</i> and <i>Salmonella paratyphi</i> A pathogens.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"112 3","pages":"674 - 687"},"PeriodicalIF":2.3,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural, optical, and dielectric properties of sol-gel derived perovskite ZnSnO3 nanomaterials 溶胶-凝胶法获得的过氧化物 ZnSnO3 纳米材料的结构、光学和介电性能
IF 2.3 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS Pub Date : 2024-09-27 DOI: 10.1007/s10971-024-06550-2
D. M. Ibrahim, A. A. Gaber, A. E. Reda, D. A. Abdel Aziz, N. A. Ajiba

Zinc stannate (ZnSnO3) ceramic nanoparticles were synthesized via a sol-gel polymeric technique utilizing polyacrylic acid as a template polymer. The effect of pH during the synthesis process was investigated by preparing the ZnSnO3 nanoparticles at pH 3 and 8. The structural, molecular, morphological, optical, and dielectric properties of the synthesized ZnSnO3 nanoparticles were thoroughly characterized using FTIR, XRD, SEM, and TEM, with optical and dielectric measurements. FTIR and XRD analyses confirmed the phase purity of the synthesized ZnSnO3 nanoparticles, which exhibited an orthorhombic perovskite crystal structure. As observed in the SEM and TEM images, the ZnSnO3 nanoparticles prepared at pH 8 displayed a more defined cubic crystalline morphology, with an average particle size of 128 nm. The optical properties of the ZnSnO3 nanoparticles showed a high absorption edge in the UV region for both pH conditions. The calculated bandgap energies were 3.67 eV for pH 3 and 3.57 eV for pH 8. The dielectric properties at pH 3 and 8 exhibited a low dielectric constant (ε′ = 4 and 5, respectively) and very low dielectric loss (tan δ = 0.1 and 0.06, respectively) at 1 MHz. These exceptional optical and dielectric properties make the prepared ZnSnO3 nanoparticles a promising material for various applications.

Graphical Abstract

利用聚丙烯酸作为模板聚合物,通过溶胶-凝胶聚合物技术合成了锡酸锌(ZnSnO3)陶瓷纳米粒子。通过在 pH 值为 3 和 8 的条件下制备 ZnSnO3 纳米粒子,研究了合成过程中 pH 值的影响。利用傅立叶变换红外光谱、X 射线衍射、扫描电镜和 TEM 以及光学和介电测量,对合成的 ZnSnO3 纳米粒子的结构、分子、形态、光学和介电性质进行了全面的表征。傅立叶变换红外光谱和 X 射线衍射分析证实了合成的 ZnSnO3 纳米粒子的相纯度,其晶体结构为正交包晶。从 SEM 和 TEM 图像中可以观察到,在 pH 值为 8 时制备的 ZnSnO3 纳米粒子呈现出更清晰的立方晶体形态,平均粒径为 128 nm。在两种 pH 值条件下,ZnSnO3 纳米粒子的光学特性在紫外区都显示出较高的吸收边缘。pH 3 和 pH 8 条件下的介电性能显示出较低的介电常数(分别为 ε′ = 4 和 5)和在 1 MHz 频率下极低的介电损耗(分别为 tan δ = 0.1 和 0.06)。这些优异的光学和介电特性使制备的 ZnSnO3 纳米粒子成为一种具有多种应用前景的材料。
{"title":"Structural, optical, and dielectric properties of sol-gel derived perovskite ZnSnO3 nanomaterials","authors":"D. M. Ibrahim,&nbsp;A. A. Gaber,&nbsp;A. E. Reda,&nbsp;D. A. Abdel Aziz,&nbsp;N. A. Ajiba","doi":"10.1007/s10971-024-06550-2","DOIUrl":"10.1007/s10971-024-06550-2","url":null,"abstract":"<div><p>Zinc stannate (ZnSnO<sub>3</sub>) ceramic nanoparticles were synthesized via a sol-gel polymeric technique utilizing polyacrylic acid as a template polymer. The effect of pH during the synthesis process was investigated by preparing the ZnSnO<sub>3</sub> nanoparticles at pH 3 and 8. The structural, molecular, morphological, optical, and dielectric properties of the synthesized ZnSnO<sub>3</sub> nanoparticles were thoroughly characterized using FTIR, XRD, SEM, and TEM, with optical and dielectric measurements. FTIR and XRD analyses confirmed the phase purity of the synthesized ZnSnO<sub>3</sub> nanoparticles, which exhibited an orthorhombic perovskite crystal structure. As observed in the SEM and TEM images, the ZnSnO<sub>3</sub> nanoparticles prepared at pH 8 displayed a more defined cubic crystalline morphology, with an average particle size of 128 nm. The optical properties of the ZnSnO<sub>3</sub> nanoparticles showed a high absorption edge in the UV region for both pH conditions. The calculated bandgap energies were 3.67 eV for pH 3 and 3.57 eV for pH 8. The dielectric properties at pH 3 and 8 exhibited a low dielectric constant (ε′ = 4 and 5, respectively) and very low dielectric loss (tan δ = 0.1 and 0.06, respectively) at 1 MHz. These exceptional optical and dielectric properties make the prepared ZnSnO<sub>3</sub> nanoparticles a promising material for various applications.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"112 3","pages":"703 - 714"},"PeriodicalIF":2.3,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10971-024-06550-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of NiO concentration on the optical and biological properties of ZnO:NiO nanocomposites 氧化镍浓度对氧化锌:氧化镍纳米复合材料光学和生物特性的影响
IF 2.3 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS Pub Date : 2024-09-23 DOI: 10.1007/s10971-024-06552-0
Mayur Vala, M. J. Kaneria, K. D. Rakholiya, Tanvi Dudhrejiya, Nirali Udani, Sandhya Dodia, Gaurav Jadav, Pankaj Solanki, Dushyant Dhudhagara, Suhas Vyas, J. H. Markna, Bharat Kataria

