Pub Date : 2024-06-21DOI: 10.1007/s10948-024-06778-7
Anshu Gaur, Saarthak Dulgaj, Biswaranjan Sahu, S. Srinath
Structural, magnetic, and dielectric properties of (x)SrFe12O19-(1-(x))Ba0.85Ca0.15Ti0.9Zr0.1O3 multiferroic composite prepared by sintering the composite mixture of sol-gel synthesized SrFe12O19 (SrF) and Ba0.85Ca0.15Ti0.9Zr0.1O3 (BCTZ) are reported. Structural parameters (lattice parameter, bond length, and lattice strain) of parent phases in their pure and composite forms are correlated to indicate the lattice interaction between the two phases. The magnetic moment per gram of SrF (({M}_{SrF})) in the composite is higher than that in the SrF, related to the changes in the Fe-O-Fe bond angles. The room temperature dielectric response of the composites in the 100 Hz–10 MHz frequency range is modeled by the Cole–Cole relaxation and Jonscher power law equations to mark the different contributions (ferroelectric dipoles, charge carriers).
{"title":"Structural, Magnetic, and Dielectric Properties of SrFe12O19-Ba0.85Ca0.15Ti0.9Zr0.1O3 Composites","authors":"Anshu Gaur, Saarthak Dulgaj, Biswaranjan Sahu, S. Srinath","doi":"10.1007/s10948-024-06778-7","DOIUrl":"10.1007/s10948-024-06778-7","url":null,"abstract":"<div><p>Structural, magnetic, and dielectric properties of <span>(x)</span>SrFe<sub>12</sub>O<sub>19</sub>-(1-<span>(x)</span>)Ba<sub>0.85</sub>Ca<sub>0.15</sub>Ti<sub>0.9</sub>Zr<sub>0.1</sub>O<sub>3</sub> multiferroic composite prepared by sintering the composite mixture of sol-gel synthesized SrFe<sub>12</sub>O<sub>19</sub> (SrF) and Ba<sub>0.85</sub>Ca<sub>0.15</sub>Ti<sub>0.9</sub>Zr<sub>0.1</sub>O<sub>3</sub> (BCTZ) are reported. Structural parameters (lattice parameter, bond length, and lattice strain) of parent phases in their pure and composite forms are correlated to indicate the lattice interaction between the two phases. The magnetic moment per gram of SrF (<span>({M}_{SrF})</span>) in the composite is higher than that in the SrF, related to the changes in the Fe-O-Fe bond angles. The room temperature dielectric response of the composites in the 100 Hz–10 MHz frequency range is modeled by the Cole–Cole relaxation and Jonscher power law equations to mark the different contributions (ferroelectric dipoles, charge carriers).</p></div>","PeriodicalId":669,"journal":{"name":"Journal of Superconductivity and Novel Magnetism","volume":"37 5-7","pages":"1285 - 1291"},"PeriodicalIF":1.6,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141547949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-21DOI: 10.1007/s10948-024-06784-9
Somnath Das, Jacob Debbarma, Avijit Mondal, Premkumar Murugaiyan, Rajat K. Roy, Ashis K. Panda
Impact of shot peening on SS347 tube has been investigated using MagStrics, a magnetostrictive sensing (MsS) device comprising of rapidly quenched ribbon as sensor element. Two tubes of SS347 have been considered in pre- and post-shot peened state. Annealed ribbon as sensor element showed enhanced MsS signal. Using the annealed ribbon as sensor element, the MsS signal amplitude in shot peened tube was found to be distinctly different from un-peened sample. This was associated to magnetic phase evolutions in the pipe internal surface due to shot peening. Such phenomena have been endorsed through SEM–EDX compositional analysis and correlated through simulations using COMSOL Multiphysics.
