In Australia, it is not surprising to see tenants pay premium prices for the higher level of greenness of their office buildings. This is reflected by the ever-increasing number of environmentally friendly and energy efficient green buildings nationwide especially across the major Commercial Building Districts (CBDs). Nevertheless, the impact of tenants’ office leasing behaviours on rents have not been fully explored. To address this knowledge gap, a survey of tenants who have leased the Sydney CBD-located office buildings was undertaken. The collected data were analysed using Partial Least Square - Structural Equation Modelling (PLS-SEM) techniques to identify the relationships amongst various tenants’ leasing motivators, the level of greenness of their office buildings, and rents. The results show that tenants’ leasing decisions about the level of greenness of their office buildings do not significantly contribute to office rents. Instead, the conventional attribute of building quality (e.g. floor plate...
{"title":"Do office tenants really pay for the greenness?: Findings from PLS-SEM","authors":"Sumin Kim, B. Lim","doi":"10.1063/1.5117112","DOIUrl":"https://doi.org/10.1063/1.5117112","url":null,"abstract":"In Australia, it is not surprising to see tenants pay premium prices for the higher level of greenness of their office buildings. This is reflected by the ever-increasing number of environmentally friendly and energy efficient green buildings nationwide especially across the major Commercial Building Districts (CBDs). Nevertheless, the impact of tenants’ office leasing behaviours on rents have not been fully explored. To address this knowledge gap, a survey of tenants who have leased the Sydney CBD-located office buildings was undertaken. The collected data were analysed using Partial Least Square - Structural Equation Modelling (PLS-SEM) techniques to identify the relationships amongst various tenants’ leasing motivators, the level of greenness of their office buildings, and rents. The results show that tenants’ leasing decisions about the level of greenness of their office buildings do not significantly contribute to office rents. Instead, the conventional attribute of building quality (e.g. floor plate...","PeriodicalId":6836,"journal":{"name":"6TH INTERNATIONAL CONFERENCE ON ENVIRONMENT (ICENV2018): Empowering Environment and Sustainable Engineering Nexus Through Green Technology","volume":"79 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82466374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Methanol production from direct CO2 hydrogenation has been widely envisaged to have key role in promoting CO2 utilization. The approach is a serious option in alleviating global warming, thus, contributing to sustainable development. However, the efficiency of methanol production from direct CO2 hydrogenation is highly dependent on the reactivity of catalyst. In this study, the structure-activity relationships of transition metal (Cr, Mn, Fe, Co, Ni) promoted copper-catalyst in direct CO2 hydrogenation to methanol were established by a systematic comparison between the synthesized catalysts. The copper-catalyst used in the study was Cu/ZnO/SBA-15 (CZ/SBA-15). Catalytic performance of all the synthesized catalysts was evaluated in a continuous-flow fixed-bed micro-reactor under kinetic-controlled conditions. Overall, the manganese promoted copper-catalyst (Mn-CZ/SBA-15) was determined as the most active catalyst. The outstanding performance of Mn-CZ/SBA-15 was due to the jointly presence of small copper crystallites and strong interaction between copper oxide and other oxide species in the catalyst. At reaction temperature of 180°C, under reaction pressure of 4.0 MPa, WHSV of 60 L/gcat.h, and H2:CO2 mole ratio of 3:1, the catalyst presented the highest methanol yield of 10.4%. The CO2 conversion achieved was 10.5% and the methanol selectivity was 98.6%.Methanol production from direct CO2 hydrogenation has been widely envisaged to have key role in promoting CO2 utilization. The approach is a serious option in alleviating global warming, thus, contributing to sustainable development. However, the efficiency of methanol production from direct CO2 hydrogenation is highly dependent on the reactivity of catalyst. In this study, the structure-activity relationships of transition metal (Cr, Mn, Fe, Co, Ni) promoted copper-catalyst in direct CO2 hydrogenation to methanol were established by a systematic comparison between the synthesized catalysts. The copper-catalyst used in the study was Cu/ZnO/SBA-15 (CZ/SBA-15). Catalytic performance of all the synthesized catalysts was evaluated in a continuous-flow fixed-bed micro-reactor under kinetic-controlled conditions. Overall, the manganese promoted copper-catalyst (Mn-CZ/SBA-15) was determined as the most active catalyst. The outstanding performance of Mn-CZ/SBA-15 was due to the jointly presence of small copper cr...
