Pub Date : 2024-08-05DOI: 10.1007/s11043-024-09731-2
Engin Özdemir, Didem Eren Sarici
Mode I fracture toughness (Kıc) is a critical parameter in rock mechanics that is essential for understanding how rocks behave under tensile loading and crucial for applications ranging from safety assessments to structural design in geotechnical engineering. This study comprehensively investigates the influence of various environmental conditions (dry, saturated, frozen, thermal shock and thermal aging) on the physico-mechanical properties and Kıc of rocks. The primary novelty of this study lies in its comprehensive modeling approach under diverse environmental conditions, providing a nuanced understanding of factors influencing rock fracture toughness. By extending analysis to less-studied conditions such as freezing and thermal shock cycles, the study enhances the predictive capacity of fracture toughness models in practical geotechnical applications. Physico-mechanical properties, including uniaxial compressive strength, point load strength, Brazilian tensile strength (BT), Schmidt hardness, and ultrasonic wave velocity were evaluated across different environmental scenarios. Simple and linear multiple regression models were developed using these properties to predict Kıc. Notably, BT emerged as a significant predictor in the simple regression analyzes. Ten linear multiple regression models were formulated using SPSS 20, combining mechanical tests (UCS, BT, PL) with non-destructive testing methods (Vp, Vs, SH), demonstrating robust predictive capabilities with R2 values exceeding 0.95. Performance metrics (mean absolute error, mean absolute percentage error, root mean square error) were used to verify the accuracy of the model.
{"title":"Estimation of mode I fracture toughness of rocks exposed to different environmental conditions using simple and linear multiple regression","authors":"Engin Özdemir, Didem Eren Sarici","doi":"10.1007/s11043-024-09731-2","DOIUrl":"https://doi.org/10.1007/s11043-024-09731-2","url":null,"abstract":"<p>Mode I fracture toughness (Kıc) is a critical parameter in rock mechanics that is essential for understanding how rocks behave under tensile loading and crucial for applications ranging from safety assessments to structural design in geotechnical engineering. This study comprehensively investigates the influence of various environmental conditions (dry, saturated, frozen, thermal shock and thermal aging) on the physico-mechanical properties and Kıc of rocks. The primary novelty of this study lies in its comprehensive modeling approach under diverse environmental conditions, providing a nuanced understanding of factors influencing rock fracture toughness. By extending analysis to less-studied conditions such as freezing and thermal shock cycles, the study enhances the predictive capacity of fracture toughness models in practical geotechnical applications. Physico-mechanical properties, including uniaxial compressive strength, point load strength, Brazilian tensile strength (BT), Schmidt hardness, and ultrasonic wave velocity were evaluated across different environmental scenarios. Simple and linear multiple regression models were developed using these properties to predict Kıc. Notably, BT emerged as a significant predictor in the simple regression analyzes. Ten linear multiple regression models were formulated using SPSS 20, combining mechanical tests (UCS, BT, PL) with non-destructive testing methods (Vp, Vs, SH), demonstrating robust predictive capabilities with R<sup>2</sup> values exceeding 0.95. Performance metrics (mean absolute error, mean absolute percentage error, root mean square error) were used to verify the accuracy of the model.</p>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"25 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141943872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-25DOI: 10.1007/s11043-024-09729-w
Muhammad Sohail, Umar Nazir, Ahmed Fouly, Emad Mahrous Awwad, Muhammad Jahangir Khan
Many industrial processes contain the utilization of nanoparticles to improve the thermal performance of the physical systems. This research discusses the utilization of nanoparticles and thermal transport phenomenon in a stretched cylinder. The contribution of convective boundary constraints and thermal radiation is taken in heat transfer-modeled equations with an external heating source. The flow-modeled equations have been derived in Cartesian coordinates in the rotating frame. The set of nonlinear-coupled PDEs (partial differential equations) are obtained for the considered model in the simplified form by engaging boundary layer theory. Afterward, a set of ODEs (ordinary differential equations) was obtained by utilization of similarity transformation. The modeled equations are dealt with numerically via the finite element approach. The solution is displayed graphically against different emerging parameters. It is recorded that the production of the entropy mechanism generated by tetra-hybrid nanofluid is higher than the production of the entropy mechanism generated by ternary hybrid nanofluid.
