Pub Date : 2024-11-09DOI: 10.1007/s10971-024-06602-7
N. Manohar Reddy, D. Kothandan, Poli Reddy V, Simhadri Raju Juvvala, M. Gnana Kiran, Kodanda Rama Rao Chebattina, Uma Chaithanya Pathem, Shaik Jaheer Basha, Thiriveedhi Narendrudu, A. Kalpana
To synthesize the rare earth orthoferrite ({LaFe}{O}_{3}) nanopowder, a perovskite, a sol-gel technique was employed. The resulting particles were characterized using SEM, XRD, and UV-visible absorption spectroscopy. The perovskite structure of ({LaFe}{O}_{3}) (with La having an ionic radius of 1.36 Å) exhibits internal deformation due to the large ionic radii of the elements occupying the A-site. This deformation affects several of its desirable properties. Notably, there is a reduction in lattice parameters and an increase in octahedral distortion. Deviations in the Raman modes can indicate spin-phonon coupling in ({LaFe}{O}_{3}) additionally, increased crystalline distortions can hinder the spin-lattice interactions, leading to adverse effects.The particles were found to be uniformly spherical, with an average size of 80 nm. The optical energy band gap of ({LaFe}{O}_{3}) at the nanoscale was measured to be 2.1 eV. This structure was further confirmed through optical absorbance and Raman spectroscopy measurements, aided by spin-phonon coupling. The optical characteristics exhibit intriguing variations that correlate with the expected photocatalytic activities. The photocatalytic activity of ({LaFe}{O}_{3}) nanoparticles was evaluated through the UV degradation of various organic dyes, including acid fuchsine (AF), methyl orange (MO), rhodamine B (RhB), and methylene blue (MB). Notably, the dyes underwent substantial photocatalytic degradation when exposed to visible light.
Graphical Abstract
{"title":"Collating the structural, vibrational, and photocatalysis properties of LaFeO3 rare-earth orthoferrite nanoparticles synthesized by the sol-gel method","authors":"N. Manohar Reddy, D. Kothandan, Poli Reddy V, Simhadri Raju Juvvala, M. Gnana Kiran, Kodanda Rama Rao Chebattina, Uma Chaithanya Pathem, Shaik Jaheer Basha, Thiriveedhi Narendrudu, A. Kalpana","doi":"10.1007/s10971-024-06602-7","DOIUrl":"10.1007/s10971-024-06602-7","url":null,"abstract":"<div><p>To synthesize the rare earth orthoferrite <span>({LaFe}{O}_{3})</span> nanopowder, a perovskite, a sol-gel technique was employed. The resulting particles were characterized using SEM, XRD, and UV-visible absorption spectroscopy. The perovskite structure of <span>({LaFe}{O}_{3})</span> (with La having an ionic radius of 1.36 Å) exhibits internal deformation due to the large ionic radii of the elements occupying the A-site. This deformation affects several of its desirable properties. Notably, there is a reduction in lattice parameters and an increase in octahedral distortion. Deviations in the Raman modes can indicate spin-phonon coupling in <span>({LaFe}{O}_{3})</span> additionally, increased crystalline distortions can hinder the spin-lattice interactions, leading to adverse effects.The particles were found to be uniformly spherical, with an average size of 80 nm. The optical energy band gap of <span>({LaFe}{O}_{3})</span> at the nanoscale was measured to be 2.1 eV. This structure was further confirmed through optical absorbance and Raman spectroscopy measurements, aided by spin-phonon coupling. The optical characteristics exhibit intriguing variations that correlate with the expected photocatalytic activities. The photocatalytic activity of <span>({LaFe}{O}_{3})</span> nanoparticles was evaluated through the UV degradation of various organic dyes, including acid fuchsine (AF), methyl orange (MO), rhodamine B (RhB), and methylene blue (MB). Notably, the dyes underwent substantial photocatalytic degradation when exposed to visible light.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"113 2","pages":"322 - 330"},"PeriodicalIF":2.3,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143108683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The current investigation presents a facile and cost-effective sol-gel approach for the synthesis of phase-pure multiferroic bismuth ferrite (BiFeO3) nanoparticles (BFO NPs) by using propylene glycol as a complexing agent, intended for use as a photocatalyst to efficiently degrade organic dyes in aqueous solutions under natural sunlight. Characterization techniques, including thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction (XRD), elucidated a plausible reaction pathway for the formation of phase-pure BFO NPs. Rietveld refinement of the XRD data, in conjunction with transmission electron microscopy (TEM) and Raman spectroscopy, confirmed the synthesis of single-phase BFO NPs at 400 °C, displaying a space group of R3c and an average crystallite size of 25 nm. UV–visible diffuse reflectance spectroscopy revealed an absorption cut-off wavelength near 590 nm, corresponding to a band gap of 2.08 eV, indicating the capability of BFO NPs to absorb visible light within the 400–590 nm range. BFO NPs have shown efficient and rapid photocatalytic degradation of methylene blue (MB) in acidic, neutral, and basic pH conditions under natural sunlight. This is attributed to the intrinsic ferroelectric and ferromagnetic ordering present in synthesized BFO NPs which facilitates the separation and migration of photoinduced charges through band bending phenomena at the interface.
Graphical Abstract
{"title":"Efficient and rapid sunlight-driven photocatalytic degradation of methylene blue dye using multiferroic BiFeO3 nanoparticles","authors":"Madhu Verma, Ajay Kumar, Vijay Kumar Thakur, Akanksha Maurya, Sachin Kumar, Saurabh Singh, Simant Kumar Srivastav","doi":"10.1007/s10971-024-06607-2","DOIUrl":"10.1007/s10971-024-06607-2","url":null,"abstract":"<div><p>The current investigation presents a facile and cost-effective sol-gel approach for the synthesis of phase-pure multiferroic bismuth ferrite (BiFeO<sub>3</sub>) nanoparticles (BFO NPs) by using propylene glycol as a complexing agent, intended for use as a photocatalyst to efficiently degrade organic dyes in aqueous solutions under natural sunlight. Characterization techniques, including thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction (XRD), elucidated a plausible reaction pathway for the formation of phase-pure BFO NPs. Rietveld refinement of the XRD data, in conjunction with transmission electron microscopy (TEM) and Raman spectroscopy, confirmed the synthesis of single-phase BFO NPs at 400 °C, displaying a space group of R3c and an average crystallite size of 25 nm. UV–visible diffuse reflectance spectroscopy revealed an absorption cut-off wavelength near 590 nm, corresponding to a band gap of 2.08 eV, indicating the capability of BFO NPs to absorb visible light within the 400–590 nm range. BFO NPs have shown efficient and rapid photocatalytic degradation of methylene blue (MB) in acidic, neutral, and basic pH conditions under natural sunlight. This is attributed to the intrinsic ferroelectric and ferromagnetic ordering present in synthesized BFO NPs which facilitates the separation and migration of photoinduced charges through band bending phenomena at the interface.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"113 2","pages":"356 - 373"},"PeriodicalIF":2.3,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143108468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-02DOI: 10.1007/s10971-024-06413-w
Wei Sun, Lu Yu, Jikai Su, Ruixiang Liu, Xuemei Yan, Dong Su, Pengyu Zhang, Xiaolei Li
Removal of Na+ is a very important step in the SiO2 aerogel preparation using water glass as precursor, which has a significant effect on the structure and properties of aerogel. In this study, three methods (Solution-crystallization, Water washing, and Ion exchange) were used to remove Na+ from the system and investigated the effects of different methods on the aerogel properties. The results show that all three aerogels have low bulk density (<0.075 g/cm3), low thermal conductivity (≤0.015 W/(m·K)), and well hydrophobicity (θ ≥ 137°). Among them, Na+ exists in the sol in the sodium removal process by water washing and effects the uniformity of gel network. The samples for sodium removal by solution-crystallization show better hydrophobicity and poorer high-temperature stability, which is related to the presence of abundant hydrophobic groups (Si-OC2H5) on the gel surface. The microstructure and the pore size distribution of the aerogels prepared by ion exchange are uniform, which makes them have optimal comprehensive performance. The mechanism of solution-crystallization effect in the process of sodium removal was explored, providing a workable idea for low-cost preparation of SiO2 aerogel.