{"title":"Exploring transition metal (Cr, Mn, Fe, Co, Ni) promoted copper-catalyst for carbon dioxide hydrogenation to methanol","authors":"M. Koh, M. Zain, A. Mohamed","doi":"10.1063/1.5117066","DOIUrl":"https://doi.org/10.1063/1.5117066","url":null,"abstract":"Methanol production from direct CO2 hydrogenation has been widely envisaged to have key role in promoting CO2 utilization. The approach is a serious option in alleviating global warming, thus, contributing to sustainable development. However, the efficiency of methanol production from direct CO2 hydrogenation is highly dependent on the reactivity of catalyst. In this study, the structure-activity relationships of transition metal (Cr, Mn, Fe, Co, Ni) promoted copper-catalyst in direct CO2 hydrogenation to methanol were established by a systematic comparison between the synthesized catalysts. The copper-catalyst used in the study was Cu/ZnO/SBA-15 (CZ/SBA-15). Catalytic performance of all the synthesized catalysts was evaluated in a continuous-flow fixed-bed micro-reactor under kinetic-controlled conditions. Overall, the manganese promoted copper-catalyst (Mn-CZ/SBA-15) was determined as the most active catalyst. The outstanding performance of Mn-CZ/SBA-15 was due to the jointly presence of small copper crystallites and strong interaction between copper oxide and other oxide species in the catalyst. At reaction temperature of 180°C, under reaction pressure of 4.0 MPa, WHSV of 60 L/gcat.h, and H2:CO2 mole ratio of 3:1, the catalyst presented the highest methanol yield of 10.4%. The CO2 conversion achieved was 10.5% and the methanol selectivity was 98.6%.Methanol production from direct CO2 hydrogenation has been widely envisaged to have key role in promoting CO2 utilization. The approach is a serious option in alleviating global warming, thus, contributing to sustainable development. However, the efficiency of methanol production from direct CO2 hydrogenation is highly dependent on the reactivity of catalyst. In this study, the structure-activity relationships of transition metal (Cr, Mn, Fe, Co, Ni) promoted copper-catalyst in direct CO2 hydrogenation to methanol were established by a systematic comparison between the synthesized catalysts. The copper-catalyst used in the study was Cu/ZnO/SBA-15 (CZ/SBA-15). Catalytic performance of all the synthesized catalysts was evaluated in a continuous-flow fixed-bed micro-reactor under kinetic-controlled conditions. Overall, the manganese promoted copper-catalyst (Mn-CZ/SBA-15) was determined as the most active catalyst. The outstanding performance of Mn-CZ/SBA-15 was due to the jointly presence of small copper cr...","PeriodicalId":6836,"journal":{"name":"6TH INTERNATIONAL CONFERENCE ON ENVIRONMENT (ICENV2018): Empowering Environment and Sustainable Engineering Nexus Through Green Technology","volume":"256 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74919503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biopolymer has become one of the recent trends for alternative materials in this decade. The rising awareness towards environmental issues has sparked the idea of creating alternative materials to gradually replace the existing petroleum based polymer. Polycaprolactone (PCL) is amongst the biopolymer that has emerged to be a commercial biopolymer. This work focuses on the kinetics of the biopolymerization process in a reactor for PCL. Mathematical representation of biopolymerization process was derived based on Quasi Steady State Approximation proposed by Briggs and Haldane. The model was developed to infer the molecular weight of the biopolymer which is based on the mechanistic model of the biopolymerization reaction. Based on the results, the molecular weight can be successfully predicted by the developed mathematical model based on the Quasi Steady State Approximation method. Comparison was also carried out between actual molecular weight from experimental works and simulated molecular weight from the mathematical model. The analysis on the mathematical model predictions were conducted using statistical means was also presented in this paper.Biopolymer has become one of the recent trends for alternative materials in this decade. The rising awareness towards environmental issues has sparked the idea of creating alternative materials to gradually replace the existing petroleum based polymer. Polycaprolactone (PCL) is amongst the biopolymer that has emerged to be a commercial biopolymer. This work focuses on the kinetics of the biopolymerization process in a reactor for PCL. Mathematical representation of biopolymerization process was derived based on Quasi Steady State Approximation proposed by Briggs and Haldane. The model was developed to infer the molecular weight of the biopolymer which is based on the mechanistic model of the biopolymerization reaction. Based on the results, the molecular weight can be successfully predicted by the developed mathematical model based on the Quasi Steady State Approximation method. Comparison was also carried out between actual molecular weight from experimental works and simulated molecular weight from the ...
