首页 > 最新文献

Materials for Renewable and Sustainable Energy最新文献

英文 中文
Numerical investigation of the effect of an air layer on the melting process of phase change materials 空气层对相变材料熔化过程影响的数值研究
IF 3.6 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-05-14 DOI: 10.1007/s40243-024-00261-y
Abbas Fadhil Khalaf, Farhan Lafta Rashid, Mudhar A. Al-Obaidi, Arman Ameen, Hayder I. Mohammed

Designing more effective thermal energy storage devices can result from understanding how air layers impact the melting process. The total efficiency of these systems can be improved by optimizing the melting process of the phase change materials (PCMs), which are utilised to store and release thermal energy. The current study utilises an analysis to evaluate how an air layer would affect melting of the PCM. The enthalpy-porosity combination based ANSYS/FLUENT 16 software is specifically used to accomplish this study, considering the paraffin wax (RT42) as the PCM. The study reveal that the presence of an air layer would impact the dissolution process. This result is assured an increase of melting time of PCM by 125% as a result to having an air layer of 5 cm thickness compared to a cell without an air layer. Furthermore, an increase of the layer thickness beyond 5 cm has a progressive effect on the melting time of PCM. One important component that affects the melting process is the existence of an air layer above the cell. Greater heat transfer resistance from thicker air layers prolongs the time needed to finish melting. The efficient heat transmission of PCM is shown to be reduced when there is an air layer above the cell. The melting process gradually slows down as the air layer thickness rises, which reflects the decreased heat transmission. These results highlight how crucial it is to take the environment into account while creating PCM-filled energy storage cells.

了解空气层对熔化过程的影响,可以设计出更有效的热能储存设备。通过优化相变材料 (PCM) 的熔化过程,可以提高这些系统的总效率。本研究通过分析评估空气层对 PCM 熔化的影响。考虑到石蜡 (RT42) 作为 PCM,本研究特别使用了基于 ANSYS/FLUENT 16 软件的焓-孔组合。研究表明,空气层的存在会影响溶解过程。与没有空气层的电池相比,有 5 厘米厚的空气层后,PCM 的熔化时间延长了 125%。此外,空气层厚度增加到 5 厘米以上,对 PCM 的熔化时间也会产生渐进影响。影响熔化过程的一个重要因素是电池上方是否存在空气层。较厚的空气层会产生较大的热传导阻力,从而延长完成熔化所需的时间。当电池上方存在空气层时,PCM 的有效传热会降低。随着空气层厚度的增加,熔化过程会逐渐减慢,这反映了热传递的减弱。这些结果突显了在制造充满 PCM 的储能电池时考虑环境因素是多么重要。
{"title":"Numerical investigation of the effect of an air layer on the melting process of phase change materials","authors":"Abbas Fadhil Khalaf,&nbsp;Farhan Lafta Rashid,&nbsp;Mudhar A. Al-Obaidi,&nbsp;Arman Ameen,&nbsp;Hayder I. Mohammed","doi":"10.1007/s40243-024-00261-y","DOIUrl":"10.1007/s40243-024-00261-y","url":null,"abstract":"<div><p>Designing more effective thermal energy storage devices can result from understanding how air layers impact the melting process. The total efficiency of these systems can be improved by optimizing the melting process of the phase change materials (PCMs), which are utilised to store and release thermal energy. The current study utilises an analysis to evaluate how an air layer would affect melting of the PCM. The enthalpy-porosity combination based ANSYS/FLUENT 16 software is specifically used to accomplish this study, considering the paraffin wax (RT42) as the PCM. The study reveal that the presence of an air layer would impact the dissolution process. This result is assured an increase of melting time of PCM by 125% as a result to having an air layer of 5 cm thickness compared to a cell without an air layer. Furthermore, an increase of the layer thickness beyond 5 cm has a progressive effect on the melting time of PCM. One important component that affects the melting process is the existence of an air layer above the cell. Greater heat transfer resistance from thicker air layers prolongs the time needed to finish melting. The efficient heat transmission of PCM is shown to be reduced when there is an air layer above the cell. The melting process gradually slows down as the air layer thickness rises, which reflects the decreased heat transmission. These results highlight how crucial it is to take the environment into account while creating PCM-filled energy storage cells.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"13 3","pages":"291 - 305"},"PeriodicalIF":3.6,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-024-00261-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140930028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CO2 conversion to synthetic fuels using flow cell reactor over Cu and Ag based cathodes 使用铜基和银基阴极的流动池反应器将二氧化碳转化为合成燃料
IF 3.6 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-05-14 DOI: 10.1007/s40243-024-00263-w
Sabrina C. Zignani, Antonino S. Aricò

As a result of electrochemical conversion of carbon dioxide (CO2), value-added chemicals like as synthetic fuels and chemical feedstocks can be produced. In the current state of the art, copper-based materials are most widely used being the most effective catalysts for this reaction. It is still necessary to improve the reaction rate and product selectivity of CuOx for electrochemical CO2 reduction reaction (CO2RR). The main objective of this work was synthesized and evaluate the copper oxide electrocatalyst combined with silver (CuO 70% Ag 30%) for the conversion of carbon dioxide into synthetic fuels. The catalysts have been prepared by the oxalate method and assessed in a flow cell system. The results of electrochemical experiments were carried out at room temperature and at different potentials (-1.05 V–0.75 V vs. RHE in presence of 0.1 M KHCO3) and gas and liquid chromatographic analysis are summarized. The CuOx-based electrodes demonstrated the selective of ~ 25% at -0.55 V for formic acid (HCOOH) and over CuO -Ag and selective of ethylene at ~ 20% over CuOx at -1.05 V. Other products were formed as ethylene, ethanol, and propanol (C2H4, EtOH, PrOH) at more positive potentials. On the other hand, carbon monoxide, acetate, ethylene glycol, propinaldehyde, glycoaldehyde and glyoxal (CO, CH3COO, C2H6O2, C3H6O, C2H4O2, C2H2O2) have been formed and detected. Based on the results of these studies, it appears that the formation of synthetic fuels from CO2 at room temperature in alkaline environment can be very promising.

