Pub Date : 2021-03-01DOI: 10.26599/BSA.2021.9050004
Yuan-Han Yang, R. Situmeang, P. A. Ong
Alzheimer’s disease (AD) increasingly affects society due to aging populations. Even at pre‐clinical stages, earlier and accurate diagnoses are essential for optimal AD management and improved clinical outcomes. Biomarkers such as beta‐amyloid (Aβ) or tau protein in cerebrospinal fluid (CSF) have been used as reliable markers to distinguish AD from non‐AD, and predicting clinical outcomes, to attain these goals. However, given CSF access methods’ invasiveness, these biomarkers are not used extensively in clinical settings. Blood Aβ has been proposed as an alternative biomarker since it is less invasive than CSF; however, sampling heterogeneity has limited its clinical applicability. In this review, we investigated blood Aβ as a biomarker in AD and explored how Aβ can be facilitated as a viable biomarker for successful AD management.
{"title":"Can blood amyloid levels be used as a biomarker for Alzheimer’s disease?","authors":"Yuan-Han Yang, R. Situmeang, P. A. Ong","doi":"10.26599/BSA.2021.9050004","DOIUrl":"https://doi.org/10.26599/BSA.2021.9050004","url":null,"abstract":"Alzheimer’s disease (AD) increasingly affects society due to aging populations. Even at pre‐clinical stages, earlier and accurate diagnoses are essential for optimal AD management and improved clinical outcomes. Biomarkers such as beta‐amyloid (Aβ) or tau protein in cerebrospinal fluid (CSF) have been used as reliable markers to distinguish AD from non‐AD, and predicting clinical outcomes, to attain these goals. However, given CSF access methods’ invasiveness, these biomarkers are not used extensively in clinical settings. Blood Aβ has been proposed as an alternative biomarker since it is less invasive than CSF; however, sampling heterogeneity has limited its clinical applicability. In this review, we investigated blood Aβ as a biomarker in AD and explored how Aβ can be facilitated as a viable biomarker for successful AD management.","PeriodicalId":67062,"journal":{"name":"Brain Science Advances","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43580239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-03-01DOI: 10.26599/BSA.2021.9050001
Qi Peng, Zhentao Zhang
Alzheimer’s disease (AD) is the most common neurodegenerative disorder. However, it still has no available disease‐modifying therapies. Its pathology cascade begins decades before symptomatic presentation. For these reasons, highly sensitive and highly specific fluid biomarkers should be developed for the early diagnosis of AD. In this study, the well‐established and emerging fluid biomarkers of AD are summarized, and recent advances on their role in early diagnosis and progression monitoring as well as their correlations with AD pathology are highlighted. Future prospects and related research directions are also discussed.
{"title":"The fluid biomarkers of Alzheimer’s disease","authors":"Qi Peng, Zhentao Zhang","doi":"10.26599/BSA.2021.9050001","DOIUrl":"https://doi.org/10.26599/BSA.2021.9050001","url":null,"abstract":"Alzheimer’s disease (AD) is the most common neurodegenerative disorder. However, it still has no available disease‐modifying therapies. Its pathology cascade begins decades before symptomatic presentation. For these reasons, highly sensitive and highly specific fluid biomarkers should be developed for the early diagnosis of AD. In this study, the well‐established and emerging fluid biomarkers of AD are summarized, and recent advances on their role in early diagnosis and progression monitoring as well as their correlations with AD pathology are highlighted. Future prospects and related research directions are also discussed.","PeriodicalId":67062,"journal":{"name":"Brain Science Advances","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49259393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-03-01DOI: 10.26599/BSA.2021.9050005
R. Wong, Yishan Luo, V. Mok, Lin Shi
The use of neuroimaging examinations is crucial in Alzheimer’s disease (AD), in both research and clinical settings. Over the years, magnetic resonance imaging (MRI)–based computer‐aided diagnosis has been shown to be helpful for early screening and predicting cognitive decline. Meanwhile, an increasing number of studies have adopted machine learning for the classification of AD, with promising results. In this review article, we focus on computerized MRI‐based biomarkers of AD by reviewing representative studies that used computerized techniques to identify AD patients and predict cognitive progression. We categorized these studies based on the following applications: (1) identifying AD from normal control; (2) identifying AD from other dementia types, including vascular dementia, dementia with Lewy bodies, and frontotemporal dementia; and (3) predicting conversion from NC to mild cognitive impairment (MCI) and from MCI to AD. This systematic review could act as a state‐of‐the‐art overview of this emerging field as well as a basis for designing future studies.