{"title":"Evaluation of Shot Peened SS 347 Tubes Through a Magnetostrictive Sensing (MsS) Device","authors":"Somnath Das, Jacob Debbarma, Avijit Mondal, Premkumar Murugaiyan, Rajat K. Roy, Ashis K. Panda","doi":"10.1007/s10948-024-06784-9","DOIUrl":"10.1007/s10948-024-06784-9","url":null,"abstract":"<div><p>Impact of shot peening on SS347 tube has been investigated using MagStrics, a magnetostrictive sensing (MsS) device comprising of rapidly quenched ribbon as sensor element. Two tubes of SS347 have been considered in pre- and post-shot peened state. Annealed ribbon as sensor element showed enhanced MsS signal. Using the annealed ribbon as sensor element, the MsS signal amplitude in shot peened tube was found to be distinctly different from un-peened sample. This was associated to magnetic phase evolutions in the pipe internal surface due to shot peening. Such phenomena have been endorsed through SEM–EDX compositional analysis and correlated through simulations using COMSOL Multiphysics.</p></div>","PeriodicalId":669,"journal":{"name":"Journal of Superconductivity and Novel Magnetism","volume":"37 5-7","pages":"1293 - 1298"},"PeriodicalIF":1.6,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141514904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-21DOI: 10.1007/s10948-024-06736-3
Leila Alicheraghi, Ali Ghasemi, Ebrahim Paimozd, Mohammad Reza Nasr-Esfahani
Understanding and controlling the magnetic behavior of nanowire (NW) arrays is a fundamental step for developing novel future-generation devices. The current research investigated the role of copper pre-plating thickness on the structural and magnetic interactions of cobalt NW arrays. The NWs were grown in the anodic aluminum oxide (AAO) templates with a nanopore diameter of 30 nm by using a pulse electrodeposition (PED). The thickness of Cu pre-plating varied by adjusting the amount of electrodeposition (ED) Coulomb charge to about 0.03–0.7 C. The intensity of the Co-hcp peaks in the X-ray diffraction (XRD) pattern changes with the increase of Cu pre-plating, which can be related to ion mobility and growth kinetics during the ED process. The hysteresis curves indicate that effective magnetic anisotropy fields (({text{H}}_{text{A}}^{text{eff}})) increase from 7200 to 11,000 Oe with increasing Cu thickness. The coercivity of Co nanowire arrays without Cu pre-plating was 1170 Oe and rose to 1870 Oe for optimum Cu thickness with 0.3 C pre-plating. The switching field distribution (SFD) extracted from hysteresis curves agrees well with the squareness ratio. Also, the SFD indicates an exchange coupling between the interfaces of the magnetic phases in the optimum sample. The regions formed in the first-order reversal curve (FORC) diagram showed crystalline features and magnetic phase interactions between the intra and inter-wire. Further, the FORC analysis showed the same crystalline features as those obtained from the XRD structural analysis.
{"title":"Insight into the Intra and Inter-wire Magnetic Interactions of Co Nanowire Arrays by FORC Diagrams","authors":"Leila Alicheraghi, Ali Ghasemi, Ebrahim Paimozd, Mohammad Reza Nasr-Esfahani","doi":"10.1007/s10948-024-06736-3","DOIUrl":"https://doi.org/10.1007/s10948-024-06736-3","url":null,"abstract":"<p>Understanding and controlling the magnetic behavior of nanowire (NW) arrays is a fundamental step for developing novel future-generation devices. The current research investigated the role of copper pre-plating thickness on the structural and magnetic interactions of cobalt NW arrays. The NWs were grown in the anodic aluminum oxide (AAO) templates with a nanopore diameter of 30 nm by using a pulse electrodeposition (PED). The thickness of Cu pre-plating varied by adjusting the amount of electrodeposition (ED) Coulomb charge to about 0.03–0.7 C. The intensity of the Co-hcp peaks in the X-ray diffraction (XRD) pattern changes with the increase of Cu pre-plating, which can be related to ion mobility and growth kinetics during the ED process. The hysteresis curves indicate that effective magnetic anisotropy fields (<span>({text{H}}_{text{A}}^{text{eff}}))</span> increase from 7200 to 11,000 Oe with increasing Cu thickness. The coercivity of Co nanowire arrays without Cu pre-plating was 1170 Oe and rose to 1870 Oe for optimum Cu thickness with 0.3 C pre-plating. The switching field distribution (SFD) extracted from hysteresis curves agrees well with the squareness ratio. Also, the SFD indicates an exchange coupling between the interfaces of the magnetic phases in the optimum sample. The regions formed in the first-order reversal curve (FORC) diagram showed crystalline features and magnetic phase interactions between the intra and inter-wire. Further, the FORC analysis showed the same crystalline features as those obtained from the XRD structural analysis.</p>","PeriodicalId":669,"journal":{"name":"Journal of Superconductivity and Novel Magnetism","volume":"17 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141514905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-21DOI: 10.1007/s10948-024-06769-8
Payal Bhattacharjee, Saswati Barman
Nowadays, the concept of non-trivial topological protection and the nanoscale size of nanomagnetic particles constitute a major area of research. Due to topological protection stability, nanoscale size, and the requirement of low spin current density for motion, skyrmions have attracted great attention in next-generation spintronic devices as robust information carriers. We study the motion of an isolated magnetic skyrmion with induced interfacial Dzyaloshinskii-Moriya interaction (iDMI) instigated by spin waves and driven by spin current with variation in different parameters in a nanotrack of finite length using micromagnetic simulations. It is found that the magnetic skyrmion moves in the same direction as the direction of propagation of the spin waves. The skyrmion initially experiences an acceleration in its motion; thereafter, the velocity decreases exponentially. The motion of the magnetic skyrmion initiates as the momentum of the spin wave gets transferred to it. The motion of the magnetic skyrmion is found to be significantly dependent on the variation of parameters like frequency and amplitude of the incident spin waves, as well as the damping parameter and the strength of the applied spin-polarized current. The results obtained in this work could become useful to design skyrmion-based spintronic information-carrying and storage devices.