ZnO:NiO semiconductor nanocomposites have garnered attention in numerous fields, not just antibacterial ones. The current study focuses on preparing pure ZnO (zinc oxide) and ZnO:NiO (nickel oxide) nanocomposites containing different amounts of (5% and 10%). These samples were synthesized utilizing an echo-friendly, cost-effective green approach that employs Phyllanthus emblica fruit extract as a reduction agent. The x-ray diffraction (XRD) peaks correspond to the hexagonal ZnO phase and the cubic NiO phase, with typical crystallite sizes of about 21 and 18 nm, respectively. Energy-dispersive X-ray spectroscopy (EDS) confirms the presence of Zn, Ni, and O constituents in the nanocomposites. The field emission scanning electron microscopy (FESEM) image showed the mixed shape of ZnO:NiO nanocomposites, which was a mix of almost spherical and hexagonal forms. A spectral investigation of UV–visible revealed a redshift in the absorption band edge of pristine ZnO nanoparticles with increasing NiO content, indicating a progressive decrease in the optical band gap. ZnO:NiO nanocomposites have lower band gap energy due to crystal lattice strain. Photoluminescence tests revealed high levels of Ni2+ ions in ZnO:NiO nanocomposites, which improved distortion centers and lattice surface defects in ZnO, resulting in lower emissions-related defects. The antibacterial activity was evaluated against four bacterial strains: Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Bacillus subtilis using the well diffusion method. ZnO:NiO nanocomposites demonstrate superior bactericidal activity compared to pure ZnO NPs against specific bacterial species due to their augmented surface area, reduced crystalline size, and elevated the formation of reactive oxygen species after following Ni2+ ion alteration.ZnO:NiO nanocomposites have the potential to serve as bactericidal agents that are resistant to harmful bacterial species due to their strong bactericidal activity. Antioxidant activity was assessed through DPPH free radical scavenging, superoxide anion scavenging, and ABTS radical cation scavenging assays. The results revealed that the ZnO nanocomposites exhibited strong antioxidant properties, indicating their potential to neutralize free radicals and reduce oxidative stress.