{"title":"Advances in computerized MRI‐based biomarkers in Alzheimer’s disease","authors":"R. Wong, Yishan Luo, V. Mok, Lin Shi","doi":"10.26599/BSA.2021.9050005","DOIUrl":"https://doi.org/10.26599/BSA.2021.9050005","url":null,"abstract":"The use of neuroimaging examinations is crucial in Alzheimer’s disease (AD), in both research and clinical settings. Over the years, magnetic resonance imaging (MRI)–based computer‐aided diagnosis has been shown to be helpful for early screening and predicting cognitive decline. Meanwhile, an increasing number of studies have adopted machine learning for the classification of AD, with promising results. In this review article, we focus on computerized MRI‐based biomarkers of AD by reviewing representative studies that used computerized techniques to identify AD patients and predict cognitive progression. We categorized these studies based on the following applications: (1) identifying AD from normal control; (2) identifying AD from other dementia types, including vascular dementia, dementia with Lewy bodies, and frontotemporal dementia; and (3) predicting conversion from NC to mild cognitive impairment (MCI) and from MCI to AD. This systematic review could act as a state‐of‐the‐art overview of this emerging field as well as a basis for designing future studies.","PeriodicalId":67062,"journal":{"name":"Brain Science Advances","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45379459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-03-01DOI: 10.26599/BSA.2021.9050002
Yiou Liu, Wenjing Zhou, Jiuluan Lin, Jie Shi, Haixiang Wang
Epileptic spasm (ES) is one of the most common types of seizures in children. It is primarily characterized by brief axial contractions lasting less than 2 s and recurring in short clusters. It usually occurs in children of 3 to 12 months of age, although it can also occur after the age of 1 year. In general, children with ES develop other symptoms of epilepsy, such as tonic, tonic‐clonic, or focal seizures, after 3 to 5 years of age. ES in children is often damaging and usually results in developmental regression. First‐line treatments for spasm seizures include adrenocorticotropic hormone (ACTH) and vigabatrin. However, many patients fail to respond to these medications, and continued to have spasms associated with progressive neurodevelopmental degeneration. Therefore, it is important to consider whether children with drug resistance meet surgical indications to consider surgical treatment in such conditions. In this study, we reviewed and summarized the importance of preoperative evaluation in order to provide surgical options for treatment of children with ES.
{"title":"Preoperative evaluation and surgical strategy for epileptic spasms in children","authors":"Yiou Liu, Wenjing Zhou, Jiuluan Lin, Jie Shi, Haixiang Wang","doi":"10.26599/BSA.2021.9050002","DOIUrl":"https://doi.org/10.26599/BSA.2021.9050002","url":null,"abstract":"Epileptic spasm (ES) is one of the most common types of seizures in children. It is primarily characterized by brief axial contractions lasting less than 2 s and recurring in short clusters. It usually occurs in children of 3 to 12 months of age, although it can also occur after the age of 1 year. In general, children with ES develop other symptoms of epilepsy, such as tonic, tonic‐clonic, or focal seizures, after 3 to 5 years of age. ES in children is often damaging and usually results in developmental regression. First‐line treatments for spasm seizures include adrenocorticotropic hormone (ACTH) and vigabatrin. However, many patients fail to respond to these medications, and continued to have spasms associated with progressive neurodevelopmental degeneration. Therefore, it is important to consider whether children with drug resistance meet surgical indications to consider surgical treatment in such conditions. In this study, we reviewed and summarized the importance of preoperative evaluation in order to provide surgical options for treatment of children with ES.","PeriodicalId":67062,"journal":{"name":"Brain Science Advances","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48877258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-01DOI: 10.26599/BSA.2020.9050016
Qing Cai, Jianpeng An, Z. Gao
Sleep is an essential integrant in everyone’s daily life; therefore, it is an important but challenging problem to characterize sleep stages from electroencephalogram (EEG) signals. The network motif has been developed as a useful tool to investigate complex networks. In this study, we developed a multiplex visibility graph motif‐based convolutional neural network (CNN) for characterizing sleep stages using EEG signals and then introduced the multiplex motif entropy as the quantitative index to distinguish the six sleep stages. The independent samples t‐test shows that the multiplex motif entropy values have significant differences among the six sleep stages. Furthermore, we developed a CNN model and employed the multiplex motif sequence as the input of the model to classify the six sleep stages. Notably, the classification accuracy of the six‐state stage detection was 85.27%. Results demonstrated the effectiveness of the multiplex motif in characterizing the dynamic features underlying different sleep stages, whereby they further provide an essential strategy for future sleep‐stage detection research.
