This study presents an analytical investigation of peristaltic pumping and coupled heat–mass transfer in an incompressible, electrically conducting Jeffrey viscoelastic fluid within tapered oblique channel geometries. The model incorporates buoyancy effects, reactive solute dynamics, Hall currents with linear dependence, a uniform transverse magnetic field, porous medium resistance via the Darcy–Brinkman formulation, and radiative heat transport under the gray approximation. Chemical reactions are assumed to be first-order. The governing nonlinear coupled equations are solved in closed form under long-wavelength and low-Reynolds-number approximations, which justify steady, creeping peristaltic motion. Validation against benchmark solutions reported by Ravi Rajesh and Rajasekhara Gowd demonstrates excellent agreement across varying Hall current parameters, confirming the robustness of the analysis. Results indicate that Hall currents enhance velocity by mitigating electromagnetic resistance, whereas higher Hartmann number suppress flow owing to Lorentz forces. An increasing Darcy number reduces drag from the porous matrix, thereby strengthening fluid transport. Both thermal and solutal Grashof numbers intensify buoyancy-driven convection, while Jeffrey fluid elasticity and thermal radiation contribute significantly to pumping efficiency. The Prandtl number regulates heat balance by promoting storage at higher values but supporting convective release near boundaries at lower ranges. Concentration profiles are sensitive to Biot, Soret, and Schmidt numbers as well as chemical reaction strength, underlining boundary-layer-controlled solutal modulation. Trends in pressure rise highlight viscoelastic effects in both forward and retrograde pumping regimes, whereas parametric variations in Nusselt and Sherwood numbers delineate pathways for optimizing thermal–solutal transport. This unified formulation of electromagnetic, porous, radiative, chemical, and viscoelastic effects provides benchmark-quality insights relevant to microfluidics, biomedical pumping technologies, and high-temperature industrial transport systems.
扫码关注我们
求助内容:
应助结果提醒方式:
