Pub Date : 2025-12-01DOI: 10.1007/s10948-025-07098-0
Erhan Albayrak
The Bethe lattice (BL) sites are filled with the diatomic molecules consisting of one spin-1/2 and one spin-3/2 atoms, then they are let to interact with the nearest-neighbor (NN) molecules through bilinear exchange interactions. Additionally, they are affected by both an external field, magnetic field H, and an internal one, the crystal field D. The model is then examined in terms of the exact recursion relations (ERR) by studying the temperature fluctuations in magnetizations associated with each type of spin for various coordination numbers q=3, 4, and 6. The phase diagrams are calculated under ferromagnetic (FM) case on the D-temperature planes with zero H, i.e., spontaneous magnetizations. The effects of H on magnetizations are also displayed. The model displays several critical phenomena which may be new to this model; the existence of the first-order phase transition lines and tricritical points (TCP).
{"title":"Ferromagnetic Diatomic Molecules Consisting of Spin-1/2 and Spin-3/2","authors":"Erhan Albayrak","doi":"10.1007/s10948-025-07098-0","DOIUrl":"10.1007/s10948-025-07098-0","url":null,"abstract":"<div><p>The Bethe lattice (BL) sites are filled with the diatomic molecules consisting of one spin-1/2 and one spin-3/2 atoms, then they are let to interact with the nearest-neighbor (NN) molecules through bilinear exchange interactions. Additionally, they are affected by both an external field, magnetic field <i>H</i>, and an internal one, the crystal field <i>D</i>. The model is then examined in terms of the exact recursion relations (ERR) by studying the temperature fluctuations in magnetizations associated with each type of spin for various coordination numbers <i>q</i>=3, 4, and 6. The phase diagrams are calculated under ferromagnetic (FM) case on the <i>D</i>-temperature planes with zero <i>H</i>, i.e., spontaneous magnetizations. The effects of <i>H</i> on magnetizations are also displayed. The model displays several critical phenomena which may be new to this model; the existence of the first-order phase transition lines and tricritical points (TCP).</p></div>","PeriodicalId":669,"journal":{"name":"Journal of Superconductivity and Novel Magnetism","volume":"38 6","pages":""},"PeriodicalIF":1.7,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145675404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-01DOI: 10.1007/s10948-025-07097-1
Mohamed El Amine El Goutni, Mohammed Batouche, Hela Ferjani, Taieb Seddik
The structural, electronic, magnetic, and photocatalytic properties of the vacancy-ordered double perovskites K₂MCl₆ (M = Re, W, Ru, Os) were systematically investigated using first-principles calculations within the WC-GGA, TB-mBJ approaches. The optimized lattice constants show excellent agreement with experimental data, with deviations below 0.5%, confirming the high accuracy of the structural description. Energy–volume analyses for NM, FM, and AFM configurations demonstrate that the ferromagnetic phase is the ground state for all compounds, driven by spin polarization of the B-site d electrons. The calculated magnetic moments further support the robust FM ordering. Electronic band structures and DOS reveal mixed behavior: K₂ReCl₆ exhibits a semiconducting character, whereas K₂WCl₆, K₂RuCl₆, and K₂OsCl₆ display half-metallicity, with metallic states in one spin channel and a finite gap in the opposite one. The TB-mBJ band gaps enhance the reliability of the electronic description. Thermodynamic stability is confirmed through negative formation energies and positive cohesive energies. Band-edge positions evaluated through qualitative electronegativity trends and quantitative spin-polarized electronic calculations indicate favorable alignment for photocatalytic reactions, suggesting potential for water splitting and CO₂ reduction. The combined structural, magnetic, and electronic stability highlights K₂MCl₆ compounds as promising candidates for photocatalysis and spintronic applications.
{"title":"Optoelectronic Properties of Spin–Orbit Coupled Alkali-Metal Double Perovskites for Renewable Hydrogen and CO₂ Conversion","authors":"Mohamed El Amine El Goutni, Mohammed Batouche, Hela Ferjani, Taieb Seddik","doi":"10.1007/s10948-025-07097-1","DOIUrl":"10.1007/s10948-025-07097-1","url":null,"abstract":"<div><p> The structural, electronic, magnetic, and photocatalytic properties of the vacancy-ordered double perovskites K₂MCl₆ (M = Re, W, Ru, Os) were systematically investigated using first-principles calculations within the WC-GGA, TB-mBJ approaches. The optimized lattice constants show excellent agreement with experimental data, with deviations below 0.5%, confirming the high accuracy of the structural description. Energy–volume analyses for NM, FM, and AFM configurations demonstrate that the ferromagnetic phase is the ground state for all compounds, driven by spin polarization of the B-site d electrons. The calculated magnetic moments further support the robust FM ordering. Electronic band structures and DOS reveal mixed behavior: K₂ReCl₆ exhibits a semiconducting character, whereas K₂WCl₆, K₂RuCl₆, and K₂OsCl₆ display half-metallicity, with metallic states in one spin channel and a finite gap in the opposite one. The TB-mBJ band gaps enhance the reliability of the electronic description. Thermodynamic stability is confirmed through negative formation energies and positive cohesive energies. Band-edge positions evaluated through qualitative electronegativity trends and quantitative spin-polarized electronic calculations indicate favorable alignment for photocatalytic reactions, suggesting potential for water splitting and CO₂ reduction. The combined structural, magnetic, and electronic stability highlights K₂MCl₆ compounds as promising candidates for photocatalysis and spintronic applications.</p></div>","PeriodicalId":669,"journal":{"name":"Journal of Superconductivity and Novel Magnetism","volume":"38 6","pages":""},"PeriodicalIF":1.7,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145675481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-11-28DOI: 10.1007/s10948-025-07092-6
S. Derbil, S. Mouaci, C. Benchikh Lehoucine, S. Rabia, A. Younes, A. Ait-Kaci, M. Saidi, N. Saidi-Amroun
In this paper, flower-like nickel oxide (NiO) nanostructures were synthesized successfully by a green and cost-effective hydrothermal method. The approach therefore constitutes a hydrothermal-like green process using ordinary laboratory glassware instead of conventional autoclaves. The structural characterization confirmed the existence of a cubic phase of NiO with crystallite average sizes ranging from 41.80 to 89.07 nm, depending on the annealing temperature. Morphological analysis by SEM revealed well-aligned nanoflowers at 300–400 °C, while high-temperature heating led to the deterioration of the hierarchical structure. Raman spectra confirmed the vibrational modes of NiO, and magnetic measurements revealed weak ferromagnetic behavior that was consistent with superparamagnetic properties. These findings are indicative of the potential of flower-like NiO for application in environmental remediation and gas sensing devices.
{"title":"Sustainable Synthesis of NiO Nanoflowers: a Low-Cost Hydrothermal Strategy without Autoclave","authors":"S. Derbil, S. Mouaci, C. Benchikh Lehoucine, S. Rabia, A. Younes, A. Ait-Kaci, M. Saidi, N. Saidi-Amroun","doi":"10.1007/s10948-025-07092-6","DOIUrl":"10.1007/s10948-025-07092-6","url":null,"abstract":"<div><p>In this paper, flower-like nickel oxide (NiO) nanostructures were synthesized successfully by a green and cost-effective hydrothermal method. The approach therefore constitutes a hydrothermal-like green process using ordinary laboratory glassware instead of conventional autoclaves. The structural characterization confirmed the existence of a cubic phase of NiO with crystallite average sizes ranging from 41.80 to 89.07 nm, depending on the annealing temperature. Morphological analysis by SEM revealed well-aligned nanoflowers at 300–400 °C, while high-temperature heating led to the deterioration of the hierarchical structure. Raman spectra confirmed the vibrational modes of NiO, and magnetic measurements revealed weak ferromagnetic behavior that was consistent with superparamagnetic properties. These findings are indicative of the potential of flower-like NiO for application in environmental remediation and gas sensing devices.</p></div>","PeriodicalId":669,"journal":{"name":"Journal of Superconductivity and Novel Magnetism","volume":"38 6","pages":""},"PeriodicalIF":1.7,"publicationDate":"2025-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145613020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}