{"title":"Preparation of SiO2 aerogel by water glass: effect of different sodium removal methods on aerogel properties","authors":"Wei Sun, Lu Yu, Jikai Su, Ruixiang Liu, Xuemei Yan, Dong Su, Pengyu Zhang, Xiaolei Li","doi":"10.1007/s10971-024-06413-w","DOIUrl":"10.1007/s10971-024-06413-w","url":null,"abstract":"<div><p>Removal of Na<sup>+</sup> is a very important step in the SiO<sub>2</sub> aerogel preparation using water glass as precursor, which has a significant effect on the structure and properties of aerogel. In this study, three methods (Solution-crystallization, Water washing, and Ion exchange) were used to remove Na<sup>+</sup> from the system and investigated the effects of different methods on the aerogel properties. The results show that all three aerogels have low bulk density (<0.075 g/cm<sup>3</sup>), low thermal conductivity (≤0.015 W/(m·K)), and well hydrophobicity (<i>θ</i> ≥ 137°). Among them, Na<sup>+</sup> exists in the sol in the sodium removal process by water washing and effects the uniformity of gel network. The samples for sodium removal by solution-crystallization show better hydrophobicity and poorer high-temperature stability, which is related to the presence of abundant hydrophobic groups (Si-OC<sub>2</sub>H<sub>5</sub>) on the gel surface. The microstructure and the pore size distribution of the aerogels prepared by ion exchange are uniform, which makes them have optimal comprehensive performance. The mechanism of solution-crystallization effect in the process of sodium removal was explored, providing a workable idea for low-cost preparation of SiO<sub>2</sub> aerogel.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"113 1","pages":"274 - 284"},"PeriodicalIF":2.3,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142940988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-02DOI: 10.1007/s10971-024-06589-1
Nesrine Koriche, Moussa Abbas, Mohamed Trari
One of the most striking features of molybdenum oxide is the versatility of its catalytic properties, which are determined by the valence states of molybdenum and its coordination. It may be anticipated that MoO3 surface must contain catalytic sites which are active in different types of elementary steps. MoO3 was successfully synthesized by hydrothermal route at 400 °C, acquiring n-type conduction, due to oxygen deficiency. The single phase, elucidated by X-ray diffraction, crystallizes in an orthorhombic unit cell (Space Group (SG) Pbnm, N° 62) with a crystallite size of 12 nm. MoO3 is a direct band gap semiconductor with a forbidden band value of 2.93 eV where the electrical conduction occurs by low polaron hopping between mixed valences Mo+6/+5 with an activation energy of 0.14 eV. The thermo-power indicates n-type conduction, and confirmed by the capacitance-potential measurement; the latter gives an electrons density of 1.87 × 1020/cm3and a mobility of 1.77 × 10−6 m2/V.s. The flat band potential Vfb (0.11 VSCE) is determined from the capacitance measurement. The physical and chemical characterizations are correlated for the construction of the potential diagram in order to assess the photo electrochemical properties of MoO3 for the oxygen evolution. The valence band, is located above the O2/H2O potential ( ~ 1.3 VSCE), allowing O2 evolution upon visible light and the oxide is photocathodically protected against corrosion. An evolution rate of 0.13 mL/(mg. h) is obtained within 20 min. at optimal conditions (100 mg of catalyst and 50 °C).
{"title":"Synthesis and characterization of MoO3: application to the photo production of oxygen under visible light","authors":"Nesrine Koriche, Moussa Abbas, Mohamed Trari","doi":"10.1007/s10971-024-06589-1","DOIUrl":"10.1007/s10971-024-06589-1","url":null,"abstract":"<p>One of the most striking features of molybdenum oxide is the versatility of its catalytic properties, which are determined by the valence states of molybdenum and its coordination. It may be anticipated that MoO<sub>3</sub> surface must contain catalytic sites which are active in different types of elementary steps. MoO<sub>3</sub> was successfully synthesized by hydrothermal route at 400 °C, acquiring <i>n</i>-type conduction, due to oxygen deficiency. The single phase, elucidated by X-ray diffraction, crystallizes in an orthorhombic unit cell (Space Group (SG) Pbnm, N° 62) with a crystallite size of 12 nm. MoO<sub>3</sub> is a direct band gap semiconductor with a forbidden band value of 2.93 eV where the electrical conduction occurs by low polaron hopping between mixed valences Mo<sup>+6/+5</sup> with an activation energy of 0.14 eV. The thermo-power indicates <i>n</i>-type conduction, and confirmed by the capacitance-potential measurement; the latter gives an electrons density of 1.87 × 10<sup>20</sup>/cm<sup>3</sup>and a mobility of 1.77 × 10<sup>−6</sup> m<sup>2</sup>/V.s. The flat band potential V<sub>fb</sub> (0.11 V<sub><i>SCE</i></sub>) is determined from the capacitance measurement. The physical and chemical characterizations are correlated for the construction of the potential diagram in order to assess the photo electrochemical properties of MoO<sub>3</sub> for the oxygen evolution. The valence band, is located above the O<sub>2</sub>/H<sub>2</sub>O potential ( ~ 1.3 V<sub>SCE</sub>), allowing O<sub>2</sub> evolution upon visible light and the oxide is photocathodically protected against corrosion. An evolution rate of 0.13 mL/(mg. h) is obtained within 20 min. at optimal conditions (100 mg of catalyst and 50 °C).</p>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"113 1","pages":"266 - 273"},"PeriodicalIF":2.3,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142940987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1007/s10971-024-06604-5
Anjali Saini, Harshvardhan Negi, Sanjay K. Srivastava, Prathap Pathi, Rimjhim Yadav, Mrinal Dutta
Monodisperse silica of sizes from 0.67 µm to 3.2 µm was synthesized by a low-cost semi-batch technique free from the use of any stabilizer, porogen or surfactant. The effect of precursor (tetraethyl orthosilicate), hydrolyzing agent and catalyst concentration variation on the size, morphology, size distribution and optical properties of silica particles was studied. TEM observation and N2 adsorption-desorption studies showed the existence of a thin porous shell layer covering the outer surface of these particles. Absorption in the UV-Vis range confirmed that E’ and oxygen-deficiency centers (ODCs) prevailed. The observed broad photoluminescence including the UV, blue, green and red regions of the spectrum were attributed to the presence of ODCs, self-trapped excitons, hydrogen-related defects and non-bridging-oxygen hole centers respectively. A two-photon guided relaxation of free exciton was found to be a prominent cause of observed luminescence.