通过对二氧化碳(CO2)进行电化学转化,可以生产出高附加值的化学品,如合成燃料和化学原料。目前,铜基材料作为该反应最有效的催化剂得到了最广泛的应用。但仍有必要提高 CuOx 在电化学二氧化碳还原反应(CO2RR)中的反应速率和产物选择性。这项工作的主要目的是合成和评估氧化铜与银(CuO 70% Ag 30%)结合的电催化剂,用于将二氧化碳转化为合成燃料。催化剂采用草酸盐法制备,并在流动池系统中进行了评估。电化学实验在室温和不同电位(-1.05 V-0.75 V vs. RHE,存在 0.1 M KHCO3)下进行,并总结了气相和液相色谱分析结果。结果表明,在-0.55 V电压下,CuOx电极对甲酸(HCOOH)的选择性比 CuO -Ag 高约 25%;在-1.05 V电压下,CuOx电极对乙烯的选择性比 CuOx 高约 20%。在更高的正电位下,会形成乙烯、乙醇和丙醇(C2H4、EtOH、PrOH)等其他产物。另一方面,一氧化碳、醋酸、乙二醇、丙醛、甘醛和乙二醛(CO、CH3COO、C2H6O2、C3H6O、C2H4O2、C2H2O2)也已形成并被检测到。根据这些研究结果,在碱性环境中室温下利用二氧化碳形成合成燃料似乎很有前景。
{"title":"CO2 conversion to synthetic fuels using flow cell reactor over Cu and Ag based cathodes","authors":"Sabrina C. Zignani,&nbsp;Antonino S. Aricò","doi":"10.1007/s40243-024-00263-w","DOIUrl":"10.1007/s40243-024-00263-w","url":null,"abstract":"<div><p>As a result of electrochemical conversion of carbon dioxide (CO<sub>2</sub>), value-added chemicals like as synthetic fuels and chemical feedstocks can be produced. In the current state of the art, copper-based materials are most widely used being the most effective catalysts for this reaction. It is still necessary to improve the reaction rate and product selectivity of CuOx for electrochemical CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR). The main objective of this work was synthesized and evaluate the copper oxide electrocatalyst combined with silver (CuO 70% Ag 30%) for the conversion of carbon dioxide into synthetic fuels. The catalysts have been prepared by the oxalate method and assessed in a flow cell system. The results of electrochemical experiments were carried out at room temperature and at different potentials (-1.05 V–0.75 V vs. RHE in presence of 0.1 M KHCO<sub>3</sub>) and gas and liquid chromatographic analysis are summarized. The CuOx-based electrodes demonstrated the selective of ~ 25% at -0.55 V for formic acid (HCOOH) and over CuO -Ag and selective of ethylene at ~ 20% over CuOx at -1.05 V. Other products were formed as ethylene, ethanol, and propanol (C<sub>2</sub>H<sub>4</sub>, EtOH, PrOH) at more positive potentials. On the other hand, carbon monoxide, acetate, ethylene glycol, propinaldehyde, glycoaldehyde and glyoxal (CO, CH<sub>3</sub>COO, C<sub>2</sub>H<sub>6</sub>O<sub>2</sub>, C<sub>3</sub>H<sub>6</sub>O, C<sub>2</sub>H<sub>4</sub>O<sub>2</sub>, C<sub>2</sub>H<sub>2</sub>O<sub>2</sub>) have been formed and detected. Based on the results of these studies, it appears that the formation of synthetic fuels from CO<sub>2</sub> at room temperature in alkaline environment can be very promising.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"13 2","pages":"233 - 241"},"PeriodicalIF":3.6,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-024-00263-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140930033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Maximizing power generation in single-chamber microbial fuel cells: the role of LiTa0.5Nb0.5O3/g-C3N4 photocatalyst 最大限度提高单室微生物燃料电池的发电量:LiTa0.5Nb0.5O3/g-C3N4 光催化剂的作用
IF 3.6 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-05-09 DOI: 10.1007/s40243-024-00259-6
Nour-eddine Lazar, Driss Mazkad, Hamza Kharti, Fatma Yalcinkaya, Andrea Pietrelli, Vincenzo Ferrara, Noureddine Touach, Abdellah Benzaouak, Mohammed El Mahi, El Mostapha Lotfi

Microbial fuel cells (MFCs) have attracted a great deal of attention as a promising technology for recovering electricity from organic substances by harnessing the metabolic activities of microorganisms. The objective of this study is to assess the efficacy of a LiTa0.5Nb0.5O3/g-C3N4 (LTN/g-C3N4) heterojunction as a photocathode catalyst within a single-chamber microbial fuel cell operating under both light irradiation and dark conditions. X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and Energy dispersive X-Ray spectroscopy (EDS) were used to conduct a comprehensive analysis of the composite catalyst, revealing its exceptional purity and unique properties. After 120 h of exposure to visible light, the maximal power density of the MFC containing LTN/g-C3N4-modified carbon cloth was determined to be 667.7 mW/m3. The power density achieved with the presence of light was approximately three times greater than the power density obtained without light in the MFC (235.64 mW/m3). In addition, the study determined that the removal efficiencies of chemical oxygen demand (COD) were 88.4% and 66.5% when exposed to light and in the absence of light, respectively. These findings highlight the potential of the non-precious LTN/g-C3N4 photocatalyst as a viable alternative for effective wastewater treatment and power generation in microbial fuel cells with a single chamber configuration.