{"title":"A multiplex visibility graph motif‐based convolutional neural network for characterizing sleep stages using EEG signals","authors":"Qing Cai, Jianpeng An, Z. Gao","doi":"10.26599/BSA.2020.9050016","DOIUrl":"https://doi.org/10.26599/BSA.2020.9050016","url":null,"abstract":"Sleep is an essential integrant in everyone’s daily life; therefore, it is an important but challenging problem to characterize sleep stages from electroencephalogram (EEG) signals. The network motif has been developed as a useful tool to investigate complex networks. In this study, we developed a multiplex visibility graph motif‐based convolutional neural network (CNN) for characterizing sleep stages using EEG signals and then introduced the multiplex motif entropy as the quantitative index to distinguish the six sleep stages. The independent samples t‐test shows that the multiplex motif entropy values have significant differences among the six sleep stages. Furthermore, we developed a CNN model and employed the multiplex motif sequence as the input of the model to classify the six sleep stages. Notably, the classification accuracy of the six‐state stage detection was 85.27%. Results demonstrated the effectiveness of the multiplex motif in characterizing the dynamic features underlying different sleep stages, whereby they further provide an essential strategy for future sleep‐stage detection research.","PeriodicalId":67062,"journal":{"name":"Brain Science Advances","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45534082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-01DOI: 10.26599/BSA.2020.9050014
E. Hernández-Martín, J. González-Mora
The present work describes the use of noninvasive diffuse optical tomography (DOT) technology to measure hemodynamic changes, providing relevant information which helps to understand the basis of neurophysiology in the human brain. Advantages such as portability, direct measurements of hemoglobin state, temporal resolution, non‐restricted movements as occurs in magnetic resonance imaging (MRI) devices mean that DOT technology can be used in research and clinical fields. In this review we covered the neurophysiology, physical principles underlying optical imaging during tissue‐light interactions, and technology commonly used during the construction of a DOT device including the source‐detector requirements to improve the image quality. DOT provides 3D cerebral activation images due to complex mathematical models which describe the light propagation inside the tissue head. Moreover, we describe briefly the use of Bayesian methods for raw DOT data filtering as an alternative to linear filters widely used in signal processing, avoiding common problems such as the filter selection or a false interpretation of the results which is sometimes due to the interference of background physiological noise with neural activity.
{"title":"Diffuse optical tomography in the human brain: A briefly review from the neurophysiology to its applications","authors":"E. Hernández-Martín, J. González-Mora","doi":"10.26599/BSA.2020.9050014","DOIUrl":"https://doi.org/10.26599/BSA.2020.9050014","url":null,"abstract":"The present work describes the use of noninvasive diffuse optical tomography (DOT) technology to measure hemodynamic changes, providing relevant information which helps to understand the basis of neurophysiology in the human brain. Advantages such as portability, direct measurements of hemoglobin state, temporal resolution, non‐restricted movements as occurs in magnetic resonance imaging (MRI) devices mean that DOT technology can be used in research and clinical fields. In this review we covered the neurophysiology, physical principles underlying optical imaging during tissue‐light interactions, and technology commonly used during the construction of a DOT device including the source‐detector requirements to improve the image quality. DOT provides 3D cerebral activation images due to complex mathematical models which describe the light propagation inside the tissue head. Moreover, we describe briefly the use of Bayesian methods for raw DOT data filtering as an alternative to linear filters widely used in signal processing, avoiding common problems such as the filter selection or a false interpretation of the results which is sometimes due to the interference of background physiological noise with neural activity.","PeriodicalId":67062,"journal":{"name":"Brain Science Advances","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43095317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-01DOI: 10.26599/BSA.2020.9050015
Yichen Peng, Feng Chen, Shenglan Li, Xiu-ping Liu, Can Wang, Chunna Yu, Wenbin Li
Gliomas, the most common primary tumors in the central nervous system (CNS), can be categorized into 4 grades according to the World Health Organization. The most malignant glioma type is grade Ⅳ, also named glioblastoma multiforme (GBM). However, the standard treatment of concurrent temozolomide (TMZ) chemotherapy and radiotherapy after maximum resection does not improve overall survival in patients with GBM. Targeting components of the CNS microenvironment represents a new strategy for improving the efficacy of glioma treatment. Most recent studies focused on T cells. However, there is a growing body of evidence that tumor‐associated macrophages (TAMs) play an important role in tumor progression and can be regulated by a wide array of cytokines or chemokines. New TAM‐associated immunotherapies may improve clinical outcomes by blocking tumor progression and prolonging survival. However, understanding the exact roles and possible mechanisms of TAMs in the tumor environment is necessary for developing this promising therapeutic target and identifying potential diagnostic markers for improved prognosis. This review summarizes the possible interactions between TAMs and glioma progression and discusses the potential therapeutic directions for TAM‐associated immunotherapies.
{"title":"Tumor‐associated macrophages as treatment targets in glioma","authors":"Yichen Peng, Feng Chen, Shenglan Li, Xiu-ping Liu, Can Wang, Chunna Yu, Wenbin Li","doi":"10.26599/BSA.2020.9050015","DOIUrl":"https://doi.org/10.26599/BSA.2020.9050015","url":null,"abstract":"Gliomas, the most common primary tumors in the central nervous system (CNS), can be categorized into 4 grades according to the World Health Organization. The most malignant glioma type is grade Ⅳ, also named glioblastoma multiforme (GBM). However, the standard treatment of concurrent temozolomide (TMZ) chemotherapy and radiotherapy after maximum resection does not improve overall survival in patients with GBM. Targeting components of the CNS microenvironment represents a new strategy for improving the efficacy of glioma treatment. Most recent studies focused on T cells. However, there is a growing body of evidence that tumor‐associated macrophages (TAMs) play an important role in tumor progression and can be regulated by a wide array of cytokines or chemokines. New TAM‐associated immunotherapies may improve clinical outcomes by blocking tumor progression and prolonging survival. However, understanding the exact roles and possible mechanisms of TAMs in the tumor environment is necessary for developing this promising therapeutic target and identifying potential diagnostic markers for improved prognosis. This review summarizes the possible interactions between TAMs and glioma progression and discusses the potential therapeutic directions for TAM‐associated immunotherapies.","PeriodicalId":67062,"journal":{"name":"Brain Science Advances","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43145181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-01DOI: 10.26599/BSA.2020.9050023
Tingji Shao, Shaobin Yang, Peng Yu
Neuronostatin (NST) is a peptide encoded by the somatostatin gene that serves important physiological functions in diverse tissues. Previous studies have shown that intracerebroventricular administration of NST induces antinociceptive effects and hyperalgesic effects as determined by the tail immersion assay and formalin test, respectively. In the present study, we aimed to evaluate the effects of intrathecal (i.t.) injection of NST on nociception in a model of visceral pain, and determine possible mechanisms of action in mice. NST (1, 3, 6, or 12 nmol) was administered to mice, leading to a dose‐dependent antinociceptive effect as determined by the acetic acid‐induced writhing test in mice. NST (1 nmol) also enhanced the antinociceptive effect of morphine (2.5 and 5 μg/kg) in the spine. Naloxone and β‐funaltrexamine hydrochloride significantly antagonized the antinociceptive effect of NST. The expression of G‐protein‐coupled receptor 107 (GPR107) protein and the phosphorylation of PKA at Thr197 were increased after i.t. administration of NST, suggesting that the μ‐opioid receptor and GPR107/PKA signaling pathway are involved in the analgesic response. In conclusion, i.t. injection of NST may potentially be used as a new approach in the mediation of visceral pain.
{"title":"Intrathecal administration of neuronostatin induces an antinociceptive effect in a mouse visceral pain model","authors":"Tingji Shao, Shaobin Yang, Peng Yu","doi":"10.26599/BSA.2020.9050023","DOIUrl":"https://doi.org/10.26599/BSA.2020.9050023","url":null,"abstract":"Neuronostatin (NST) is a peptide encoded by the somatostatin gene that serves important physiological functions in diverse tissues. Previous studies have shown that intracerebroventricular administration of NST induces antinociceptive effects and hyperalgesic effects as determined by the tail immersion assay and formalin test, respectively. In the present study, we aimed to evaluate the effects of intrathecal (i.t.) injection of NST on nociception in a model of visceral pain, and determine possible mechanisms of action in mice. NST (1, 3, 6, or 12 nmol) was administered to mice, leading to a dose‐dependent antinociceptive effect as determined by the acetic acid‐induced writhing test in mice. NST (1 nmol) also enhanced the antinociceptive effect of morphine (2.5 and 5 μg/kg) in the spine. Naloxone and β‐funaltrexamine hydrochloride significantly antagonized the antinociceptive effect of NST. The expression of G‐protein‐coupled receptor 107 (GPR107) protein and the phosphorylation of PKA at Thr197 were increased after i.t. administration of NST, suggesting that the μ‐opioid receptor and GPR107/PKA signaling pathway are involved in the analgesic response. In conclusion, i.t. injection of NST may potentially be used as a new approach in the mediation of visceral pain.","PeriodicalId":67062,"journal":{"name":"Brain Science Advances","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42104979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-01DOI: 10.26599/BSA.2020.9050022
Waqas Ahmed, Adeel Khan, Wish Hal Sundar, H. Naseem, Wanghao Chen, Jia Feng, S. Durrani, Lukui Chen
Infections of the central nervous system (CNS) infections are critical problems for public health. They are caused by several different organisms, including the respiratory coronaviruses (CoVs). CoVs usually infect the upper respiratory tract causing the common cold. However, in infants, and in elderly and immunocompromised persons, they can also affect the lower respiratory tract causing pneumonia and various syndromes of respiratory distress. CoVs also have neuroinvasive capabilities because they can spread from the respiratory tract to the CNS. Once infection begins in the CNS cells, it can cause various CNS problems such as status epilepticus, encephalitis, and long‐term neurological disease. This neuroinvasive properties of CoVs may damage the CNS as a result of misdirected host immune response, which could be associated with autoimmunity in susceptible individuals (virus‐induced neuro‐immunopathology) or associated with viral replication directly causing damage to the CNS cells (virus‐induced neuropathology). In December 2019, a new disease named COVID‐19 emerged which is caused by CoVs. The significant clinical symptoms of COVID‐19 are related to the respiratory system, but they can also affect the CNS, causing acute cerebrovascular and intracranial infections. We describe the possible invasion routes of coronavirus in this review article, and look for the most recent findings associated with the neurological complications in the recently published literature.
{"title":"Neurological diseases caused by coronavirus infection of the respiratory airways","authors":"Waqas Ahmed, Adeel Khan, Wish Hal Sundar, H. Naseem, Wanghao Chen, Jia Feng, S. Durrani, Lukui Chen","doi":"10.26599/BSA.2020.9050022","DOIUrl":"https://doi.org/10.26599/BSA.2020.9050022","url":null,"abstract":"Infections of the central nervous system (CNS) infections are critical problems for public health. They are caused by several different organisms, including the respiratory coronaviruses (CoVs). CoVs usually infect the upper respiratory tract causing the common cold. However, in infants, and in elderly and immunocompromised persons, they can also affect the lower respiratory tract causing pneumonia and various syndromes of respiratory distress. CoVs also have neuroinvasive capabilities because they can spread from the respiratory tract to the CNS. Once infection begins in the CNS cells, it can cause various CNS problems such as status epilepticus, encephalitis, and long‐term neurological disease. This neuroinvasive properties of CoVs may damage the CNS as a result of misdirected host immune response, which could be associated with autoimmunity in susceptible individuals (virus‐induced neuro‐immunopathology) or associated with viral replication directly causing damage to the CNS cells (virus‐induced neuropathology). In December 2019, a new disease named COVID‐19 emerged which is caused by CoVs. The significant clinical symptoms of COVID‐19 are related to the respiratory system, but they can also affect the CNS, causing acute cerebrovascular and intracranial infections. We describe the possible invasion routes of coronavirus in this review article, and look for the most recent findings associated with the neurological complications in the recently published literature.","PeriodicalId":67062,"journal":{"name":"Brain Science Advances","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48485638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-01DOI: 10.26599/BSA.2020.9050025
G. Portnova, Irina Girzhova, O. Martynova
Purpose: Even in years after recovery from moderate traumatic brain injury (moderate TBI), patients complain about residual cognitive impairment and fatigue. We hypothesized that non‐linear and linear resting‐state electroencephalography (rsEEG) features might also reflect neural underpinnings of these deficits. Methods: We analyzed a 10‐minute rsEEG in 77 moderate TBI‐survivors and 151 healthy volunteers after cognitive and psychological assessment. The rsEEG analysis included linear measures, such as power spectral density and peak alpha frequency, and non‐linear parameters such as Higuchi fractal dimension, envelope frequency, and Hjorth complexity. Results: The patients with moderate TBI had higher scores for fatigue and sleepiness and lower scores for mood and life satisfaction than controls. The behavioral test for directed attention showed a smaller and non‐significant between‐group difference. In rsEEG patterns, moderate TBI‐group had significantly higher deltaand theta‐rhythm power, which correlated with higher sleepiness and fatigue scores. The higher beta and lower alpha power were associated with a higher attention level in moderate TBI patients. Non‐linear rsEEG features were significantly higher in moderate TBI patients than in healthy controls but correlated with sleepiness and fatigue scores in both controls and patients. Conclusion: The rsEEG patterns may reflect compensatory processes supporting directed attention and residual effect of moderate TBI causing subjective fatigue in patients even after full physiological recovery.
{"title":"Residual and compensatory changes of resting‐state EEG in successful recovery after moderate TBI","authors":"G. Portnova, Irina Girzhova, O. Martynova","doi":"10.26599/BSA.2020.9050025","DOIUrl":"https://doi.org/10.26599/BSA.2020.9050025","url":null,"abstract":"Purpose: Even in years after recovery from moderate traumatic brain injury (moderate TBI), patients complain about residual cognitive impairment and fatigue. We hypothesized that non‐linear and linear resting‐state electroencephalography (rsEEG) features might also reflect neural underpinnings of these deficits. Methods: We analyzed a 10‐minute rsEEG in 77 moderate TBI‐survivors and 151 healthy volunteers after cognitive and psychological assessment. The rsEEG analysis included linear measures, such as power spectral density and peak alpha frequency, and non‐linear parameters such as Higuchi fractal dimension, envelope frequency, and Hjorth complexity. Results: The patients with moderate TBI had higher scores for fatigue and sleepiness and lower scores for mood and life satisfaction than controls. The behavioral test for directed attention showed a smaller and non‐significant between‐group difference. In rsEEG patterns, moderate TBI‐group had significantly higher deltaand theta‐rhythm power, which correlated with higher sleepiness and fatigue scores. The higher beta and lower alpha power were associated with a higher attention level in moderate TBI patients. Non‐linear rsEEG features were significantly higher in moderate TBI patients than in healthy controls but correlated with sleepiness and fatigue scores in both controls and patients. Conclusion: The rsEEG patterns may reflect compensatory processes supporting directed attention and residual effect of moderate TBI causing subjective fatigue in patients even after full physiological recovery.","PeriodicalId":67062,"journal":{"name":"Brain Science Advances","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42584864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}