{"title":"Quasi steady state approximation in enzymatic biopolymerization reactor","authors":"R. A. M. Noor, Z. Ahmad, M. H. Uzir","doi":"10.1063/1.5117129","DOIUrl":"https://doi.org/10.1063/1.5117129","url":null,"abstract":"Biopolymer has become one of the recent trends for alternative materials in this decade. The rising awareness towards environmental issues has sparked the idea of creating alternative materials to gradually replace the existing petroleum based polymer. Polycaprolactone (PCL) is amongst the biopolymer that has emerged to be a commercial biopolymer. This work focuses on the kinetics of the biopolymerization process in a reactor for PCL. Mathematical representation of biopolymerization process was derived based on Quasi Steady State Approximation proposed by Briggs and Haldane. The model was developed to infer the molecular weight of the biopolymer which is based on the mechanistic model of the biopolymerization reaction. Based on the results, the molecular weight can be successfully predicted by the developed mathematical model based on the Quasi Steady State Approximation method. Comparison was also carried out between actual molecular weight from experimental works and simulated molecular weight from the mathematical model. The analysis on the mathematical model predictions were conducted using statistical means was also presented in this paper.Biopolymer has become one of the recent trends for alternative materials in this decade. The rising awareness towards environmental issues has sparked the idea of creating alternative materials to gradually replace the existing petroleum based polymer. Polycaprolactone (PCL) is amongst the biopolymer that has emerged to be a commercial biopolymer. This work focuses on the kinetics of the biopolymerization process in a reactor for PCL. Mathematical representation of biopolymerization process was derived based on Quasi Steady State Approximation proposed by Briggs and Haldane. The model was developed to infer the molecular weight of the biopolymer which is based on the mechanistic model of the biopolymerization reaction. Based on the results, the molecular weight can be successfully predicted by the developed mathematical model based on the Quasi Steady State Approximation method. Comparison was also carried out between actual molecular weight from experimental works and simulated molecular weight from the ...","PeriodicalId":6836,"journal":{"name":"6TH INTERNATIONAL CONFERENCE ON ENVIRONMENT (ICENV2018): Empowering Environment and Sustainable Engineering Nexus Through Green Technology","volume":"118 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78981312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
F. Ghazali, H. A. Edinur, K. Sirajudeen, A. Q. Aroyehun, Shariza Abdul Razak
Marine and aquaculture industry production and supplies is perpetually challenged, so as to ensure environmentally responsible growth and the creation of efficient exploitation of under-utilized marine raw biomasses materials. Recognition of health benefits associated with consumption of marine derived biomasses is one of the most promising developments in human nutrition and disease-prevention research. However, despite its declining wild stocks population, a major portion of the harvest of these marketable taxomised marine invertebrates is discarded [as wasted biomasses] or used for the production of low value fish meal and fish oil. Marine by-products, though, contain valuable bioactive compounds, protein and lipid fractions as well as vitamins and minerals compounds which are beneficial to human wellness and health. Devising strategies for the full utilization and sustainable of the catch and its biomasses and green approaches processing of discards for production of novel products is therefore a matter of importance for both the fishing industry and food processors in this milenia industrial revolution 4 era. Potential applications of proteins, lipids, chitin and minerals from these in marine flora and fauna as bioactive materials have increased the value of these marine by-products. As such maximizing the value of theses marine by-products provides a complete review of the characterization, recovery, processing and applications of local optimised commercial able geochemical marine-by products. i.e., in the valorization of marine by-products. This manuscript revises and highlights works related to enhancing the value of marine functional ingredients and by products as invaluable reference from marketable taxonomies marine biomasses and as alternative sources for biotechnological synthetic ingredients, as a part of neutraceuticals and functional foods. Highlights from works pertaining to geochemical signatures vouchered sea cucumbers, macroalgae and crown of thorns starfish will also be extrapolated.Marine and aquaculture industry production and supplies is perpetually challenged, so as to ensure environmentally responsible growth and the creation of efficient exploitation of under-utilized marine raw biomasses materials. Recognition of health benefits associated with consumption of marine derived biomasses is one of the most promising developments in human nutrition and disease-prevention research. However, despite its declining wild stocks population, a major portion of the harvest of these marketable taxomised marine invertebrates is discarded [as wasted biomasses] or used for the production of low value fish meal and fish oil. Marine by-products, though, contain valuable bioactive compounds, protein and lipid fractions as well as vitamins and minerals compounds which are beneficial to human wellness and health. Devising strategies for the full utilization and sustainable of the catch and its biomasses and green approaches processing of di