微生物燃料电池(MFC)作为一种利用微生物的新陈代谢活动从有机物中回收电能的前景广阔的技术,已经引起了广泛的关注。本研究的目的是评估在光照和黑暗条件下运行的单室微生物燃料电池中,将 LiTa0.5Nb0.5O3/g-C3N4 (LTN/g-C3N4)异质结作为光阴极催化剂的功效。研究人员利用 X 射线衍射 (XRD)、傅立叶变换红外光谱 (FTIR)、扫描电子显微镜 (SEM) 和能量色散 X 射线光谱 (EDS) 对复合催化剂进行了全面分析,揭示了其卓越的纯度和独特的性能。在可见光下暴露 120 小时后,含有 LTN/g-C3N4 改性碳布的 MFC 的最大功率密度被测定为 667.7 mW/m3。在有光的情况下获得的功率密度比 MFC 在无光的情况下获得的功率密度(235.64 mW/m3)高出约三倍。此外,研究还确定,在有光和无光的情况下,化学需氧量(COD)的去除率分别为 88.4% 和 66.5%。这些发现凸显了非贵金属 LTN/g-C3N4 光催化剂作为一种可行的替代品,在单室配置的微生物燃料电池中有效处理废水和发电的潜力。
{"title":"Maximizing power generation in single-chamber microbial fuel cells: the role of LiTa0.5Nb0.5O3/g-C3N4 photocatalyst","authors":"Nour-eddine Lazar,&nbsp;Driss Mazkad,&nbsp;Hamza Kharti,&nbsp;Fatma Yalcinkaya,&nbsp;Andrea Pietrelli,&nbsp;Vincenzo Ferrara,&nbsp;Noureddine Touach,&nbsp;Abdellah Benzaouak,&nbsp;Mohammed El Mahi,&nbsp;El Mostapha Lotfi","doi":"10.1007/s40243-024-00259-6","DOIUrl":"10.1007/s40243-024-00259-6","url":null,"abstract":"<div><p>Microbial fuel cells (MFCs) have attracted a great deal of attention as a promising technology for recovering electricity from organic substances by harnessing the metabolic activities of microorganisms. The objective of this study is to assess the efficacy of a LiTa<sub>0.5</sub>Nb<sub>0.5</sub>O<sub>3</sub>/g-C<sub>3</sub>N<sub>4</sub> (LTN/g-C<sub>3</sub>N<sub>4</sub>) heterojunction as a photocathode catalyst within a single-chamber microbial fuel cell operating under both light irradiation and dark conditions. X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and Energy dispersive X-Ray spectroscopy (EDS) were used to conduct a comprehensive analysis of the composite catalyst, revealing its exceptional purity and unique properties. After 120 h of exposure to visible light, the maximal power density of the MFC containing LTN/g-C3N4-modified carbon cloth was determined to be 667.7 mW/m<sup>3</sup>. The power density achieved with the presence of light was approximately three times greater than the power density obtained without light in the MFC (235.64 mW/m<sup>3</sup>). In addition, the study determined that the removal efficiencies of chemical oxygen demand (COD) were 88.4% and 66.5% when exposed to light and in the absence of light, respectively. These findings highlight the potential of the non-precious LTN/g-C<sub>3</sub>N<sub>4</sub> photocatalyst as a viable alternative for effective wastewater treatment and power generation in microbial fuel cells with a single chamber configuration.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"13 2","pages":"209 - 218"},"PeriodicalIF":3.6,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-024-00259-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140930027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis and optimization of lead-free perovskite solar cells: investigating performance and electrical characteristics 无铅过氧化物太阳能电池的分析和优化:研究性能和电气特性
IF 3.6 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-04-25 DOI: 10.1007/s40243-024-00260-z
A. Mortadi, E. El Hafidi, H. Nasrellah, M. Monkade, R. El Moznine

Several studies on solar cells using SCAPS-1D were conducted to investigate their performance, which are typically limited to I–V analysis for DC characterization. Therefore, in the present study, a very wide frequency range from 10–2 Hz to 1012 Hz was employed to explore diffusion processes and investigate the performance of lead-free Perovskite Solar Cells (PSCs) featuring as a novel heterostructure. These investigations concern the optimization of MASnI3 thickness as an absorber. Additionally, the impact of series (Rs) and shunt (Rsh) resistances is also examined. From the I–V analysis, it was determined that the power efficiency (PCE) could be achieved at a thickness of 0.6 µm. Increasing the series resistance (Rs) led to a significant decrease in the fill factor (FF) and (PCE), whereas the shunt resistance (Rsh) demonstrated a notable improvement in both (FF) and (PCE). Analysis of AC characteristics revealed complex impedance (Z*) and modulus (M*) indicative of main ionic transport, recombination, and diffusion processes crucial for optimization. An appropriate equivalent circuit model was developed and validated through deconvolution and theoretical considerations, yielding parameters such as the time constant for each process. It was observed that ionic conductivity and electronic diffusion play key roles in balancing charge collection and recombination losses. The critical influence of series and shunt resistance on low and high-frequency processes was emphasized, underscoring their significance in solar cell efficiency. A strong correlation was established between the evolution of time constants for each process and power conversion efficiency (PCE).