{"title":"Tunable Magnetic Skyrmion Motion on a Nanostrip Using Current and Spin Waves: A Micromagnetic Study","authors":"Payal Bhattacharjee, Saswati Barman","doi":"10.1007/s10948-024-06769-8","DOIUrl":"10.1007/s10948-024-06769-8","url":null,"abstract":"<div><p>Nowadays, the concept of non-trivial topological protection and the nanoscale size of nanomagnetic particles constitute a major area of research. Due to topological protection stability, nanoscale size, and the requirement of low spin current density for motion, skyrmions have attracted great attention in next-generation spintronic devices as robust information carriers. We study the motion of an isolated magnetic skyrmion with induced interfacial Dzyaloshinskii-Moriya interaction (iDMI) instigated by spin waves and driven by spin current with variation in different parameters in a nanotrack of finite length using micromagnetic simulations. It is found that the magnetic skyrmion moves in the same direction as the direction of propagation of the spin waves. The skyrmion initially experiences an acceleration in its motion; thereafter, the velocity decreases exponentially. The motion of the magnetic skyrmion initiates as the momentum of the spin wave gets transferred to it. The motion of the magnetic skyrmion is found to be significantly dependent on the variation of parameters like frequency and amplitude of the incident spin waves, as well as the damping parameter and the strength of the applied spin-polarized current. The results obtained in this work could become useful to design skyrmion-based spintronic information-carrying and storage devices.</p></div>","PeriodicalId":669,"journal":{"name":"Journal of Superconductivity and Novel Magnetism","volume":"37 8-10","pages":"1519 - 1527"},"PeriodicalIF":1.6,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141547950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-20DOI: 10.1007/s10948-024-06774-x
Hasan Mahmud, Jamal Uddin Ahamed, Md. Nazrul Islam Khan
Conventional solid-state reaction method has been cautiously employed to prepare the Ba0.75Sr0.25Ti1−xMnxO3 ceramic where Sr was firmly doped at the Ba site and Mn was doped with different densities at the Ti site. Since the performance of materials varies with frequency, electric field, and temperature, we have elucidated the various features of the synthesized samples for the sake of scientific benefit in the fields of microelectronics, telecommunications, and spintronics. Structural and morphological features of the ready samples were examined by X-ray diffraction and scanning electron microscopy (SEM). The crystal's tetragonal behavior was verified by XRD analysis, and with the increment of Mn content, the volume of the unit cell is little changed. It is clear from the SEM images that the grain size of the prepared samples increases with Mn doping. The dielectric properties of Ba0.75Sr0.25Ti1−xMnxO3 were measured by dielectric constant and AC conductivity in a wide range of frequency from 1 kHz to 10 MHz. This result also explores that the dielectric constant rises with the concentration of Mn, most significantly for the 20% Mn substitution with Ti. We also found from the experimental result that the dielectric constant is high in the frequency range of 1–10 kHz. The magnetic permeability of the prepared sample increased with 10% and 20% of Mn replacement. Ferromagnetic features with a weak coercive field and the increased ferromagnetic order with rising Mn concentrations of the prepared samples were confirmed by VSM data analysis. The developed multiferroic materials can be employed in future spintronic devices like spin transistors, sensors, spin diodes, and memory devices.