Graphical Abstract

ZnO:NiO 半导体纳米复合材料不仅在抗菌领域,在许多其他领域也备受关注。目前的研究重点是制备纯氧化锌(ZnO)和氧化锌:氧化镍(ZnO:NiO)纳米复合材料,其中氧化锌的含量(5% 和 10%)各不相同。这些样品的合成采用了一种对环境友好、成本效益高的绿色方法,即使用黄皮果提取物作为还原剂。X 射线衍射 (XRD) 峰对应于六方氧化锌相和立方氧化镍相,典型晶粒大小分别约为 21 纳米和 18 纳米。能量色散 X 射线光谱(EDS)证实纳米复合材料中含有 Zn、Ni 和 O 成分。场发射扫描电子显微镜(FESEM)图像显示了 ZnO:NiO 纳米复合材料的混合形状,几乎是球形和六边形的混合体。紫外-可见光谱分析显示,随着氧化镍含量的增加,原始氧化锌纳米粒子的吸收带边发生了红移,表明光带隙逐渐减小。由于晶格应变,氧化锌:氧化镍纳米复合材料具有较低的带隙能。光致发光测试表明,ZnO:NiO 纳米复合材料中含有大量 Ni2+ 离子,这改善了 ZnO 的畸变中心和晶格表面缺陷,从而降低了与发射有关的缺陷。对四种细菌菌株的抗菌活性进行了评估:采用井扩散法对大肠杆菌、金黄色葡萄球菌、铜绿假单胞菌和枯草杆菌四种细菌进行了抗菌活性评估。与纯氧化锌纳米粒子相比,氧化锌:氧化镍纳米复合材料对特定细菌具有更强的杀菌活性,这是因为它们的比表面积增大、晶体尺寸减小,并且在镍2+离子改变后活性氧的形成增加。抗氧化活性通过 DPPH 自由基清除、超氧阴离子清除和 ABTS 自由基阳离子清除实验进行评估。结果表明,氧化锌纳米复合材料具有很强的抗氧化性,表明它们具有中和自由基和减少氧化应激的潜力。
{"title":"Impact of NiO concentration on the optical and biological properties of ZnO:NiO nanocomposites","authors":"Mayur Vala,&nbsp;M. J. Kaneria,&nbsp;K. D. Rakholiya,&nbsp;Tanvi Dudhrejiya,&nbsp;Nirali Udani,&nbsp;Sandhya Dodia,&nbsp;Gaurav Jadav,&nbsp;Pankaj Solanki,&nbsp;Dushyant Dhudhagara,&nbsp;Suhas Vyas,&nbsp;J. H. Markna,&nbsp;Bharat Kataria","doi":"10.1007/s10971-024-06552-0","DOIUrl":"10.1007/s10971-024-06552-0","url":null,"abstract":"<div><p>ZnO:NiO semiconductor nanocomposites have garnered attention in numerous fields, not just antibacterial ones. The current study focuses on preparing pure ZnO (zinc oxide) and ZnO:NiO (nickel oxide) nanocomposites containing different amounts of (5% and 10%). These samples were synthesized utilizing an echo-friendly, cost-effective green approach that employs <i>Phyllanthus emblica</i> fruit extract as a reduction agent. The x-ray diffraction (XRD) peaks correspond to the hexagonal ZnO phase and the cubic NiO phase, with typical crystallite sizes of about 21 and 18 nm, respectively. Energy-dispersive X-ray spectroscopy (EDS) confirms the presence of Zn, Ni, and O constituents in the nanocomposites. The field emission scanning electron microscopy (FESEM) image showed the mixed shape of ZnO:NiO nanocomposites, which was a mix of almost spherical and hexagonal forms. A spectral investigation of UV–visible revealed a redshift in the absorption band edge of pristine ZnO nanoparticles with increasing NiO content, indicating a progressive decrease in the optical band gap. ZnO:NiO nanocomposites have lower band gap energy due to crystal lattice strain. Photoluminescence tests revealed high levels of Ni<sup>2+</sup> ions in ZnO:NiO nanocomposites, which improved distortion centers and lattice surface defects in ZnO, resulting in lower emissions-related defects. The antibacterial activity was evaluated against four bacterial strains: Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Bacillus subtilis using the well diffusion method. ZnO:NiO nanocomposites demonstrate superior bactericidal activity compared to pure ZnO NPs against specific bacterial species due to their augmented surface area, reduced crystalline size, and elevated the formation of reactive oxygen species after following Ni<sup>2+</sup> ion alteration.ZnO:NiO nanocomposites have the potential to serve as bactericidal agents that are resistant to harmful bacterial species due to their strong bactericidal activity. Antioxidant activity was assessed through DPPH free radical scavenging, superoxide anion scavenging, and ABTS radical cation scavenging assays. The results revealed that the ZnO nanocomposites exhibited strong antioxidant properties, indicating their potential to neutralize free radicals and reduce oxidative stress.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"112 3","pages":"662 - 673"},"PeriodicalIF":2.3,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancing surface safety: the role of sol-gel nanocoatings in the context of MIRIA European project 促进表面安全:溶胶凝胶纳米涂层在 MIRIA 欧洲项目中的作用
IF 2.3 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS Pub Date : 2024-09-23 DOI: 10.1007/s10971-024-06537-z
Alessia Bezzon, Luigi Aurisicchio, Evelyn Castlunger, Tommaso Ceccatelli Martellini, Dominik Czerwiński, Ilaria Favuzzi, Olgierd Jeremiasz, Angelo Meduri, Jiří Mosinger, Witold Kurylak, Sylvie Motellier, Henric Nedéus, Thierry Rabilloud, Edoardo Rossi, Patricia Royo, Petri Sorsa, Saara Söyrinki, Mario Tului