对使用 SCAPS-1D 的太阳能电池进行了多项性能研究,但这些研究通常仅限于直流特性的 I-V 分析。因此,在本研究中,采用了从 10-2 Hz 到 1012 Hz 的极宽频率范围来探索扩散过程,并研究以新型异质结构为特征的无铅 Perovskite 太阳能电池 (PSC) 的性能。这些研究涉及作为吸收体的 MASnI3 厚度的优化。此外,还研究了串联电阻(Rs)和并联电阻(Rsh)的影响。通过 I-V 分析,可以确定在厚度为 0.6 µm 时可以达到功率效率 (PCE)。增加串联电阻 (Rs) 会导致填充因子 (FF) 和 (PCE) 明显降低,而并联电阻 (Rsh) 则会显著提高 (FF) 和 (PCE)。交流特性分析显示了复杂的阻抗(Z*)和模量(M*),表明了对优化至关重要的主要离子传输、重组和扩散过程。通过解卷积和理论考虑,开发并验证了适当的等效电路模型,得出了每个过程的时间常数等参数。研究发现,离子导电性和电子扩散在平衡电荷收集和重组损耗方面发挥着关键作用。研究强调了串联和并联电阻对低频和高频过程的关键影响,突出了它们对太阳能电池效率的重要性。每个过程的时间常数演变与功率转换效率(PCE)之间建立了很强的相关性。
{"title":"Analysis and optimization of lead-free perovskite solar cells: investigating performance and electrical characteristics","authors":"A. Mortadi,&nbsp;E. El Hafidi,&nbsp;H. Nasrellah,&nbsp;M. Monkade,&nbsp;R. El Moznine","doi":"10.1007/s40243-024-00260-z","DOIUrl":"10.1007/s40243-024-00260-z","url":null,"abstract":"<div><p>Several studies on solar cells using SCAPS-1D were conducted to investigate their performance, which are typically limited to I–V analysis for DC characterization. Therefore, in the present study, a very wide frequency range from 10<sup>–2</sup> Hz to 10<sup>12</sup> Hz was employed to explore diffusion processes and investigate the performance of lead-free Perovskite Solar Cells (PSCs) featuring as a novel heterostructure. These investigations concern the optimization of MASnI<sub>3</sub> thickness as an absorber. Additionally, the impact of series (Rs) and shunt (Rsh) resistances is also examined. From the I–V analysis, it was determined that the power efficiency (PCE) could be achieved at a thickness of 0.6 µm. Increasing the series resistance (Rs) led to a significant decrease in the fill factor (FF) and (PCE), whereas the shunt resistance (Rsh) demonstrated a notable improvement in both (FF) and (PCE). Analysis of AC characteristics revealed complex impedance (Z*) and modulus (M*) indicative of main ionic transport, recombination, and diffusion processes crucial for optimization. An appropriate equivalent circuit model was developed and validated through deconvolution and theoretical considerations, yielding parameters such as the time constant for each process. It was observed that ionic conductivity and electronic diffusion play key roles in balancing charge collection and recombination losses. The critical influence of series and shunt resistance on low and high-frequency processes was emphasized, underscoring their significance in solar cell efficiency. A strong correlation was established between the evolution of time constants for each process and power conversion efficiency (PCE).</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"13 2","pages":"219 - 232"},"PeriodicalIF":3.6,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-024-00260-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140657248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lithiated Nafion membrane as a single-ion conducting polymer electrolyte in lithium batteries 锂化 Nafion 膜作为锂电池中的单离子导电聚合物电解质
IF 3.6 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-03-06 DOI: 10.1007/s40243-023-00249-0
Lucia Mazzapioda, Francesco Piccolo, Alessandra Del Giudice, Laura Silvestri, Maria Assunta Navarra

Single lithium-ion conducting polymer electrolytes are promising candidates for next generation safer lithium batteries. In this work, Li+-conducting Nafion membranes have been synthesized by using a novel single-step procedure. The Li-Nafion membranes were characterized by means of small-wide angle X-ray scattering, infrared spectroscopy and thermal analysis, for validating the proposed lithiation method. The obtained membranes were swollen in different organic aprotic solvent mixtures and characterized in terms of ionic conductivity, electrochemical stability window, lithium stripping-deposition ability and their interface properties versus lithium metal. The membrane swollen in ethylene carbonate:propylene carbonate (EC:PC, 1:1 w/w) displays good temperature-activated ionic conductivities (σ ≈ 5.5 × 10–4 S cm−1 at 60 °C) and a more stable Li-electrolyte interface with respect to the other samples. This Li-Nafion membrane was tested in a lithium-metal cell adopting LiFePO4 as cathode material. A specific capacity of 140 mAhg−1, after 50 cycles, was achieved at 30 °C, demonstrating the feasibility of the proposed Li-Nafion membrane.