{"title":"The value of geochemical signatures marine by-products, with highlights from taxonomies sea cucumbers, macroalgae and crown of thorns starfish","authors":"F. Ghazali, H. A. Edinur, K. Sirajudeen, A. Q. Aroyehun, Shariza Abdul Razak","doi":"10.1063/1.5117081","DOIUrl":"https://doi.org/10.1063/1.5117081","url":null,"abstract":"Marine and aquaculture industry production and supplies is perpetually challenged, so as to ensure environmentally responsible growth and the creation of efficient exploitation of under-utilized marine raw biomasses materials. Recognition of health benefits associated with consumption of marine derived biomasses is one of the most promising developments in human nutrition and disease-prevention research. However, despite its declining wild stocks population, a major portion of the harvest of these marketable taxomised marine invertebrates is discarded [as wasted biomasses] or used for the production of low value fish meal and fish oil. Marine by-products, though, contain valuable bioactive compounds, protein and lipid fractions as well as vitamins and minerals compounds which are beneficial to human wellness and health. Devising strategies for the full utilization and sustainable of the catch and its biomasses and green approaches processing of discards for production of novel products is therefore a matter of importance for both the fishing industry and food processors in this milenia industrial revolution 4 era. Potential applications of proteins, lipids, chitin and minerals from these in marine flora and fauna as bioactive materials have increased the value of these marine by-products. As such maximizing the value of theses marine by-products provides a complete review of the characterization, recovery, processing and applications of local optimised commercial able geochemical marine-by products. i.e., in the valorization of marine by-products. This manuscript revises and highlights works related to enhancing the value of marine functional ingredients and by products as invaluable reference from marketable taxonomies marine biomasses and as alternative sources for biotechnological synthetic ingredients, as a part of neutraceuticals and functional foods. Highlights from works pertaining to geochemical signatures vouchered sea cucumbers, macroalgae and crown of thorns starfish will also be extrapolated.Marine and aquaculture industry production and supplies is perpetually challenged, so as to ensure environmentally responsible growth and the creation of efficient exploitation of under-utilized marine raw biomasses materials. Recognition of health benefits associated with consumption of marine derived biomasses is one of the most promising developments in human nutrition and disease-prevention research. However, despite its declining wild stocks population, a major portion of the harvest of these marketable taxomised marine invertebrates is discarded [as wasted biomasses] or used for the production of low value fish meal and fish oil. Marine by-products, though, contain valuable bioactive compounds, protein and lipid fractions as well as vitamins and minerals compounds which are beneficial to human wellness and health. Devising strategies for the full utilization and sustainable of the catch and its biomasses and green approaches processing of di","PeriodicalId":6836,"journal":{"name":"6TH INTERNATIONAL CONFERENCE ON ENVIRONMENT (ICENV2018): Empowering Environment and Sustainable Engineering Nexus Through Green Technology","volume":"60 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75387248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
L. Renugopal, K. Kow, P. Kiew, S. Yeap, H. Chua, Chung-Hung Chan, R. Yusoff
In this study, the effect of aligning nano-particles in the porous silica gel structure on the selectivity of adsorption was studied. Nano-magnetite particles were embedded into silica gel in order to produce nano-composite. By doing so, the agglomeration of nano-particles could be reduced and subsequently provided higher effective active sites for adsorption to take place. When the nano-particles in the gel matrix are aligned, it is expected to enhance the adsorption. Adsorption of Cu2+ and Cd2+ were conducted in both single ion system and binary mixture of the two to determine the adsorption performance using aligned and non-aligned gel composites. Improved selectivity of Cu2+ was observed in both single and binary system when aligned gel nano-composite was used compared to the non-aligned gel nano-composite. For copper and cadmium in single system, the removal percentage was enhanced from 23.6% to 36% and 15% to 16% respectively when the aligned gel was used instead of non-aligned nano-composite. Similarly for binary system, copper and cadmium removal percentage was enhanced from 15.7% to 21.3% and 6.3% to 10.2% respectively, when the aligned gel was used. This proved that when the nano-particles in the gel matrix are aligned, improvement in the performance of the gel nano-composite as adsorbent can be achieved. As for selective adsorption, it was noted that the removal percentage of copper was higher compared to cadmium in all cases performed. It was found that the magnetic field of the aligned gel increased the selectivity towards cadmium ions. Thus, the magnetic alignment of the aligned gel played a significant role where the selectivity of ions to be adsorbed could be controlled.In this study, the effect of aligning nano-particles in the porous silica gel structure on the selectivity of adsorption was studied. Nano-magnetite particles were embedded into silica gel in order to produce nano-composite. By doing so, the agglomeration of nano-particles could be reduced and subsequently provided higher effective active sites for adsorption to take place. When the nano-particles in the gel matrix are aligned, it is expected to enhance the adsorption. Adsorption of Cu2+ and Cd2+ were conducted in both single ion system and binary mixture of the two to determine the adsorption performance using aligned and non-aligned gel composites. Improved selectivity of Cu2+ was observed in both single and binary system when aligned gel nano-composite was used compared to the non-aligned gel nano-composite. For copper and cadmium in single system, the removal percentage was enhanced from 23.6% to 36% and 15% to 16% respectively when the aligned gel was used instead of non-aligned nano-composite. Simil...