Among the challenges posed by the COVID-19 pandemic, significant efforts have been undertaken to develop antimicrobial/antiviral surfaces by exploiting coating solutions. In this article, we review the actions undertaken by the EU project MIRIA, the main one being the reduction of pathogen transmission on high-traffic surfaces in public and healthcare environments. The project implements several synergies from key antimicrobial/antiviral element selection to the grafting of complex-shaped surfaces. The focus is given to one of the project’s key strategies: the adoption of sol-gel technology, known for its efficiency in creating versatile, cost-effective coatings suitable for a wide range of substrates. The project rigorously tests the coatings in simulated environments, such as operating theatres, ensuring their effectiveness and safety. This includes comprehensive durability testing against environmental, chemical, and mechanical stresses, guaranteeing the coatings’ long-term functionality. MIRIA’s validation process encompasses antibacterial, antifungal, and antiviral testing in line with international standards, confirming their broad-spectrum pathogen resistance. Along with this overview, the impact of the initiative is elucidated, extending beyond healthcare, enhancing public health, creating safer living, and working environments, and reducing economic losses due to illness. To this, the MIRIA project is expected to significantly contribute to the European research and innovation in antimicrobial coatings, addressing challenges like scalability and efficacy against various pathogens. The emphasis on sustainable synthesis, including bio-based materials which align with ecological goals, positions MIRIA as a pivotal initiative in enhancing health safety standards and resilience across Europe.