摘要 单一锂离子传导聚合物电解质是下一代更安全锂电池的理想候选材料。本研究采用新颖的单步法合成了锂离子传导 Nafion 膜。通过小广角 X 射线散射、红外光谱和热分析对锂-Nafion 膜进行了表征,以验证所提出的石化方法。将获得的膜在不同的有机烷基混合溶剂中溶胀,并从离子电导率、电化学稳定窗口、锂剥离沉积能力及其与锂金属的界面特性等方面对其进行表征。与其他样品相比,在碳酸乙烯酯:碳酸丙烯酯(EC:PC,1:1 w/w)中溶胀的膜显示出良好的温度激活离子电导率(σ ≈ 5.5 × 10-4 S cm-1,60 °C)和更稳定的锂电解质界面。在采用磷酸铁锂作为阴极材料的锂金属电池中测试了这种锂-负离子膜。在 30 °C 下循环 50 次后,比容量达到 140 mAhg-1,这证明了所建议的锂-萘非离子膜的可行性。
{"title":"Lithiated Nafion membrane as a single-ion conducting polymer electrolyte in lithium batteries","authors":"Lucia Mazzapioda,&nbsp;Francesco Piccolo,&nbsp;Alessandra Del Giudice,&nbsp;Laura Silvestri,&nbsp;Maria Assunta Navarra","doi":"10.1007/s40243-023-00249-0","DOIUrl":"10.1007/s40243-023-00249-0","url":null,"abstract":"<div><p>Single lithium-ion conducting polymer electrolytes are promising candidates for next generation safer lithium batteries. In this work, Li<sup>+</sup>-conducting Nafion membranes have been synthesized by using a novel single-step procedure. The Li-Nafion membranes were characterized by means of small-wide angle X-ray scattering, infrared spectroscopy and thermal analysis, for validating the proposed lithiation method. The obtained membranes were swollen in different organic aprotic solvent mixtures and characterized in terms of ionic conductivity, electrochemical stability window, lithium stripping-deposition ability and their interface properties versus lithium metal. The membrane swollen in ethylene carbonate:propylene carbonate (EC:PC, 1:1 w/w) displays good temperature-activated ionic conductivities (<i>σ</i> ≈ 5.5 × 10<sup>–4</sup> S cm<sup>−1</sup> at 60 °C) and a more stable Li-electrolyte interface with respect to the other samples. This Li-Nafion membrane was tested in a lithium-metal cell adopting LiFePO<sub>4</sub> as cathode material. A specific capacity of 140 mAhg<sup>−1</sup>, after 50 cycles, was achieved at 30 °C, demonstrating the feasibility of the proposed Li-Nafion membrane.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"13 1","pages":"59 - 68"},"PeriodicalIF":3.6,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-023-00249-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140044816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Incorporation of multilayered double hydroxides/sepiolite augments proton conductivity performance in low sulfonated polyether sulfone octyl sulfonamide 掺入多层双氢氧化物/沸石可提高低磺化聚醚砜辛基磺酰胺的质子传导性能
IF 3.6 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-03-01 DOI: 10.1007/s40243-024-00256-9
khaled Charradi, Walid Mabrouk, Imen Ben Kacem, Nizar Bellakhal, Youssef O. Al-Ghamdi, Riadh Marzouki, Sherif M. A. S. Keshk

Low-sulfonation-level polyether sulfone octyl sulfonamide (LSPSO) was blended with a layered double hydroxides (LDHs, Mg2AlCl)/sepiolite nanostructure clay as a filler to create an electrolyte membrane for fuel cell applications. Comprehensive characterization of the composite membranes was conducted, encompassing Fourier-transform infrared spectroscopy, X-ray diffraction, mechanical stability assessment, thermal gravimetric analysis, ion exchange capability, swelling characteristics, water uptake performance, and electrochemical impedance spectroscopy analysis. In comparison to the pristine LSPSO membrane, the presence of LDHs/sepiolite nanoarchitecture material within LSPSO exhibited superior water retention and proton conductivity values, especially at elevated temperatures. The proton conductivity of the composite membranes reached approximately 250 mS/cm, while the unmodified LSPSO membrane only achieved 35 mS/cm at 100 °C. Moreover, LSPSO composite membranes demonstrated enhanced chemical and thermal stability along with higher proton conductivity when compared to pristine LSPSO membranes. These findings highlight the potential of developing tailored LSPSO composite membranes to advance the prospects of commercial applications in proton exchange membrane fuel cells.