{"title":"Selective adsorption of copper and cadmium ions using nano-particles aligned in silica gel matrix","authors":"L. Renugopal, K. Kow, P. Kiew, S. Yeap, H. Chua, Chung-Hung Chan, R. Yusoff","doi":"10.1063/1.5117061","DOIUrl":"https://doi.org/10.1063/1.5117061","url":null,"abstract":"In this study, the effect of aligning nano-particles in the porous silica gel structure on the selectivity of adsorption was studied. Nano-magnetite particles were embedded into silica gel in order to produce nano-composite. By doing so, the agglomeration of nano-particles could be reduced and subsequently provided higher effective active sites for adsorption to take place. When the nano-particles in the gel matrix are aligned, it is expected to enhance the adsorption. Adsorption of Cu2+ and Cd2+ were conducted in both single ion system and binary mixture of the two to determine the adsorption performance using aligned and non-aligned gel composites. Improved selectivity of Cu2+ was observed in both single and binary system when aligned gel nano-composite was used compared to the non-aligned gel nano-composite. For copper and cadmium in single system, the removal percentage was enhanced from 23.6% to 36% and 15% to 16% respectively when the aligned gel was used instead of non-aligned nano-composite. Similarly for binary system, copper and cadmium removal percentage was enhanced from 15.7% to 21.3% and 6.3% to 10.2% respectively, when the aligned gel was used. This proved that when the nano-particles in the gel matrix are aligned, improvement in the performance of the gel nano-composite as adsorbent can be achieved. As for selective adsorption, it was noted that the removal percentage of copper was higher compared to cadmium in all cases performed. It was found that the magnetic field of the aligned gel increased the selectivity towards cadmium ions. Thus, the magnetic alignment of the aligned gel played a significant role where the selectivity of ions to be adsorbed could be controlled.In this study, the effect of aligning nano-particles in the porous silica gel structure on the selectivity of adsorption was studied. Nano-magnetite particles were embedded into silica gel in order to produce nano-composite. By doing so, the agglomeration of nano-particles could be reduced and subsequently provided higher effective active sites for adsorption to take place. When the nano-particles in the gel matrix are aligned, it is expected to enhance the adsorption. Adsorption of Cu2+ and Cd2+ were conducted in both single ion system and binary mixture of the two to determine the adsorption performance using aligned and non-aligned gel composites. Improved selectivity of Cu2+ was observed in both single and binary system when aligned gel nano-composite was used compared to the non-aligned gel nano-composite. For copper and cadmium in single system, the removal percentage was enhanced from 23.6% to 36% and 15% to 16% respectively when the aligned gel was used instead of non-aligned nano-composite. Simil...","PeriodicalId":6836,"journal":{"name":"6TH INTERNATIONAL CONFERENCE ON ENVIRONMENT (ICENV2018): Empowering Environment and Sustainable Engineering Nexus Through Green Technology","volume":"159 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75079545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
I. Shamsudin, I. Idris, A. Abdullah, Jinsoo Kim, M. Othman
A well-defined Zr-metal organic framework (UiO-66) was developed using a rapid sol-gel reflux method and activated by solvent exchange, drying and heating. The activation process with an exchangeable guest solvent produced Zr-MOF with high surface area by removal of almost all the guest and terephthalic acid molecules from the pores, thereby enhancing its capacity for adsorption. The results showed that UiO-66 was synthesized in octahedral crystals of n formed s es of 6 63 m with specific surface area of 313 m2/g. The sample, known to exhibit high chemical and thermal stability of up to 500 C demonstrated strong affinity for carbon dioxide with adsorption capacity of 428.7 cc (CO2) g 1 at STP. Results from pressure swing adsorption (PSA) experiment with synthesis gas feed mixture containing 15 vol.% of CO2 and 85 vol.% indicate that the as–synthesized sample has the potential for effective CO2/H2 separation.A well-defined Zr-metal organic framework (UiO-66) was developed using a rapid sol-gel reflux method and activated by solvent exchange, drying and heating. The activation process with an exchangeable guest solvent produced Zr-MOF with high surface area by removal of almost all the guest and terephthalic acid molecules from the pores, thereby enhancing its capacity for adsorption. The results showed that UiO-66 was synthesized in octahedral crystals of n formed s es of 6 63 m with specific surface area of 313 m2/g. The sample, known to exhibit high chemical and thermal stability of up to 500 C demonstrated strong affinity for carbon dioxide with adsorption capacity of 428.7 cc (CO2) g 1 at STP. Results from pressure swing adsorption (PSA) experiment with synthesis gas feed mixture containing 15 vol.% of CO2 and 85 vol.% indicate that the as–synthesized sample has the potential for effective CO2/H2 separation.