{"title":"Tailoring the morphological and optical properties of monodisperse silica","authors":"Anjali Saini, Harshvardhan Negi, Sanjay K. Srivastava, Prathap Pathi, Rimjhim Yadav, Mrinal Dutta","doi":"10.1007/s10971-024-06604-5","DOIUrl":"10.1007/s10971-024-06604-5","url":null,"abstract":"<div><p>Monodisperse silica of sizes from 0.67 µm to 3.2 µm was synthesized by a low-cost semi-batch technique free from the use of any stabilizer, porogen or surfactant. The effect of precursor (tetraethyl orthosilicate), hydrolyzing agent and catalyst concentration variation on the size, morphology, size distribution and optical properties of silica particles was studied. TEM observation and N<sub>2</sub> adsorption-desorption studies showed the existence of a thin porous shell layer covering the outer surface of these particles. Absorption in the UV-Vis range confirmed that E’ and oxygen-deficiency centers (ODCs) prevailed. The observed broad photoluminescence including the UV, blue, green and red regions of the spectrum were attributed to the presence of ODCs, self-trapped excitons, hydrogen-related defects and non-bridging-oxygen hole centers respectively. A two-photon guided relaxation of free exciton was found to be a prominent cause of observed luminescence.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"113 1","pages":"252 - 265"},"PeriodicalIF":2.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142940682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-31DOI: 10.1007/s10971-024-06594-4
Xueyun Zhou, Jun Wang, Dongsheng Yao
Ferrite has been extensively studied due to its wide range of applications. In present work, Li0.4-0.5xZn0.2Mn0.1Mgx-0.1Fe2.4-0.5xO4 (x = 0.1, 0.15, 0.2, 0.25, 0.3) were synthesized by sol-gel auto-combustion method. X-ray diffraction and infrared spectroscopy confirmed the formation of a cubic spinel structure. The lattice constant was found to increase with higher x values, while density, grain size and microstrain decreased correspondingly. The saturation magnetization and coercivity showed slight decreases after Mg doping, whereas the initial permeability slightly increased. The Curie temperature declined from 433 °C at x = 0.1 to 395 °C at x = 0.3. Mg doping also reduced the optimal matching thickness of microwave-absorbing materials to 3 mm. Mg-LiZnMn absorber is lighter in weight than LiZnMn. Notably, the sample with x = 0.15 exhibited excellent absorption characteristics from 8.2 GHz to 13.1 GHz, with a reflection loss (RL) of −32 dB. These findings suggest that an appropriate concentration of Mg doping can enhance the impedance matching of the materials, thereby improving their microwave absorption performance.
Graphical Abstract
Adding Mg in LiZnMn ferries can improves the initial permeability (μi) and microwave absorption performance.