将低磺化度聚醚砜辛基磺酰胺(LSPSO)与层状双氢氧化物(LDHs,Mg2AlCl)/sepiolite 纳米结构粘土作为填料混合,制成了一种用于燃料电池的电解质膜。对复合膜进行了全面的表征,包括傅立叶变换红外光谱、X 射线衍射、机械稳定性评估、热重分析、离子交换能力、溶胀特性、吸水性能和电化学阻抗光谱分析。与原始 LSPSO 膜相比,LDHs/sepiolite 纳米结构材料在 LSPSO 中的存在表现出更高的保水性和质子传导性,尤其是在高温条件下。复合膜的质子电导率达到约 250 mS/cm,而未经改性的 LSPSO 膜在 100 °C 时仅为 35 mS/cm。此外,与原始 LSPSO 膜相比,LSPSO 复合膜具有更高的化学稳定性和热稳定性以及质子传导性。这些发现凸显了开发定制 LSPSO 复合膜的潜力,从而推动质子交换膜燃料电池的商业应用前景。
{"title":"Incorporation of multilayered double hydroxides/sepiolite augments proton conductivity performance in low sulfonated polyether sulfone octyl sulfonamide","authors":"khaled Charradi,&nbsp;Walid Mabrouk,&nbsp;Imen Ben Kacem,&nbsp;Nizar Bellakhal,&nbsp;Youssef O. Al-Ghamdi,&nbsp;Riadh Marzouki,&nbsp;Sherif M. A. S. Keshk","doi":"10.1007/s40243-024-00256-9","DOIUrl":"10.1007/s40243-024-00256-9","url":null,"abstract":"<div><p>Low-sulfonation-level polyether sulfone octyl sulfonamide (LSPSO) was blended with a layered double hydroxides (LDHs, Mg<sub>2</sub>AlCl)/sepiolite nanostructure clay as a filler to create an electrolyte membrane for fuel cell applications. Comprehensive characterization of the composite membranes was conducted, encompassing Fourier-transform infrared spectroscopy, X-ray diffraction, mechanical stability assessment, thermal gravimetric analysis, ion exchange capability, swelling characteristics, water uptake performance, and electrochemical impedance spectroscopy analysis. In comparison to the pristine LSPSO membrane, the presence of LDHs/sepiolite nanoarchitecture material within LSPSO exhibited superior water retention and proton conductivity values, especially at elevated temperatures. The proton conductivity of the composite membranes reached approximately 250 mS/cm, while the unmodified LSPSO membrane only achieved 35 mS/cm at 100 °C. Moreover, LSPSO composite membranes demonstrated enhanced chemical and thermal stability along with higher proton conductivity when compared to pristine LSPSO membranes. These findings highlight the potential of developing tailored LSPSO composite membranes to advance the prospects of commercial applications in proton exchange membrane fuel cells.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"13 1","pages":"97 - 107"},"PeriodicalIF":3.6,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-024-00256-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140001526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CO2 photocatalytic reduction with robust and stable metal–organic framework: a review 利用坚固稳定的金属有机框架进行二氧化碳光催化还原:综述
IF 3.6 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-03-01 DOI: 10.1007/s40243-023-00252-5
Ryohei Mori

Climate change and global warming problem are becoming the serious issue and some action is necessary in order to mitigate the rising temperature. CO2 increase is one of the reason for temperature rise, and the technology to convert CO2 to beneficial energy or chemical substance could be one of the key solution (CO2 photocatalytic reduction). Metal–organic frameworks (MOFs) have gained much attention owing to their extremely large surface areas, tunable fine structures, and potential applications in many areas. Recently, MOFs have been demonstrated to be promising materials for CO2 photocatalytic reduction. This review summarized recent research progresses in photocatalytic reduction using MOFs. MOFs were classified mainly by the type of metal center, and the feature and tendency against their functions towards CO2 photocatalytic activity will be explained.

气候变化和全球变暖问题日益严重,有必要采取一些行动来减缓气温的上升。二氧化碳增加是气温上升的原因之一,而将二氧化碳转化为有益的能源或化学物质的技术可能是关键的解决方案之一(二氧化碳光催化还原)。金属有机框架(MOFs)因其超大的表面积、可调的精细结构以及在许多领域的潜在应用而备受关注。最近,MOFs 被证明是一种很有前途的二氧化碳光催化还原材料。本综述总结了利用 MOFs 进行光催化还原的最新研究进展。主要根据金属中心的类型对 MOFs 进行分类,并阐述其在 CO2 光催化活性方面的功能特点和发展趋势。
{"title":"CO2 photocatalytic reduction with robust and stable metal–organic framework: a review","authors":"Ryohei Mori","doi":"10.1007/s40243-023-00252-5","DOIUrl":"10.1007/s40243-023-00252-5","url":null,"abstract":"<div><p>Climate change and global warming problem are becoming the serious issue and some action is necessary in order to mitigate the rising temperature. CO<sub>2</sub> increase is one of the reason for temperature rise, and the technology to convert CO<sub>2</sub> to beneficial energy or chemical substance could be one of the key solution (CO<sub>2</sub> photocatalytic reduction). Metal–organic frameworks (MOFs) have gained much attention owing to their extremely large surface areas, tunable fine structures, and potential applications in many areas. Recently, MOFs have been demonstrated to be promising materials for CO<sub>2</sub> photocatalytic reduction. This review summarized recent research progresses in photocatalytic reduction using MOFs. MOFs were classified mainly by the type of metal center, and the feature and tendency against their functions towards CO<sub>2</sub> photocatalytic activity will be explained.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"13 1","pages":"109 - 132"},"PeriodicalIF":3.6,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-023-00252-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140001521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Significant augmentation of proton conductivity in low sulfonated polyether sulfone octyl sulfonamide membranes through the incorporation of hectorite clay 通过加入蛭石粘土显著提高低磺化聚醚砜辛基磺酰胺膜的质子传导性
IF 3.6 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-02-16 DOI: 10.1007/s40243-023-00251-6
Walid Mabrouk, Khaled Charradi, Imen Ben Kacem, Ridha Lafi, Nizar Bellakhal, Riadh Marzouki, Sherif M. A. S. Keshk

An innovative methodology was employed to fabricate ion exchange membranes tailored for fuel cell applications. This approach entailed blending low sulfonated polyether sulfone octyl sulfonamide (LSPSO) with Hectorite (Hect) clay at varying weight percentages (1 wt%, 3 wt%, and 6 wt%). The resultant composite membranes underwent comprehensive characterization via Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and thermogravimetric analysis, aiming to assess their surface morphology and thermal resilience. Remarkably, the thermal stability of the composite membrane exhibited a substantial enhancement in comparison to the pristine LSPSO membrane. Moreover, the incorporation of 6 wt% Hectorite into the composite membrane yielded a noteworthy amplification in proton conductivity, achieving a fourfold increase (141.66 mS/cm) as opposed to the LSPSO membrane in isolation (35.04 mS/cm). Consequently, the Hect/LSPSO composite membrane exhibits remarkable potential as an electrolyte membrane for fuel cells operating at temperatures surpassing 100 °C.