Graphical Abstract

在 COVID-19 大流行带来的挑战中,人们已经做出了巨大努力,利用涂层解决方案开发抗菌/抗病毒表面。在本文中,我们将回顾欧盟 MIRIA 项目所采取的行动,其中最主要的是减少公共和医疗环境中高流量表面的病原体传播。从关键抗菌/抗病毒元素的选择到复杂形状表面的接枝,该项目实施了多项协同合作。该项目的重点是项目的关键战略之一:采用溶胶-凝胶技术,该技术以其高效率而著称,可制造出适用于各种基质的多功能、高成本效益的涂层。该项目在手术室等模拟环境中对涂层进行了严格测试,以确保其有效性和安全性。这包括针对环境、化学和机械应力的全面耐久性测试,以保证涂层的长期功能性。MIRIA 的验证过程包括符合国际标准的抗菌、抗真菌和抗病毒测试,以确认其广谱抗病原体能力。在进行概述的同时,还阐明了该计划的影响,它超越了医疗保健的范畴,增强了公共卫生,创造了更安全的生活和工作环境,并减少了因疾病造成的经济损失。为此,MIRIA 项目有望为欧洲抗菌涂层的研究和创新做出重大贡献,解决可扩展性和对各种病原体的功效等难题。MIRIA 项目强调可持续合成,包括符合生态目标的生物基材料,这使其成为提高全欧洲健康安全标准和复原力的关键举措。
{"title":"Advancing surface safety: the role of sol-gel nanocoatings in the context of MIRIA European project","authors":"Alessia Bezzon,&nbsp;Luigi Aurisicchio,&nbsp;Evelyn Castlunger,&nbsp;Tommaso Ceccatelli Martellini,&nbsp;Dominik Czerwiński,&nbsp;Ilaria Favuzzi,&nbsp;Olgierd Jeremiasz,&nbsp;Angelo Meduri,&nbsp;Jiří Mosinger,&nbsp;Witold Kurylak,&nbsp;Sylvie Motellier,&nbsp;Henric Nedéus,&nbsp;Thierry Rabilloud,&nbsp;Edoardo Rossi,&nbsp;Patricia Royo,&nbsp;Petri Sorsa,&nbsp;Saara Söyrinki,&nbsp;Mario Tului","doi":"10.1007/s10971-024-06537-z","DOIUrl":"10.1007/s10971-024-06537-z","url":null,"abstract":"<div><p>Among the challenges posed by the COVID-19 pandemic, significant efforts have been undertaken to develop antimicrobial/antiviral surfaces by exploiting coating solutions. In this article, we review the actions undertaken by the EU project MIRIA, the main one being the reduction of pathogen transmission on high-traffic surfaces in public and healthcare environments. The project implements several synergies from key antimicrobial/antiviral element selection to the grafting of complex-shaped surfaces. The focus is given to one of the project’s key strategies: the adoption of sol-gel technology, known for its efficiency in creating versatile, cost-effective coatings suitable for a wide range of substrates. The project rigorously tests the coatings in simulated environments, such as operating theatres, ensuring their effectiveness and safety. This includes comprehensive durability testing against environmental, chemical, and mechanical stresses, guaranteeing the coatings’ long-term functionality. MIRIA’s validation process encompasses antibacterial, antifungal, and antiviral testing in line with international standards, confirming their broad-spectrum pathogen resistance. Along with this overview, the impact of the initiative is elucidated, extending beyond healthcare, enhancing public health, creating safer living, and working environments, and reducing economic losses due to illness. To this, the MIRIA project is expected to significantly contribute to the European research and innovation in antimicrobial coatings, addressing challenges like scalability and efficacy against various pathogens. The emphasis on sustainable synthesis, including bio-based materials which align with ecological goals, positions MIRIA as a pivotal initiative in enhancing health safety standards and resilience across Europe.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"112 3","pages":"639 - 647"},"PeriodicalIF":2.3,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phase structure evolution and electric properties of PSN-PIN-PT ferroelectric ceramics near MPB PSN-PIN-PT 铁电陶瓷在 MPB 附近的相结构演化和电学特性
IF 2.3 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS Pub Date : 2024-09-21 DOI: 10.1007/s10971-024-06545-z
Menghao Wang, Pinyang Fang, Xiaoshuai Zuo, Feifei Guo, Wei Long, Xiaojuan Li, Zengzhe Xi

In order to explore the ceramic composition in the morphotropic phase boundary suitable for the high temperature electronic components, Pb(Sc1/2Nb1/2)O3-Pb(In1/2Nb1/2)O3-PbTiO3(PSN-PIN-PT) ceramics were designed and prepared by using the solid-state reaction method. Effect of the ceramic composition on the phase structure and electric properties of the PSN-PIN-PT ceramics were investigated. For 0.40PSN-(0.60-x)PIN-xPT(x = 0.360, 0.375, 0.390, 0.405), the increase in the PT could improve gradually Curie temperature Tc (262–292°C), but will reduce the phase transition TR-T (94–181 °C). Maximum of piezoelectric coefficient d33 (578 pC/N) could be obtained in the 0.40PSN-0.21PIN-0.39PT ceramics, together with large residual polarization Pr (~36.7 µC/cm2) and high coercive field Ec (~9.3 kV/cm). These performances make the PSN-PIN-PT ceramics have great potential applications in the high temperature device.

Graphical Abstract

为了探索适合高温电子元件的各向异性相界中的陶瓷成分,采用固态反应方法设计并制备了 Pb(Sc1/2Nb1/2)O3-Pb(In1/2Nb1/2)O3-PbTiO3(PSN-PIN-PT) 陶瓷。研究了陶瓷成分对 PSN-PIN-PT 陶瓷相结构和电性能的影响。对于 0.40PSN-(0.60-x)PIN-xPT(x = 0.360、0.375、0.390、0.405),PT 的增加会逐渐提高居里温度 Tc(262-292°C),但会降低相变温度 TR-T(94-181°C)。0.40PSN-0.21PIN-0.39PT 陶瓷可获得最大压电系数 d33(578 pC/N),同时还具有较大的残余极化 Pr(约 36.7 µC/cm2)和较高的矫顽力场 Ec(约 9.3 kV/cm)。这些性能使得 PSN-PIN-PT 陶瓷在高温器件中具有巨大的应用潜力。 图文摘要
{"title":"Phase structure evolution and electric properties of PSN-PIN-PT ferroelectric ceramics near MPB","authors":"Menghao Wang,&nbsp;Pinyang Fang,&nbsp;Xiaoshuai Zuo,&nbsp;Feifei Guo,&nbsp;Wei Long,&nbsp;Xiaojuan Li,&nbsp;Zengzhe Xi","doi":"10.1007/s10971-024-06545-z","DOIUrl":"10.1007/s10971-024-06545-z","url":null,"abstract":"<div><p>In order to explore the ceramic composition in the morphotropic phase boundary suitable for the high temperature electronic components, Pb(Sc<sub>1/2</sub>Nb<sub>1/2</sub>)O<sub>3</sub>-Pb(In<sub>1/2</sub>Nb<sub>1/2</sub>)O<sub>3</sub>-PbTiO<sub>3</sub>(PSN-PIN-PT) ceramics were designed and prepared by using the solid-state reaction method. Effect of the ceramic composition on the phase structure and electric properties of the PSN-PIN-PT ceramics were investigated. For 0.40PSN-(0.60-<i>x</i>)PIN-<i>x</i>PT(<i>x</i> = 0.360, 0.375, 0.390, 0.405), the increase in the PT could improve gradually Curie temperature <i>T</i><sub>c</sub> (262–292°C), but will reduce the phase transition <i>T</i><sub>R-T</sub> (94–181 °C). Maximum of piezoelectric coefficient <i>d</i><sub>33</sub> (578 pC/N) could be obtained in the 0.40PSN-0.21PIN-0.39PT ceramics, together with large residual polarization <i>P</i><sub>r</sub> (~36.7 µC/cm<sup>2</sup>) and high coercive field <i>E</i><sub>c</sub> (~9.3 kV/cm). These performances make the PSN-PIN-PT ceramics have great potential applications in the high temperature device.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"112 2","pages":"614 - 623"},"PeriodicalIF":2.3,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142540607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The impact of aluminum oxide deposition on the high-temperature resistance of silica aerogels 氧化铝沉积对二氧化硅气凝胶耐高温性的影响
IF 2.3 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS Pub Date : 2024-09-21 DOI: 10.1007/s10971-024-06547-x
Shuai Gao, Meixu Han, Jinwen Pan, Yang Zhong, Hongyi Jiang

Silica aerogel (SA) was synthesized through the sol-gel process followed by ambient pressure drying, with aluminum-deposited silica aerogel (ASA) subsequently produced via aluminum deposition using an AlCl3·6H2O hydrolysis solution. This study examined the impact of deposition time and calcination temperature on ASA’s characteristics. Compared to the non-aluminum-deposited SA, ASA with 12 h of deposition time (ASA-12h) showcased a significant increase in specific surface area, reaching 675m2 ∙ g−1 at room temperature. Post-calcination at 800 °C and 1000 °C resulted in specific surface areas of 613m2 ∙ g−1 and 265m2 ∙ g−1, respectively, markedly surpassing those of SA (240 m2∙g−1 at 800 °C and 16m2 ∙ g−1 at 1000 °C). The results demonstrate that during the aging process, the deposited aluminum is coated by the aging solution, enabling it to remain stable and distribute uniformly. This deposition not only increases the particle size but also enhances structural stability. Furthermore, the formation of new Si-O-Al bonds improves the thermal stability of the silicon dioxide lattices. These insights pave the way for the industrial production of aerogels that are resistant to high temperatures.

Graphical Abstract

通过溶胶-凝胶工艺合成了二氧化硅气凝胶(SA),然后进行常压干燥,随后使用 AlCl3-6H2O 水解溶液通过铝沉积制得铝沉积二氧化硅气凝胶(ASA)。本研究考察了沉积时间和煅烧温度对 ASA 特性的影响。与未沉积铝的硅酸钠相比,沉积时间为 12 小时的硅酸钠(ASA-12h)的比表面积显著增加,室温下达到 675m2 ∙ g-1。在 800 °C 和 1000 °C 煅烧后,比表面积分别达到 613m2 ∙ g-1 和 265m2 ∙ g-1,明显超过了 SA 的比表面积(800 °C 时为 240 m2∙g-1 ,1000 °C 时为 16m2 ∙ g-1)。结果表明,在老化过程中,沉积的铝被老化溶液包覆,使其保持稳定并均匀分布。这种沉积不仅增大了颗粒尺寸,还增强了结构稳定性。此外,新的 Si-O-Al 键的形成提高了二氧化硅晶格的热稳定性。这些见解为耐高温气凝胶的工业化生产铺平了道路。
{"title":"The impact of aluminum oxide deposition on the high-temperature resistance of silica aerogels","authors":"Shuai Gao,&nbsp;Meixu Han,&nbsp;Jinwen Pan,&nbsp;Yang Zhong,&nbsp;Hongyi Jiang","doi":"10.1007/s10971-024-06547-x","DOIUrl":"10.1007/s10971-024-06547-x","url":null,"abstract":"<div><p>Silica aerogel (SA) was synthesized through the sol-gel process followed by ambient pressure drying, with aluminum-deposited silica aerogel (ASA) subsequently produced via aluminum deposition using an AlCl<sub>3</sub>·6H<sub>2</sub>O hydrolysis solution. This study examined the impact of deposition time and calcination temperature on ASA’s characteristics. Compared to the non-aluminum-deposited SA, ASA with 12 h of deposition time (ASA-12h) showcased a significant increase in specific surface area, reaching 675m<sup>2</sup> ∙ g<sup>−1</sup> at room temperature. Post-calcination at 800 °C and 1000 °C resulted in specific surface areas of 613m<sup>2</sup> ∙ g<sup>−1</sup> and 265m<sup>2</sup> ∙ g<sup>−1</sup>, respectively, markedly surpassing those of SA (240 m<sup>2</sup>∙g<sup>−1</sup> at 800 °C and 16m<sup>2</sup> ∙ g<sup>−1</sup> at 1000 °C). The results demonstrate that during the aging process, the deposited aluminum is coated by the aging solution, enabling it to remain stable and distribute uniformly. This deposition not only increases the particle size but also enhances structural stability. Furthermore, the formation of new Si-O-Al bonds improves the thermal stability of the silicon dioxide lattices. These insights pave the way for the industrial production of aerogels that are resistant to high temperatures.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"112 2","pages":"624 - 637"},"PeriodicalIF":2.3,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142540643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Sol-Gel Science and Technology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1