{"title":"Microwave absorption and magnetic properties of LiZnMn ferrites doped with Mg","authors":"Xueyun Zhou, Jun Wang, Dongsheng Yao","doi":"10.1007/s10971-024-06594-4","DOIUrl":"10.1007/s10971-024-06594-4","url":null,"abstract":"<div><p>Ferrite has been extensively studied due to its wide range of applications. In present work, Li<sub>0.4-0.5<i>x</i></sub>Zn<sub>0.2</sub>Mn<sub>0.1</sub>Mg<sub><i>x</i>-0.1</sub>Fe<sub>2.4-0.5<i>x</i></sub>O<sub>4</sub> (<i>x</i> = 0.1, 0.15, 0.2, 0.25, 0.3) were synthesized by sol-gel auto-combustion method. X-ray diffraction and infrared spectroscopy confirmed the formation of a cubic spinel structure. The lattice constant was found to increase with higher <i>x</i> values, while density, grain size and microstrain decreased correspondingly. The saturation magnetization and coercivity showed slight decreases after Mg doping, whereas the initial permeability slightly increased. The Curie temperature declined from 433 °C at <i>x</i> = 0.1 to 395 °C at <i>x</i> = 0.3. Mg doping also reduced the optimal matching thickness of microwave-absorbing materials to 3 mm. Mg-LiZnMn absorber is lighter in weight than LiZnMn. Notably, the sample with <i>x</i> = 0.15 exhibited excellent absorption characteristics from 8.2 GHz to 13.1 GHz, with a reflection loss (<i>RL</i>) of −32 dB. These findings suggest that an appropriate concentration of Mg doping can enhance the impedance matching of the materials, thereby improving their microwave absorption performance.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div><div><p>Adding Mg in LiZnMn ferries can improves the initial permeability (μ<sub>i</sub>) and microwave absorption performance.</p></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"113 1","pages":"243 - 251"},"PeriodicalIF":2.3,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142941241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-30DOI: 10.1007/s10971-024-06598-0
Ramzi Dhahri, Majdi Benamara, Souhir Bouzidi, Sana Ben Moussa, Abdullah Yahya Abdullah Alzahrani, Kais Iben Nassar, Nassim Zahmouli, Elkenany Brens Elkenany, A. M. Al-Syadi
This paper presents a novel study on the microstructure and electrical properties of gadolinium (Gd) doped maghemite (γ-Fe₂O₃) nanoparticles, emphasizing their significance for advanced applications in efficient materials. X-ray diffraction analysis confirmed that both pure and doped samples crystallized in a cubic structure (P4332 space group) with high purity. Gd doping significantly increased crystallite size and altered particle morphology, as shown by transmission electron microscopy (TEM), which revealed larger nanoparticles with cubic shapes. Thermal analysis (TGA and DTG) indicated that higher Gd concentrations enhanced thermal instability, affecting structural integrity. FTIR spectra showed shifts in Fe-O bond vibrations, suggesting lattice distortions and increased disorder. BET measurements indicated that higher Gd doping led to greater mesoporosity and surface area, countering expectations of densification. Electrical conductivity and impedance studies revealed two distinct regions: a constant conductivity at low frequencies and an exponential increase at high frequencies, attributed to small polaron hopping. Activation energy values below 200 meV support this mechanism. Gd doping decreased overall conductivity due to disrupted atomic arrangements, increased electron scattering, and modifications in the electronic band structure. Complex impedance spectroscopy illustrated higher real impedance values for doped samples, with increased Gd concentration leading to enhanced impedance. These findings elucidate the impact of Gd on the electrical properties of maghemite nanoparticles and highlight their importance in meeting the growing demands for highly efficient technologies in energy storage and electronic devices.
{"title":"Effect of Gd doping on the microstructure and electrical characteristics of Maghemite (γ-Fe₂O₃) ceramics","authors":"Ramzi Dhahri, Majdi Benamara, Souhir Bouzidi, Sana Ben Moussa, Abdullah Yahya Abdullah Alzahrani, Kais Iben Nassar, Nassim Zahmouli, Elkenany Brens Elkenany, A. M. Al-Syadi","doi":"10.1007/s10971-024-06598-0","DOIUrl":"10.1007/s10971-024-06598-0","url":null,"abstract":"<div><p>This paper presents a novel study on the microstructure and electrical properties of gadolinium (Gd) doped maghemite (γ-Fe₂O₃) nanoparticles, emphasizing their significance for advanced applications in efficient materials. X-ray diffraction analysis confirmed that both pure and doped samples crystallized in a cubic structure (P4<sub>3</sub>32 space group) with high purity. Gd doping significantly increased crystallite size and altered particle morphology, as shown by transmission electron