我们采用了一种创新方法来制造适合燃料电池应用的离子交换膜。这种方法需要将低磺化聚醚砜辛基磺酰胺(LSPSO)与赫克托石(Hect)粘土以不同的重量百分比(1 wt%、3 wt% 和 6 wt%)混合在一起。通过傅立叶变换红外光谱、X 射线衍射、扫描电子显微镜和热重分析对所得复合膜进行了综合表征,以评估其表面形态和热回弹性。与原始的 LSPSO 膜相比,复合膜的热稳定性显著提高。此外,在复合膜中加入 6 wt% 的赫克托石后,质子传导性显著提高,与单独的 LSPSO 膜(35.04 mS/cm)相比,质子传导性提高了四倍(141.66 mS/cm)。因此,Hect/LSPSO 复合膜作为一种电解质膜,在温度超过 100 °C 的燃料电池中具有显著的应用潜力。
{"title":"Significant augmentation of proton conductivity in low sulfonated polyether sulfone octyl sulfonamide membranes through the incorporation of hectorite clay","authors":"Walid Mabrouk,&nbsp;Khaled Charradi,&nbsp;Imen Ben Kacem,&nbsp;Ridha Lafi,&nbsp;Nizar Bellakhal,&nbsp;Riadh Marzouki,&nbsp;Sherif M. A. S. Keshk","doi":"10.1007/s40243-023-00251-6","DOIUrl":"10.1007/s40243-023-00251-6","url":null,"abstract":"<div><p>An innovative methodology was employed to fabricate ion exchange membranes tailored for fuel cell applications. This approach entailed blending low sulfonated polyether sulfone octyl sulfonamide (LSPSO) with Hectorite (Hect) clay at varying weight percentages (1 wt%, 3 wt%, and 6 wt%). The resultant composite membranes underwent comprehensive characterization via Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and thermogravimetric analysis, aiming to assess their surface morphology and thermal resilience. Remarkably, the thermal stability of the composite membrane exhibited a substantial enhancement in comparison to the pristine LSPSO membrane. Moreover, the incorporation of 6 wt% Hectorite into the composite membrane yielded a noteworthy amplification in proton conductivity, achieving a fourfold increase (141.66 mS/cm) as opposed to the LSPSO membrane in isolation (35.04 mS/cm). Consequently, the Hect/LSPSO composite membrane exhibits remarkable potential as an electrolyte membrane for fuel cells operating at temperatures surpassing 100 °C.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"13 1","pages":"69 - 79"},"PeriodicalIF":3.6,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-023-00251-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139750646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photoconductivity in self-assembled CuO thin films 自组装氧化铜薄膜的光电导性
IF 3.6 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-02-16 DOI: 10.1007/s40243-023-00250-7
Akhil M. Anand, Aruna Raj, Jishad A. Salam, R. Adithya Nath, R. Jayakrishnan

Self-assembly is the most promising low-cost and high-throughput methodology for nanofabrication. This paper reports the optimization of a self-assembly process at room temperature for the growth of copper oxide (CuO) based nanostructures over a copper substrate using aqueous potassium hydroxide (KOH) solution as the oxidizing agent. The monoclinic phase of CuO nanostructures grown over the copper substrate was confirmed from the X-ray diffraction (XRD) and micro-Raman analysis. The overall chemical composition of nanostructures was confirmed to be that of CuO from its oxidation state using X-ray photoelectron spectroscopy (XPS). Photodetectors were engineered with the structure Cu/CuO/Ag. The photodetectors exhibited a response to both ultraviolet and visible light illumination. The optimized Cu/CuO/Ag structure exhibits a responsivity of ~ 1.65 µA/W, with an ON:OFF ratio of ~ 69 under a bias voltage of 0.01 V. The temporal dependence of photo-response for the optimized photodetector displayed the persistent nature of photoconduction indicating a delay in charge carrier recombination which could potentially be exploited for photovoltaic applications.