采用快速溶胶-凝胶回流法,通过溶剂交换、干燥和加热活化,制备了一种定义明确的zr -金属有机骨架(UiO-66)。采用可交换客体溶剂的活化工艺,通过去除孔隙中几乎所有客体和对苯二甲酸分子,从而提高其吸附能力,制备出具有高表面积的Zr-MOF。结果表明,UiO-66是在六面体晶体中合成的,晶体尺寸为6 63 m,比表面积为313 m2/g。该样品具有高达500℃的高化学和热稳定性,对二氧化碳具有很强的亲和力,在STP下的吸附容量为428.7 cc (CO2) g 1。变压吸附(PSA)实验结果表明,合成的样品具有CO2/H2有效分离的潜力。采用快速溶胶-凝胶回流法,通过溶剂交换、干燥和加热活化,制备了一种定义明确的zr -金属有机骨架(UiO-66)。采用可交换客体溶剂的活化工艺,通过去除孔隙中几乎所有客体和对苯二甲酸分子,从而提高其吸附能力,制备出具有高表面积的Zr-MOF。结果表明,UiO-66是在六面体晶体中合成的,晶体尺寸为6 63 m,比表面积为313 m2/g。该样品具有高达500℃的高化学和热稳定性,对二氧化碳具有很强的亲和力,在STP下的吸附容量为428.7 cc (CO2) g 1。变压吸附(PSA)实验结果表明,合成的样品具有CO2/H2有效分离的潜力。
{"title":"Development of microporous Zr-MOF UiO-66 by sol-gel synthesis for CO2 capture from synthetic gas containing CO2 and H2","authors":"I. Shamsudin, I. Idris, A. Abdullah, Jinsoo Kim, M. Othman","doi":"10.1063/1.5117117","DOIUrl":"https://doi.org/10.1063/1.5117117","url":null,"abstract":"A well-defined Zr-metal organic framework (UiO-66) was developed using a rapid sol-gel reflux method and activated by solvent exchange, drying and heating. The activation process with an exchangeable guest solvent produced Zr-MOF with high surface area by removal of almost all the guest and terephthalic acid molecules from the pores, thereby enhancing its capacity for adsorption. The results showed that UiO-66 was synthesized in octahedral crystals of n formed s es of 6 63 m with specific surface area of 313 m2/g. The sample, known to exhibit high chemical and thermal stability of up to 500 C demonstrated strong affinity for carbon dioxide with adsorption capacity of 428.7 cc (CO2) g 1 at STP. Results from pressure swing adsorption (PSA) experiment with synthesis gas feed mixture containing 15 vol.% of CO2 and 85 vol.% indicate that the as–synthesized sample has the potential for effective CO2/H2 separation.A well-defined Zr-metal organic framework (UiO-66) was developed using a rapid sol-gel reflux method and activated by solvent exchange, drying and heating. The activation process with an exchangeable guest solvent produced Zr-MOF with high surface area by removal of almost all the guest and terephthalic acid molecules from the pores, thereby enhancing its capacity for adsorption. The results showed that UiO-66 was synthesized in octahedral crystals of n formed s es of 6 63 m with specific surface area of 313 m2/g. The sample, known to exhibit high chemical and thermal stability of up to 500 C demonstrated strong affinity for carbon dioxide with adsorption capacity of 428.7 cc (CO2) g 1 at STP. Results from pressure swing adsorption (PSA) experiment with synthesis gas feed mixture containing 15 vol.% of CO2 and 85 vol.% indicate that the as–synthesized sample has the potential for effective CO2/H2 separation.","PeriodicalId":6836,"journal":{"name":"6TH INTERNATIONAL CONFERENCE ON ENVIRONMENT (ICENV2018): Empowering Environment and Sustainable Engineering Nexus Through Green Technology","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86494154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Australian real estate sector has changed rapidly over the last decade. Most notably, the sector has actively embraced the notion of sustainability as it is represented by the increasing number of ‘green buildings’ across the nation’s major metropolitan areas. Nevertheless, the characteristics of green and non-green buildings and their differences have not been fully studied. In addressing this, this research aimed to investigate if green buildings pose much superior building quality than their non-green counterpart. To this, 20 years of transaction data indicating building quality, the level of greenness, and sales prices were collected. These data were analysed using descriptive statistical techniques such as the Mann-Whitney U test and the Spearman rank-order correlation test. The results show that green and non-green buildings have several different characteristics which make them distinguished from each other. Specifically, it is found that green buildings generally have superior building quality...