microscopy (TEM), which revealed larger nanoparticles with cubic shapes. Thermal analysis (TGA and DTG) indicated that higher Gd concentrations enhanced thermal instability, affecting structural integrity. FTIR spectra showed shifts in Fe-O bond vibrations, suggesting lattice distortions and increased disorder. BET measurements indicated that higher Gd doping led to greater mesoporosity and surface area, countering expectations of densification. Electrical conductivity and impedance studies revealed two distinct regions: a constant conductivity at low frequencies and an exponential increase at high frequencies, attributed to small polaron hopping. Activation energy values below 200 meV support this mechanism. Gd doping decreased overall conductivity due to disrupted atomic arrangements, increased electron scattering, and modifications in the electronic band structure. Complex impedance spectroscopy illustrated higher real impedance values for doped samples, with increased Gd concentration leading to enhanced impedance. These findings elucidate the impact of Gd on the electrical properties of maghemite nanoparticles and highlight their importance in meeting the growing demands for highly efficient technologies in energy storage and electronic devices.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"113 1","pages":"225 - 242"},"PeriodicalIF":2.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10971-024-06598-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142941237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1007/s10971-024-06591-7
Shahroz Saleem, Awais Khalid, Zaid M. Aldhafeeri, Thamer Alomayri, Arshad Ali, Abdul Jabbar, M. Yasmin Begum, Geetha Kandasamy
A sol-gel auto-combustion was used to prepare both pure and Zn-doped CuO NPs. The effect of Zn2+ on the electrical properties was investigated for use in optoelectronic device applications. The XRD analysis exhibited the synthesized CuO has a single monoclinic phase with a ZnO secondary phase. SEM micrographs show the spherical and cubic structure of the pure and Zn-doped CuO NPs, respectively. The average crystalline size, lattice constants, dislocation density, and microstrain were measured in the range of 25.23–21.18 nm, 7.893–7.745 A°, 1.57–2.22 × 1015 m−2 and −3.55 × 10−4× to –4.34 × 10−4, respectively. The Raman results revealed that sharper and stronger peaks were detected which also shifted to higher wavenumbers with declining particle size which are well matched to XRD results and revealed the pureness of the samples. The band gap was estimated with Tauc’s equation, and the findings showed that the addition of Zn2+ ions increased the band gap’s energy from 1.47 eV to 1.62 eV. To ascertain the electrical characteristics of produced nanoparticles, electrical characteristic investigations were carried out. From the consequences, it has been analyzed that electrical resistivity enhanced from 9.12 × 103 to 4.84 × 104 Ω cm with the addition of Zn in CuO. Based on the obtained consequences, it can be predicted that the modified electrical and optical properties of the prepared CuO nanoparticles can make them a potential candidate for optoelectronic applications, if control the generation of secondary phase, band gap enhancement, and generation of oxygen vacancies, because these factor influences the charge carrier’s mobility.
{"title":"A comparative analysis of optical and electrical properties of pure CuO and Zn doped CuO nanoparticles for optoelectronic device applications","authors":"Shahroz Saleem, Awais Khalid, Zaid M. Aldhafeeri, Thamer Alomayri, Arshad Ali, Abdul Jabbar, M. Yasmin Begum, Geetha Kandasamy","doi":"10.1007/s10971-024-06591-7","DOIUrl":"10.1007/s10971-024-06591-7","url":null,"abstract":"<div><p>A sol-gel auto-combustion was used to prepare both pure and Zn-doped CuO NPs. The effect of Zn<sup>2+</sup> on the electrical properties was investigated for use in optoelectronic device applications. The XRD analysis exhibited the synthesized CuO has a single monoclinic phase with a ZnO secondary phase. SEM micrographs show the spherical and cubic structure of the pure and Zn-doped CuO NPs, respectively. The average crystalline size, lattice constants, dislocation density, and microstrain were measured in the range of 25.23–21.18 nm, 7.893–7.745 A°, 1.57–2.22 × 10<sup>15 </sup>m<sup>−2</sup> and −3.55 × 10<sup>−4</sup>× to –4.34 × 10<sup>−4</sup>, respectively. The Raman results revealed that sharper and stronger peaks were detected which also shifted to higher wavenumbers with declining particle size which are well matched to XRD results and revealed the pureness of the samples. The band gap was estimated with Tauc’s equation, and the findings showed that the addition of Zn<sup>2+</sup> ions increased the band gap’s energy from 1.47 eV to 1.62 eV. To ascertain the electrical characteristics of produced nanoparticles, electrical characteristic investigations were carried out. From the consequences, it has been analyzed that electrical resistivity enhanced from 9.12 × 10<sup>3</sup> to 4.84 × 10<sup>4</sup> Ω cm with the addition of Zn in CuO. Based on the obtained consequences, it can be predicted that the modified electrical and optical properties of the prepared CuO nanoparticles can make them a potential candidate for optoelectronic applications, if control the generation of secondary phase, band gap enhancement, and generation of oxygen vacancies, because these factor influences the charge carrier’s mobility.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"113 1","pages":"213 - 224"},"PeriodicalIF":2.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142940975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-26DOI: 10.1007/s10971-024-06599-z
Shaan Bibi Jaffri, Khuram Shahzad Ahmad, Jehad S. Al-Hawadi, Bhumikaben Makawana, Ram K. Gupta, Ghulam Abbas Ashraf, Mohammad K. Okla
Electrochemical energy storage has utility in wide range of systems, therefore scientific community and energy stakeholders have been significantly focusing especially on it. By utilizing the novel BaS3:La2S3:Ho2S3 semiconductor, an alkaline earth-lanthanide composite chalcogenide (AE-LCC), which is developed by chelating with the diethyldithiocarbamate ligand, the current work, for the first time, seeks to enhance the performance of charge retaining devices in addition to electro-catalysis. This photo-active material exhibits exceptional optical properties with a band gap of 3.95 eV and heterogeneous crystallographic modes with a median crystallite size of 17.78 nm, due to its sustainable manufacturing process. Furthermore, infrared spectroscopy was used to identify metallic sulfide connections, which vary between 545 and 887 cm−1. Differently shaped particles that fused into a rod-like structure showed a higher volume-surface area ratio at multiple locations. The electrochemical performance of the BaS3:La2S3:Ho2S3 AE-LCC was assessed using a conventional three-electrode configuration with an initial electrolyte of 1 M KOH. BaS3:La2S3:Ho2S3 AE-LCC exhibits excellent specific capacitance of as high as 779 F g−1 and a power density of 10,145.28 W kg−1, making it an excellent electrode material for power storage applications. This remarkable electrochemical performance was further substantiated by comparable series resistance (Rs) = 1.25 Ω. The electrode generated an OER overpotential and a matching Tafel slope of 417 mV and 113 mV/dec by electro-catalysis. Conversely, the Tafel slope of HER activity was 310 mV/dec, and its overpotential was 233 mV.
Graphical Abstract
电化学储能在广泛的系统中具有广泛的应用价值,因此受到了科学界和能源利益相关者的极大关注。利用新型的BaS3:La2S3:Ho2S3半导体,一种碱土-镧系化合物硫系化合物(AE-LCC),通过与二乙基二硫代氨基甲酸酯配体螯合而成,本研究首次寻求在电催化之外提高电荷保持器件的性能。由于其可持续的制造工艺,该光活性材料具有优异的光学性能,其带隙为3.95 eV,中位晶尺寸为17.78 nm,具有异质晶体模式。此外,红外光谱用于识别金属硫化物连接,其变化范围在545至887 cm−1之间。不同形状的颗粒融合成棒状结构,在多个位置显示出更高的体积比。采用传统的三电极结构,初始电解液为1 M KOH,对BaS3:La2S3:Ho2S3 AE-LCC的电化学性能进行了评价。BaS3:La2S3:Ho2S3 AE-LCC具有优异的比电容,高达779 F g−1,功率密度为10,145.28 W kg−1,是一种极好的储能电极材料。串联电阻(Rs) = 1.25 Ω进一步证实了这一卓越的电化学性能。电极通过电催化作用产生OER过电位和匹配的Tafel斜率分别为417 mV和113 mV/dec。相反,HER活性的Tafel斜率为310 mV/dec,过电位为233 mV。图形抽象
{"title":"Revolutionizing energy storage and electro-catalysis: unleashing electrode power with novel BaS3:La2S3:Ho2S3 synthesized from single-source precursors for enhanced electrochemical functionality","authors":"Shaan Bibi Jaffri, Khuram Shahzad Ahmad, Jehad S. Al-Hawadi, Bhumikaben Makawana, Ram K. Gupta, Ghulam Abbas Ashraf, Mohammad K. Okla","doi":"10.1007/s10971-024-06599-z","DOIUrl":"10.1007/s10971-024-06599-z","url":null,"abstract":"<div><p>Electrochemical energy storage has utility in wide range of systems, therefore scientific community and energy stakeholders have been significantly focusing especially on it. By utilizing the novel BaS<sub>3</sub>:La<sub>2</sub>S<sub>3</sub>:Ho<sub>2</sub>S<sub>3</sub> semiconductor, an alkaline earth-lanthanide composite chalcogenide (AE-LCC), which is developed by chelating with the diethyldithiocarbamate ligand, the current work, for the first time, seeks to enhance the performance of charge retaining devices in addition to electro-catalysis. This photo-active material exhibits exceptional optical properties with a band gap of 3.95 eV and heterogeneous crystallographic modes with a median crystallite size of 17.78 nm, due to its sustainable manufacturing process. Furthermore, infrared spectroscopy was used to identify metallic sulfide connections, which vary between 545 and 887 cm<sup>−1</sup>. Differently shaped particles that fused into a rod-like structure showed