我们谨慎地采用传统固态反应方法制备了 Ba0.75Sr0.25Ti1-xMnxO3 陶瓷,其中在 Ba 位点上牢固地掺入了 Sr,在 Ti 位点上以不同密度掺入了 Mn。由于材料的性能随频率、电场和温度的变化而变化,我们阐明了合成样品的各种特征,以便在微电子学、电信和自旋电子学领域产生科学效益。我们利用 X 射线衍射和扫描电子显微镜(SEM)研究了制备好的样品的结构和形态特征。X 射线衍射分析验证了晶体的四方特性,而且随着锰含量的增加,单位晶胞的体积变化不大。从扫描电镜图像中可以明显看出,制备的样品晶粒尺寸随着锰的掺入而增大。通过介电常数和交流电导率测量了 Ba0.75Sr0.25Ti1-xMnxO3 在 1 kHz 至 10 MHz 宽频率范围内的介电性能。这一结果还发现,介电常数随 Mn 浓度的增加而上升,其中以 Mn 含量为 20% 的 Ti 替代物的介电常数上升最为明显。我们还从实验结果中发现,介电常数在 1-10 kHz 频率范围内较高。制备的样品的磁导率随着 10%和 20%的锰置换量的增加而增加。VSM 数据分析证实了制备的样品具有弱矫顽力场的铁磁性特征,以及随着锰浓度的增加而增加的铁磁阶数。所开发的多铁氧体材料可用于未来的自旋电子器件,如自旋晶体管、传感器、自旋二极管和存储器件。
{"title":"Study the Effect of Mn-Substitution on the Structural, Magnetic, and Dielectric Properties of Ba0.75Sr0.25Ti1−xMnxO3 Ceramics","authors":"Hasan Mahmud, Jamal Uddin Ahamed, Md. Nazrul Islam Khan","doi":"10.1007/s10948-024-06774-x","DOIUrl":"10.1007/s10948-024-06774-x","url":null,"abstract":"<div><p>Conventional solid-state reaction method has been cautiously employed to prepare the Ba<sub>0.75</sub>Sr<sub>0.25</sub>Ti<sub>1−<i>x</i></sub>Mn<sub><i>x</i></sub>O<sub>3</sub> ceramic where Sr was firmly doped at the Ba site and Mn was doped with different densities at the Ti site. Since the performance of materials varies with frequency, electric field, and temperature, we have elucidated the various features of the synthesized samples for the sake of scientific benefit in the fields of microelectronics, telecommunications, and spintronics. Structural and morphological features of the ready samples were examined by X-ray diffraction and scanning electron microscopy (SEM). The crystal's tetragonal behavior was verified by XRD analysis, and with the increment of Mn content, the volume of the unit cell is little changed. It is clear from the SEM images that the grain size of the prepared samples increases with Mn doping. The dielectric properties of Ba<sub>0.75</sub>Sr<sub>0.25</sub>Ti<sub>1−<i>x</i></sub>Mn<sub><i>x</i></sub>O<sub>3</sub> were measured by dielectric constant and AC conductivity in a wide range of frequency from 1 kHz to 10 MHz. This result also explores that the dielectric constant rises with the concentration of Mn, most significantly for the 20% Mn substitution with Ti. We also found from the experimental result that the dielectric constant is high in the frequency range of 1–10 kHz. The magnetic permeability of the prepared sample increased with 10% and 20% of Mn replacement. Ferromagnetic features with a weak coercive field and the increased ferromagnetic order with rising Mn concentrations of the prepared samples were confirmed by VSM data analysis. The developed multiferroic materials can be employed in future spintronic devices like spin transistors, sensors, spin diodes, and memory devices.</p></div>","PeriodicalId":669,"journal":{"name":"Journal of Superconductivity and Novel Magnetism","volume":"37 8-10","pages":"1569 - 1584"},"PeriodicalIF":1.6,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141514906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-20DOI: 10.1007/s10948-024-06771-0
K. Sai Maneesh, Himalay Basumatary, C. Vishnu Mohan Rao, Radhika Chada, M. Manivel Raja
In this paper, we report a systematic study on effect of film thickness and substrate temperature on structural and magnetic behaviour of Fe-Ga films with Cu buffer layer, deposited on Si and Si/SiO2 substrates at room and high substrate temperatures. Grazing incidence X-ray diffraction studies reveal that all the films are crystalline with disordered alpha-Fe phase, which is BCC A2 phase. At 300 °C of substrate temperature, films deposited on Si/SiO2 substrate found to nucleate L12 phase from matrix of A2 phase, which is not seen in Si based films. Irrespective of substrate material, Fe-Ga films found to exist in dual phases at 500 °C substrate temperature. Lattice strains of the films were calculated from X-ray diffraction patterns, using Williamson-Hall method. From X- ray reflectivity analysis of all the films, film density, thickness and roughness of Fe-Ga layer and buffer layer were obtained after fitting the reflectivity data. Presence of an oxide layer is also evident from reflectivity fitting analysis. From magnetization studies it is clear that, all the films exhibited strong in-plane anisotropy. Saturation magnetization of films was found to vary with change in film density and oxide layer thickness of films. Saturation magnetization of films deposited on Si substrates found to decrease with decrease in film density. Coercivity of films found to vary with change in crystallite size, interface roughness and lattice strain of films. Films deposited on Si substrates are sensitive to strain with change in film thickness and films deposited on Si/SiO2 substrates are sensitive to strain with change in deposition temperature. Coercivity in films found to decrease with decrease in film roughness, increase in crystallite size and lowering the tensile lattice strain.