{"title":"Analysing the characteristics of green and non-green buildings: From the real estate perspective","authors":"Sumin Kim, B. Lim","doi":"10.1063/1.5117109","DOIUrl":"https://doi.org/10.1063/1.5117109","url":null,"abstract":"The Australian real estate sector has changed rapidly over the last decade. Most notably, the sector has actively embraced the notion of sustainability as it is represented by the increasing number of ‘green buildings’ across the nation’s major metropolitan areas. Nevertheless, the characteristics of green and non-green buildings and their differences have not been fully studied. In addressing this, this research aimed to investigate if green buildings pose much superior building quality than their non-green counterpart. To this, 20 years of transaction data indicating building quality, the level of greenness, and sales prices were collected. These data were analysed using descriptive statistical techniques such as the Mann-Whitney U test and the Spearman rank-order correlation test. The results show that green and non-green buildings have several different characteristics which make them distinguished from each other. Specifically, it is found that green buildings generally have superior building quality...","PeriodicalId":6836,"journal":{"name":"6TH INTERNATIONAL CONFERENCE ON ENVIRONMENT (ICENV2018): Empowering Environment and Sustainable Engineering Nexus Through Green Technology","volume":"28 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85453797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Abdullah, I. Idris, I. Shamsudin, Jinsoo Kim, M. Othman
Carbon dioxide (CO2) gas enrichment and separation process have been researched for decades and various methods are being applied in industries to reduce and resist CO2 gas due to its corrosive characteristics and negative effects on environment. Greenhouse gases such as methane (CH4) and CO2 are the most abundant in natural gas wells. They contribute significant negative effects to global warming. In this research, Pressure swing adsorption method was utilized as a mechanism to capture and recover binary gas via gas separation process by adsorbents. The adsorbents used in this study were Zeolite SA, Zirconium-benzene dicarboxylate (UiO-66) and activated carbons made from Kenaf and palm kernel shell (PKS) within the pressure differences of up to 3 bars. The adsorbents were prepared and characterized using Brunauer-Emmett-Teller (BET) analysis and particle size distribution analysis. Adsorbents selection and their capability were tested using binary mixture gas of 70% CO2 and 30% CH4 via breakthrough studies using volumetric method. The experimental data were collected by manipulating the adsorption and desorption time ranging up to 4 minutes. The results show that CO2 gas had higher affinity than CH4 for these adsorbents. Adsorbent saturation period declined towards increasing pressure and vice versa. Experimental data showed that activated carbon made from palm kernel shell yielded the optimum purity and recovery of CH4 and CO2 gases. Purity of CO2 of 94% was successfully achieved at recovery of CH4 and CO2 of 94% and 89% respectively. The other adsorbents were saturated quickly and less effective for high carbon dioxide content separation.Carbon dioxide (CO2) gas enrichment and separation process have been researched for decades and various methods are being applied in industries to reduce and resist CO2 gas due to its corrosive characteristics and negative effects on environment. Greenhouse gases such as methane (CH4) and CO2 are the most abundant in natural gas wells. They contribute significant negative effects to global warming. In this research, Pressure swing adsorption method was utilized as a mechanism to capture and recover binary gas via gas separation process by adsorbents. The adsorbents used in this study were Zeolite SA, Zirconium-benzene dicarboxylate (UiO-66) and activated carbons made from Kenaf and palm kernel shell (PKS) within the pressure differences of up to 3 bars. The adsorbents were prepared and characterized using Brunauer-Emmett-Teller (BET) analysis and particle size distribution analysis. Adsorbents selection and their capability were tested using binary mixture gas of 70% CO2 and 30% CH4 via breakthrough studi...
{"title":"Carbon dioxide separation from carbon dioxide-methane gas mixture using PSA utilizing inorganic and organic adsorbents","authors":"A. Abdullah, I. Idris, I. Shamsudin, Jinsoo Kim, M. Othman","doi":"10.1063/1.5117118","DOIUrl":"https://doi.org/10.1063/1.5117118","url":null,"abstract":"Carbon dioxide (CO2) gas enrichment and separation process have been researched for decades and various methods are being applied in industries to reduce and resist CO2 gas due to its corrosive characteristics and negative effects on environment. Greenhouse gases such as methane (CH4) and CO2 are the most abundant in natural gas wells. They contribute significant negative effects to global warming. In this research, Pressure swing adsorption method was utilized as a mechanism to capture and recover binary gas via gas separation process by adsorbents. The adsorbents used in this study were Zeolite SA, Zirconium-benzene dicarboxylate (UiO-66) and activated carbons made from Kenaf and palm kernel shell (PKS) within the pressure differences of up to 3 bars. The adsorbents were prepared and characterized using Brunauer-Emmett-Teller (BET) analysis and particle size distribution analysis. Adsorbents selection and their capability were tested using binary mixture gas of 70% CO2 and 30% CH4 via breakthrough studies using volumetric method. The experimental data were collected by manipulating the adsorption and desorption time ranging up to 4 minutes. The results show that CO2 gas had higher affinity than CH4 for these adsorbents. Adsorbent saturation period declined towards increasing pressure and vice versa. Experimental data showed that activated carbon made from palm kernel shell yielded the optimum purity and recovery of CH4 and CO2 gases. Purity of CO2 of 94% was successfully achieved at recovery of CH4 and CO2 of 94% and 89% respectively. The other adsorbents were saturated quickly and less effective for high carbon dioxide content separation.Carbon dioxide (CO2) gas enrichment and separation process have been researched for decades and various methods are being applied in industries to reduce and resist CO2 gas due to its corrosive characteristics and negative effects on environment. Greenhouse gases such as methane (CH4) and CO2 are the most abundant in natural gas wells. They contribute significant negative effects to global warming. In this research, Pressure swing adsorption method was utilized as a mechanism to capture and recover binary gas via gas separation process by adsorbents. The adsorbents used in this study were Zeolite SA, Zirconium-benzene dicarboxylate (UiO-66) and activated carbons made from Kenaf and palm kernel shell (PKS) within the pressure differences of up to 3 bars. The adsorbents were prepared and characterized using Brunauer-Emmett-Teller (BET) analysis and particle size distribution analysis. Adsorbents selection and their capability were tested using binary mixture gas of 70% CO2 and 30% CH4 via breakthrough studi...","PeriodicalId":6836,"journal":{"name":"6TH INTERNATIONAL CONFERENCE ON ENVIRONMENT (ICENV2018): Empowering Environment and Sustainable Engineering Nexus Through Green Technology","volume":"49 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90038174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modelling of solubility of mercaptans in water at low concentrations","authors":"R. M. Zin, K. Sabil, M. Mutalib, C. Coquelet","doi":"10.1063/1.5117084","DOIUrl":"https://doi.org/10.1063/1.5117084","url":null,"abstract":"","PeriodicalId":6836,"journal":{"name":"6TH INTERNATIONAL CONFERENCE ON ENVIRONMENT (ICENV2018): Empowering Environment and Sustainable Engineering Nexus Through Green Technology","volume":"51 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78668086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Siti Sarah Abdul Rahman, Siti Rohana Mohd Yatim, A. Abdullah, N. A. Zainuddin, M. A. Samah
Construction-related environmental pollution has been increasing due to the massive number of ongoing urban development. The growth of construction and its impacts on environmental and human health are critical. The aim of this study is to measure the concentration of PM2.5 emitted from construction activities such as masonry, plastering, and mixing of concrete and to assess the lung function performance of the exposed construction workers. The concentration of PM2.5 was measured using Dust Track II Aerosol Monitor. The sampling period is 8 hours per day for 6 days for each activity. Meanwhile, the peak expiratory flow rate (PEFR) test was conducted by using peak flow meter. A total of 80 exposed construction workers were selected to participate in the PEFR test. Each activity exhibited a different pattern for different level of PM2.5 concentration. Masonry activity recorded the highest mean concentration of PM 2.5 which was 79.98 µg/m3, followed by concrete mixing and plastering activity each recorded 78.42 µg/m3 and 72.57 µg/m3 respectively. Participants from plastering activity has the highest mean of PEFR which is 343.65 L/min. Masonry and mixing of concrete activity had a lower mean of PEFR which was 329.26 L/min and 298.62 L/min respectively. As conclusion, the findings provided significant knowledge about the concentration of PM2.5 from various activities and the need of safety precaution among workers.
{"title":"Exposure of particulate matter 2.5 (PM2.5) on lung function performance of construction workers","authors":"Siti Sarah Abdul Rahman, Siti Rohana Mohd Yatim, A. Abdullah, N. A. Zainuddin, M. A. Samah","doi":"10.1063/1.5117090","DOIUrl":"https://doi.org/10.1063/1.5117090","url":null,"abstract":"Construction-related environmental pollution has been increasing due to the massive number of ongoing urban development. The growth of construction and its impacts on environmental and human health are critical. The aim of this study is to measure the concentration of PM2.5 emitted from construction activities such as masonry, plastering, and mixing of concrete and to assess the lung function performance of the exposed construction workers. The concentration of PM2.5 was measured using Dust Track II Aerosol Monitor. The sampling period is 8 hours per day for 6 days for each activity. Meanwhile, the peak expiratory flow rate (PEFR) test was conducted by using peak flow meter. A total of 80 exposed construction workers were selected to participate in the PEFR test. Each activity exhibited a different pattern for different level of PM2.5 concentration. Masonry activity recorded the highest mean concentration of PM 2.5 which was 79.98 µg/m3, followed by concrete mixing and plastering activity each recorded 78.42 µg/m3 and 72.57 µg/m3 respectively. Participants from plastering activity has the highest mean of PEFR which is 343.65 L/min. Masonry and mixing of concrete activity had a lower mean of PEFR which was 329.26 L/min and 298.62 L/min respectively. As conclusion, the findings provided significant knowledge about the concentration of PM2.5 from various activities and the need of safety precaution among workers.","PeriodicalId":6836,"journal":{"name":"6TH INTERNATIONAL CONFERENCE ON ENVIRONMENT (ICENV2018): Empowering Environment and Sustainable Engineering Nexus Through Green Technology","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76742927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}