a higher volume-surface area ratio at multiple locations. The electrochemical performance of the BaS<sub>3</sub>:La<sub>2</sub>S<sub>3</sub>:Ho<sub>2</sub>S<sub>3</sub> AE-LCC was assessed using a conventional three-electrode configuration with an initial electrolyte of 1 M KOH. BaS<sub>3</sub>:La<sub>2</sub>S<sub>3</sub>:Ho<sub>2</sub>S<sub>3</sub> AE-LCC exhibits excellent specific capacitance of as high as 779 F g<sup>−1</sup> and a power density of 10,145.28 W kg<sup>−1</sup>, making it an excellent electrode material for power storage applications. This remarkable electrochemical performance was further substantiated by comparable series resistance (<i>R</i><sub><i>s</i></sub>) = 1.25 Ω. The electrode generated an OER overpotential and a matching Tafel slope of 417 mV and 113 mV/dec by electro-catalysis. Conversely, the Tafel slope of HER activity was 310 mV/dec, and its overpotential was 233 mV.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"113 1","pages":"197 - 212"},"PeriodicalIF":2.3,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142941184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Monolithic macro/mesoporous silica gels have been prepared via a sol-gel process using triblock copolymer Pluronic P123 (EO20PO70EO20) as a structure-directing agent. In this synthesis, P123 not only induces phase separation to form macroporous structure but also acts as a supramolecular template to form mesopores with precisely controlled shape and size. Obtained was a monolithic silica composed of continuous truss-like columnar skeletons in which cylindrical mesopores are arranged in a 2D-hexagonal symmetry. These monolithic silica gels have extremely high porosity approaching 90% and exhibited high specific surface area and sharp pore size distribution as revealed by N2 sorption measurements. Combinations of the initial composition and the post-gelation treatment on wet gels allowed the control of physical properties of meso- and macropore structures. The monolithic HPLC columns prepared using these silica gels surface-modified by ODS (octadecylsilyl) ligands gave as many as 140,000 theoretical plates/m for the separation of alkylbenzenes in a reversed-phase mode. Very weak dependence of height equivalent to theoretical plate, H, on the mobile phase velocity was also recognized in comparison with conventional particle-packed columns.
Graphical Abstract
SEM images of monolithic silica prepared with tetramethoxysilane (TMOS) and P123 composed of truss-structured continuous skeletons. The performance for HPLC separation medium was examined.
{"title":"Preparation of monolithic silica HPLC columns with truss-structured skeletons and embedded surfactant-templated mesopores","authors":"Takanori Detani, Kei Morisato, Masayoshi Ohira, Kazuki Nakanishi","doi":"10.1007/s10971-024-06595-3","DOIUrl":"10.1007/s10971-024-06595-3","url":null,"abstract":"<div><p>Monolithic macro/mesoporous silica gels have been prepared via a sol-gel process using triblock copolymer Pluronic P123 (EO<sub>20</sub>PO<sub>70</sub>EO<sub>20</sub>) as a structure-directing agent. In this synthesis, P123 not only induces phase separation to form macroporous structure but also acts as a supramolecular template to form mesopores with precisely controlled shape and size. Obtained was a monolithic silica composed of continuous truss-like columnar skeletons in which cylindrical mesopores are arranged in a 2D-hexagonal symmetry. These monolithic silica gels have extremely high porosity approaching 90% and exhibited high specific surface area and sharp pore size distribution as revealed by N<sub>2</sub> sorption measurements. Combinations of the initial composition and the post-gelation treatment on wet gels allowed the control of physical properties of meso- and macropore structures. The monolithic HPLC columns prepared using these silica gels surface-modified by ODS (octadecylsilyl) ligands gave as many as 140,000 theoretical plates/m for the separation of alkylbenzenes in a reversed-phase mode. Very weak dependence of height equivalent to theoretical plate, <i>H,</i> on the mobile phase velocity was also recognized in comparison with conventional particle-packed columns.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><img></picture></div><div><p>SEM images of monolithic silica prepared with tetramethoxysilane (TMOS) and P123 composed of truss-structured continuous skeletons. The performance for HPLC separation medium was examined.</p></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"113 1","pages":"63 - 69"},"PeriodicalIF":2.3,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10971-024-06595-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142941185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}