在本文中,我们系统地研究了在室温和高基底温度下,沉积在硅基底和硅/二氧化硅基底上带有铜缓冲层的铁-镓薄膜的薄膜厚度和基底温度对其结构和磁性行为的影响。平射入射 X 射线衍射研究表明,所有薄膜都是晶体,具有无序的α-铁相,即 BCC A2 相。在 300 °C 的基底温度下,发现沉积在硅/二氧化硅基底上的薄膜会从 A2 相的基质中形成 L12 相,这在硅基薄膜中是看不到的。无论基底材料如何,在基底温度为 500 ℃ 时,Fe-Ga 薄膜都存在双相。薄膜的晶格应变是利用威廉森-霍尔法从 X 射线衍射图谱中计算出来的。通过对所有薄膜的 X 射线反射率分析,拟合反射率数据后得出了铁-镓层和缓冲层的薄膜密度、厚度和粗糙度。从反射率拟合分析中还可以明显看出氧化层的存在。磁化研究表明,所有薄膜都表现出很强的面内各向异性。薄膜的饱和磁化率随薄膜密度和氧化层厚度的变化而变化。在硅基底上沉积的薄膜的饱和磁化率随着薄膜密度的降低而降低。发现薄膜的矫顽力随薄膜晶粒大小、界面粗糙度和晶格应变的变化而变化。沉积在硅基底上的薄膜对薄膜厚度变化产生的应变很敏感,而沉积在硅/二氧化硅基底上的薄膜对沉积温度变化产生的应变很敏感。薄膜的矫顽力会随着薄膜粗糙度的减小、晶体尺寸的增大和拉伸晶格应变的降低而降低。
{"title":"Structural and Magnetization Studies of Cu Buffered Fe-Ga Films Grown on Si and Si/SiO2 Substrates","authors":"K. Sai Maneesh, Himalay Basumatary, C. Vishnu Mohan Rao, Radhika Chada, M. Manivel Raja","doi":"10.1007/s10948-024-06771-0","DOIUrl":"10.1007/s10948-024-06771-0","url":null,"abstract":"<div><p>In this paper, we report a systematic study on effect of film thickness and substrate temperature on structural and magnetic behaviour of Fe-Ga films with Cu buffer layer, deposited on Si and Si/SiO<sub>2</sub> substrates at room and high substrate temperatures. Grazing incidence X-ray diffraction studies reveal that all the films are crystalline with disordered alpha-Fe phase, which is BCC A2 phase. At 300 °C of substrate temperature, films deposited on Si/SiO<sub>2</sub> substrate found to nucleate L1<sub>2</sub> phase from matrix of A2 phase, which is not seen in Si based films. Irrespective of substrate material, Fe-Ga films found to exist in dual phases at 500 °C substrate temperature. Lattice strains of the films were calculated from X-ray diffraction patterns, using Williamson-Hall method. From X- ray reflectivity analysis of all the films, film density, thickness and roughness of Fe-Ga layer and buffer layer were obtained after fitting the reflectivity data. Presence of an oxide layer is also evident from reflectivity fitting analysis. From magnetization studies it is clear that, all the films exhibited strong in-plane anisotropy. Saturation magnetization of films was found to vary with change in film density and oxide layer thickness of films. Saturation magnetization of films deposited on Si substrates found to decrease with decrease in film density. Coercivity of films found to vary with change in crystallite size, interface roughness and lattice strain of films. Films deposited on Si substrates are sensitive to strain with change in film thickness and films deposited on Si/SiO<sub>2</sub> substrates are sensitive to strain with change in deposition temperature. Coercivity in films found to decrease with decrease in film roughness, increase in crystallite size and lowering the tensile lattice strain.</p></div>","PeriodicalId":669,"journal":{"name":"Journal of Superconductivity and Novel Magnetism","volume":"37 5-7","pages":"1269 - 1283"},"PeriodicalIF":1.6,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141514907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-18DOI: 10.1007/s10948-024-06760-3
Wedad A. Alwesabi, Prajakta D. Dange, Anil V. Raut, Gulab M. Puri, Rahul M. Khobragade, Pravina P. Pawar, S. V. N. Pammi, Challa Kiran Kumar, Pratap Kollu
ZnO-CuO nanocomposite particles (NCPs) were synthesized at different molar ratios (4:1, 3:2, and 1:4) through the use of the co-precipitation technique, which produced interesting modifications in the particle’s physical characteristics. XRD showed that average crystallite size (Davg) decreased noticeably from about 22.07 to 15.98 nm as the concentration of CuO increased within the ZnO matrix. This pattern points to a major impact of CuO content on the composite’s structural properties. Fourier-transform infrared spectroscopy (FTIR), two distinct functional groups were identified: v1 and v2, which were detected at approximately 524 cm−1 and 427 cm−1, respectively, and were linked to intrinsic and extrinsic vibrations. These spectral characteristics highlight the complex interaction between ZnO and CuO and offer important insights into the chemical bonding and molecular interactions within the composite system. The ZnO-CuO nanocomposite was subjected to field emission scanning electron microscopy and energy-dispersive X-ray analysis (SEM-EDX) which showed spherical shapes with increments in agglomeration. UV-Vis absorption spectra revealed a blue shift with increasing absorption in the UV region. The energy band gap of ZnO in its pristine state was found to be 3.31 eV, but in the ZnO4-CuO1 composition, it increased to 5.48 eV, suggesting that the addition of CuO caused a significant change in the electronic structure. Significantly, ZnO-CuO NCP antimicrobial evaluation demonstrated exceptional antibacterial efficacy against bacterial strains that were both Gram positive and Gram negative, in addition to fungal pathogens. This strong antimicrobial activity highlights the synthetic nanocomposite’s potential use in fighting a range of microbial infections and highlights their bright future in the environmental and biomedical fields.