自组装是最有前途的低成本、高通量纳米制造方法。本文报告了使用氢氧化钾(KOH)水溶液作为氧化剂,在室温下优化自组装工艺,在铜基底上生长基于氧化铜(CuO)的纳米结构。通过 X 射线衍射 (XRD) 和微拉曼分析,确认了在铜基底上生长的 CuO 纳米结构的单斜相。利用 X 射线光电子能谱(XPS)从氧化态确认了纳米结构的整体化学成分为氧化铜。光电探测器的结构为 Cu/CuO/Ag。光电探测器对紫外线和可见光照明均有响应。优化后的 Cu/CuO/Ag 结构在 0.01 V 的偏置电压下的响应率约为 1.65 µA/W,导通与关断比约为 69。
{"title":"Photoconductivity in self-assembled CuO thin films","authors":"Akhil M. Anand,&nbsp;Aruna Raj,&nbsp;Jishad A. Salam,&nbsp;R. Adithya Nath,&nbsp;R. Jayakrishnan","doi":"10.1007/s40243-023-00250-7","DOIUrl":"10.1007/s40243-023-00250-7","url":null,"abstract":"<div><p>Self-assembly is the most promising low-cost and high-throughput methodology for nanofabrication. This paper reports the optimization of a self-assembly process at room temperature for the growth of copper oxide (CuO) based nanostructures over a copper substrate using aqueous potassium hydroxide (KOH) solution as the oxidizing agent. The monoclinic phase of CuO nanostructures grown over the copper substrate was confirmed from the X-ray diffraction (XRD) and micro-Raman analysis. The overall chemical composition of nanostructures was confirmed to be that of CuO from its oxidation state using X-ray photoelectron spectroscopy (XPS). Photodetectors were engineered with the structure Cu/CuO/Ag. The photodetectors exhibited a response to both ultraviolet and visible light illumination. The optimized Cu/CuO/Ag structure exhibits a responsivity of ~ 1.65 µA/W, with an ON:OFF ratio of ~ 69 under a bias voltage of 0.01 V. The temporal dependence of photo-response for the optimized photodetector displayed the persistent nature of photoconduction indicating a delay in charge carrier recombination which could potentially be exploited for photovoltaic applications.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"13 1","pages":"45 - 58"},"PeriodicalIF":3.6,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-023-00250-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139765063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Desirable candidates for high-performance lead-free organic–inorganic halide perovskite solar cells 高性能无铅有机无机卤化物包晶太阳能电池的理想候选材料
IF 3.6 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-02-16 DOI: 10.1007/s40243-024-00255-w
Sajid Sajid, Salem Alzahmi, Imen Ben Salem, Nouar Tabet, Yousef Haik, Ihab M. Obaidat

Perovskite solar cells (PSCs) are currently demonstrating tremendous potential in terms of straightforward processing, a plentiful supply of materials, and easy architectural integration, as well as high power conversion efficiency (PCE). However, the elemental composition of the widely utilized organic–inorganic halide perovskites (OIHPs) contains the hazardous lead (Pb). The presence of Pb in the PSCs is problematic because of its toxicity which may slow down or even impede the pace of commercialization. As a backup option, the scientific community has been looking for non-toxic/less-toxic elements that can replace Pb in OIHPs. Despite not yet matching the impressive results of Pb-containing OIHPs, the community is paying close attention to Pb-free materials and has seen some encouraging findings. This review evaluates the Pb-replacement with suitable elements and scrutinizes the desirable optoelectronic features of such elements in OIHPs. The fundamental features of Pb-free OIHPs together with their photovoltaic performance in the PSCs are evaluated in details. Finally, we sum up the current challenges and potential opportunities for the Pb-free OIHPs and their devices.

摘要 目前,过氧化物太阳能电池(PSCs)具有加工简单、材料供应充足、易于建筑集成以及功率转换效率高(PCE)等巨大潜力。然而,广泛使用的有机无机卤化物包晶石(OIHPs)的元素组成中含有有害物质铅(Pb)。由于铅的毒性,PSCs 中含有铅是一个问题,这可能会减缓甚至阻碍商业化的步伐。作为后备方案,科学界一直在寻找可以替代 OIHP 中铅的无毒/低毒元素。尽管还无法与含铅 OIHPs 取得的令人瞩目的成果相媲美,但科学界正在密切关注无铅材料,并取得了一些令人鼓舞的研究成果。本综述评估了用合适元素替代铅的情况,并仔细研究了这些元素在 OIHP 中的理想光电特性。此外,还详细评估了无铅 OIHP 的基本特征及其在 PSC 中的光电性能。最后,我们总结了无铅 OIHP 及其器件当前面临的挑战和潜在机遇。
{"title":"Desirable candidates for high-performance lead-free organic–inorganic halide perovskite solar cells","authors":"Sajid Sajid,&nbsp;Salem Alzahmi,&nbsp;Imen Ben Salem,&nbsp;Nouar Tabet,&nbsp;Yousef Haik,&nbsp;Ihab M. Obaidat","doi":"10.1007/s40243-024-00255-w","DOIUrl":"10.1007/s40243-024-00255-w","url":null,"abstract":"<div><p>Perovskite solar cells (PSCs) are currently demonstrating tremendous potential in terms of straightforward processing, a plentiful supply of materials, and easy architectural integration, as well as high power conversion efficiency (PCE). However, the elemental composition of the widely utilized organic–inorganic halide perovskites (OIHPs) contains the hazardous lead (Pb). The presence of Pb in the PSCs is problematic because of its toxicity which may slow down or even impede the pace of commercialization. As a backup option, the scientific community has been looking for non-toxic/less-toxic elements that can replace Pb in OIHPs. Despite not yet matching the impressive results of Pb-containing OIHPs, the community is paying close attention to Pb-free materials and has seen some encouraging findings. This review evaluates the Pb-replacement with suitable elements and scrutinizes the desirable optoelectronic features of such elements in OIHPs. The fundamental features of Pb-free OIHPs together with their photovoltaic performance in the PSCs are evaluated in details. Finally, we sum up the current challenges and potential opportunities for the Pb-free OIHPs and their devices.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"13 1","pages":"133 - 153"},"PeriodicalIF":3.6,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-024-00255-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139750644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Materials for Renewable and Sustainable Energy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1