{"title":"Microstructural, Optical, and Antimicrobial Activity of ZnO-CuO NCP Prepared Using Co-precipitation Technique","authors":"Wedad A. Alwesabi, Prajakta D. Dange, Anil V. Raut, Gulab M. Puri, Rahul M. Khobragade, Pravina P. Pawar, S. V. N. Pammi, Challa Kiran Kumar, Pratap Kollu","doi":"10.1007/s10948-024-06760-3","DOIUrl":"https://doi.org/10.1007/s10948-024-06760-3","url":null,"abstract":"<p>ZnO-CuO nanocomposite particles (NCPs) were synthesized at different molar ratios (4:1, 3:2, and 1:4) through the use of the co-precipitation technique, which produced interesting modifications in the particle’s physical characteristics. XRD showed that average crystallite size (<i>D</i><sub>avg</sub>) decreased noticeably from about 22.07 to 15.98 nm as the concentration of CuO increased within the ZnO matrix. This pattern points to a major impact of CuO content on the composite’s structural properties. Fourier-transform infrared spectroscopy (FTIR), two distinct functional groups were identified: <i>v</i><sub>1</sub> and <i>v</i><sub>2</sub>, which were detected at approximately 524 cm<sup>−1</sup> and 427 cm<sup>−1</sup>, respectively, and were linked to intrinsic and extrinsic vibrations. These spectral characteristics highlight the complex interaction between ZnO and CuO and offer important insights into the chemical bonding and molecular interactions within the composite system. The ZnO-CuO nanocomposite was subjected to field emission scanning electron microscopy and energy-dispersive X-ray analysis (SEM-EDX) which showed spherical shapes with increments in agglomeration. UV-Vis absorption spectra revealed a blue shift with increasing absorption in the UV region. The energy band gap of ZnO in its pristine state was found to be 3.31 eV, but in the ZnO<sub>4</sub>-CuO<sub>1</sub> composition, it increased to 5.48 eV, suggesting that the addition of CuO caused a significant change in the electronic structure. Significantly, ZnO-CuO NCP antimicrobial evaluation demonstrated exceptional antibacterial efficacy against bacterial strains that were both Gram positive and Gram negative, in addition to fungal pathogens. This strong antimicrobial activity highlights the synthetic nanocomposite’s potential use in fighting a range of microbial infections and highlights their bright future in the environmental and biomedical fields.</p>","PeriodicalId":669,"journal":{"name":"Journal of Superconductivity and Novel Magnetism","volume":"28 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141514908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper, we have investigated the magnetic and magnetocaloric characteristics of a La2MnNiO6 composite, in conjunction with La2MnCoO6. This composite consists of two phases of double perovskite materials. Employing the mean-field approximation, we successfully modeled how magnetization and the change in magnetic entropy vary with temperature under different magnetic fields in our samples. This phenomenological model helped us also plot the maximum magnetic entropy change (-ΔSM)max, full width at half-maximum δTFWHM, and relative cooling power (RCP). Our analysis has revealed an optimal plateau-type magnetocaloric effect near room temperature, corresponding to a specific composition x between 0.2 and 0.5. Ultimately, this theoretical model lets us predict the magnetic and magnetocaloric behavior of composite materials, providing a foundation for future studies.
{"title":"A Phenomenological Approach for Predicting Magnetic and Magnetocaloric Properties in the (La2MnNiO6)x / (La2MnCoO6)1−x Composite","authors":"Abderrazak Boubekri, Zakaria Elmaddahi, Younes Jarmoumi, Karima Gueddouch, Abdeslam Farchakh, Mohamed EL Hafidi","doi":"10.1007/s10948-024-06777-8","DOIUrl":"10.1007/s10948-024-06777-8","url":null,"abstract":"<div><p>In this paper, we have investigated the magnetic and magnetocaloric characteristics of a La<sub>2</sub>MnNiO<sub>6</sub> composite, in conjunction with La<sub>2</sub>MnCoO<sub>6</sub>. This composite consists of two phases of double perovskite materials. Employing the mean-field approximation, we successfully modeled how magnetization and the change in magnetic entropy vary with temperature under different magnetic fields in our samples. This phenomenological model helped us also plot the maximum magnetic entropy change (-ΔS<sub>M</sub>)<sub>max</sub>, full width at half-maximum δT<sub>FWHM</sub>, and relative cooling power (RCP). Our analysis has revealed an optimal plateau-type magnetocaloric effect near room temperature, corresponding to a specific composition <i>x</i> between 0.2 and 0.5. Ultimately, this theoretical model lets us predict the magnetic and magnetocaloric behavior of composite materials, providing a foundation for future studies.</p></div>","PeriodicalId":669,"journal":{"name":"Journal of Superconductivity and Novel Magnetism","volume":"37 8-10","pages":"1401 - 1410"},"PeriodicalIF":1.6,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141552706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-18DOI: 10.1007/s10948-024-06776-9
H. Ouachtouk, A. Harbi, S. Azerblou, A. Azouaoui, M. Moutaabbid, El. Tace
The perovskite La2ZnMnO6 was successfully synthesised using the conventional solid-state reaction. X-ray diffraction shows that the perovskite La2ZnMnO6 crystallizes in a monoclinic structure P21/n space group, where Zn and Mn atoms are regularly distributed. The Raman spectrum result reveals three peaks at 696 cm−1, 655 cm−1 and 505 cm−1, corresponding to the Ag stretching mode, Bg anti-stretching, and bending vibrations modes of Ni/Co-O and Mn-O bonds in the structure. The experimental value of the band gap energy was calculated using Tauc’s formula and the result reveals a semiconducting behaviour. We investigated the structural, elastic, magnetic, and electronic properties using the spin-polarized density functional theory. The partial density of state indicates that the material exhibits a antiferromagnetic semiconducting behaviour. The antiferromagnetic ordering is explained by the super-exchange interaction between empty eg orbitals of Mn4+( ({t}_{2 g}^{3})({e}_{g}^{0})). The obtained Neel temperature is TN ∼ 28 K which is comparable with the experiment results. Elastic constants and their derivative parameters show a high mechanical stability of this material with a ductile nature. The investigation of the transport properties encompassed an analysis of the electrical conductivity, the figure of merit, the Seebeck coefficient, and thermal conductivity. The results show that electronic and thermal conductivities increase linearly with temperature. The computed values of the figure of merit are close to unity, suggesting that this material is a promising candidate for thermoelectric application.
{"title":"Synthesis, Characterization, Magnetic, Elastic, and Electronic Properties of La2ZnMnO6 Double Perovskite","authors":"H. Ouachtouk, A. Harbi, S. Azerblou, A. Azouaoui, M. Moutaabbid, El. Tace","doi":"10.1007/s10948-024-06776-9","DOIUrl":"10.1007/s10948-024-06776-9","url":null,"abstract":"<div><p>The perovskite La<sub>2</sub>ZnMnO<sub>6</sub> was successfully synthesised using the conventional solid-state reaction. X-ray diffraction shows that the perovskite La<sub>2</sub>ZnMnO<sub>6</sub> crystallizes in a monoclinic structure P2<sub>1</sub>/n space group, where Zn and Mn atoms are regularly distributed. The Raman spectrum result reveals three peaks at 696 cm<sup>−1</sup>, 655 cm<sup>−1</sup> and 505 cm<sup>−1</sup>, corresponding to the A<sub>g</sub> stretching mode, B<sub>g</sub> anti-stretching, and bending vibrations modes of Ni/Co-O and Mn-O bonds in the structure. The experimental value of the band gap energy was calculated using Tauc’s formula and the result reveals a semiconducting behaviour. We investigated the structural, elastic, magnetic, and electronic properties using the spin-polarized density functional theory. The partial density of state indicates that the material exhibits a antiferromagnetic semiconducting behaviour. The antiferromagnetic ordering is explained by the super-exchange interaction between empty e<sub>g</sub> orbitals of Mn<sup>4+</sup>( <span>({t}_{2 g}^{3})</span><span>({e}_{g}^{0})</span>). The obtained Neel temperature is T<sub>N</sub> ∼ 28 K which is comparable with the experiment results. Elastic constants and their derivative parameters show a high mechanical stability of this material with a ductile nature. The investigation of the transport properties encompassed an analysis of the electrical conductivity, the figure of merit, the Seebeck coefficient, and thermal conductivity. The results show that electronic and thermal conductivities increase linearly with temperature. The computed values of the figure of merit are close to unity, suggesting that this material is a promising candidate for thermoelectric application.</p></div>","PeriodicalId":669,"journal":{"name":"Journal of Superconductivity and Novel Magnetism","volume":"37 8-10","pages":"1541 - 1550"},"PeriodicalIF":1.6,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141514909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-17DOI: 10.1007/s10948-024-06782-x
Kirill Mitsen, Olga Ivanenko
It is shown that many anomalies observed in underdoped cuprates, including anomalous spectral weight transfer and a large pseudogap, appear to have a common nature due to both the cluster structure of the underdoped phase and the specific mechanism of superconducting pairing. The combined action of these factors leads to the fact that at a temperature T lying in a certain temperature range Tc < T < T*, the crystal contains small isolated clusters that can exist both in superconducting and normal states, randomly switching between them. In this case, below Tc with a very high probability, the cluster is in a superconducting state, and above T*, it is in a normal state, and the interval Tc < T < T* is the region of existence of the so-called pseudogap phase. The temperatures Tc and T* for YBa2Cu3O6+δ were calculated depending on the doping level δ. The calculation results are in good agreement with the experiment without the use of fitting parameters. At a given T in the same temperature range, the time sequence of randomly arising superfluid density pulses from each cluster can be represented as a random process. The effective width Δωeff of the spectrum of such a random process will be determined by a correlation time, i.e., the characteristic time between successive on/off superconductivity in two different clusters. This time, according to the estimate, is ~ 10−15 s, which corresponds to Δωeff ~ 1 eV and explains the effect of spectral weight transfer to the high-frequency region. This approach also makes it possible to explain other anomalies observed in the vicinity of Tc: the reversibility of magnetization curves in a certain temperature range below Tc, the anomalous Nernst effect, and anomalous diamagnetism above Tc.
研究表明,在掺杂不足的铜氧化物中观察到的许多反常现象,包括反常的光谱重量转移和较大的伪间隙,似乎具有共同的性质,这是由于掺杂不足相的团簇结构和超导配对的特殊机制造成的。在这些因素的共同作用下,当温度 T 位于一定的温度范围 Tc < T < T* 时,晶体中含有孤立的小晶簇,这些晶簇既可以存在于超导态,也可以存在于正常态,并在两者之间随机切换。在这种情况下,低于 Tc 时,晶体簇极有可能处于超导状态,而高于 T* 时,晶体簇则处于正常状态,区间 Tc < T < T* 就是所谓的伪间隙相的存在区域。计算得出的 YBa2Cu3O6+δ 的温度 Tc 和 T* 取决于掺杂水平 δ。在同一温度范围内的给定 T 下,每个簇随机产生的超流体密度脉冲的时间序列可以表示为一个随机过程。这种随机过程频谱的有效宽度Δωeff将由相关时间决定,即两个不同簇的连续超导开/关之间的特征时间。根据估算,这个时间约为 10-15 秒,相当于 Δωeff ~ 1 eV,这也解释了光谱权重转移到高频区域的影响。这种方法还可以解释在 Tc 附近观察到的其他反常现象:Tc 以下一定温度范围内磁化曲线的可逆性、反常的奈恩斯特效应以及 Tc 以上的反常二磁性。
{"title":"Physical Nature of the Pseudogap Phase and Anomalous Transfer of Spectral Weight in Underdoped Cuprates","authors":"Kirill Mitsen, Olga Ivanenko","doi":"10.1007/s10948-024-06782-x","DOIUrl":"10.1007/s10948-024-06782-x","url":null,"abstract":"<div><p>It is shown that many anomalies observed in underdoped cuprates, including anomalous spectral weight transfer and a large pseudogap, appear to have a common nature due to both the cluster structure of the underdoped phase and the specific mechanism of superconducting pairing. The combined action of these factors leads to the fact that at a temperature <i>T</i> lying in a certain temperature range <i>T</i><sub>c</sub> < <i>T</i> < <i>T</i>*, the crystal contains small isolated clusters that can exist both in superconducting and normal states, randomly switching between them. In this case, below <i>T</i><sub>c</sub> with a very high probability, the cluster is in a superconducting state, and above <i>T</i>*, it is in a normal state, and the interval <i>T</i><sub>c</sub> < <i>T</i> < <i>T</i>* is the region of existence of the so-called pseudogap phase. The temperatures <i>T</i><sub>c</sub> and <i>T</i>* for YBa<sub>2</sub>Cu<sub>3</sub>O<sub>6+δ</sub> were calculated depending on the doping level <i>δ</i>. The calculation results are in good agreement with the experiment without the use of fitting parameters. At a given <i>T</i> in the same temperature range, the time sequence of randomly arising superfluid density pulses from each cluster can be represented as a random process. The effective width Δω<sub>eff</sub> of the spectrum of such a random process will be determined by a correlation time, i.e., the characteristic time between successive on/off superconductivity in two different clusters. This time, according to the estimate, is ~ 10<sup>−15</sup> s, which corresponds to Δω<sub>eff</sub> ~ 1 eV and explains the effect of spectral weight transfer to the high-frequency region. This approach also makes it possible to explain other anomalies observed in the vicinity of <i>T</i><sub>c</sub>: the reversibility of magnetization curves in a certain temperature range below <i>T</i><sub>c</sub>, the anomalous Nernst effect, and anomalous diamagnetism above <i>T</i><sub>c</sub>.</p></div>","PeriodicalId":669,"journal":{"name":"Journal of Superconductivity and Novel Magnetism","volume":"37 5-7","pages":"861 - 872"},"PeriodicalIF":1.6,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141514910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}