{"title":"An irreversible process and radial stagnation-point motion of tetra-hybrid nanoparticles on twisting cylinder via finite element analysis","authors":"Muhammad Sohail, Umar Nazir, Ahmed Fouly, Emad Mahrous Awwad, Muhammad Jahangir Khan","doi":"10.1007/s11043-024-09729-w","DOIUrl":"10.1007/s11043-024-09729-w","url":null,"abstract":"<div><p>Many industrial processes contain the utilization of nanoparticles to improve the thermal performance of the physical systems. This research discusses the utilization of nanoparticles and thermal transport phenomenon in a stretched cylinder. The contribution of convective boundary constraints and thermal radiation is taken in heat transfer-modeled equations with an external heating source. The flow-modeled equations have been derived in Cartesian coordinates in the rotating frame. The set of nonlinear-coupled PDEs (partial differential equations) are obtained for the considered model in the simplified form by engaging boundary layer theory. Afterward, a set of ODEs (ordinary differential equations) was obtained by utilization of similarity transformation. The modeled equations are dealt with numerically via the finite element approach. The solution is displayed graphically against different emerging parameters. It is recorded that the production of the entropy mechanism generated by tetra-hybrid nanofluid is higher than the production of the entropy mechanism generated by ternary hybrid nanofluid.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"28 3","pages":"737 - 763"},"PeriodicalIF":2.1,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141778216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-16DOI: 10.1007/s11043-024-09724-1
Atanu Behera, V. T. Thushara, J. Murali Krishnan
The current study investigates the linear viscoelastic response of emulsified-asphalt cold recycled mixtures (ECRM), incorporating reclaimed asphalt pavement (RAP), fresh aggregates, cement, water, and bituminous emulsion. Specifically, two types of ECRM are analyzed: a conventional mixture with 100% RAP (ECRM1) and a modified version with 75% RAP activated by heating (ECRM2). The research highlights the distinct mechanical response resulting from variations in production processes and the RAP content of the mixtures. The study examines the rate-dependent responses under various confinement conditions, temperatures, and frequencies through repeated haversine compression loading. Further, a novel approach to determine the reference temperature is proposed, and master curves are constructed using the generalized sigmoidal and Huet–Sayegh models. Even though ECRM1 and ECRM2 have different RAP content, production processes, and volumetric properties, the differences between the mixtures using the dynamic modulus and storage-modulus master curves are not substantial. However, the loss-modulus master curve distinctly captures the differences between the mixtures, with ECRM1 exhibiting a higher loss modulus due to its higher effective binder content. Moreover, the relaxation spectrum also captures the distinct response between the materials, mirroring the response seen in the loss modulus. It is also observed that confinement pressure significantly influences the dynamic modulus and storage modulus of ECRMs at low reduced frequencies. However, the influence of confinement pressure on the loss-modulus master curve and relaxation spectrum is negligible. This indicates that confinement pressure only influences the real part of the complex modulus, with no effect on the imaginary part.
{"title":"Linear viscoelastic response of emulsified-asphalt cold recycled mixtures","authors":"Atanu Behera, V. T. Thushara, J. Murali Krishnan","doi":"10.1007/s11043-024-09724-1","DOIUrl":"10.1007/s11043-024-09724-1","url":null,"abstract":"<div><p>The current study investigates the linear viscoelastic response of emulsified-asphalt cold recycled mixtures (ECRM), incorporating reclaimed asphalt pavement (RAP), fresh aggregates, cement, water, and bituminous emulsion. Specifically, two types of ECRM are analyzed: a conventional mixture with 100% RAP (ECRM1) and a modified version with 75% RAP activated by heating (ECRM2). The research highlights the distinct mechanical response resulting from variations in production processes and the RAP content of the mixtures. The study examines the rate-dependent responses under various confinement conditions, temperatures, and frequencies through repeated haversine compression loading. Further, a novel approach to determine the reference temperature is proposed, and master curves are constructed using the generalized sigmoidal and Huet–Sayegh models. Even though ECRM1 and ECRM2 have different RAP content, production processes, and volumetric properties, the differences between the mixtures using the dynamic modulus and storage-modulus master curves are not substantial. However, the loss-modulus master curve distinctly captures the differences between the mixtures, with ECRM1 exhibiting a higher loss modulus due to its higher effective binder content. Moreover, the relaxation spectrum also captures the distinct response between the materials, mirroring the response seen in the loss modulus. It is also observed that confinement pressure significantly influences the dynamic modulus and storage modulus of ECRMs at low reduced frequencies. However, the influence of confinement pressure on the loss-modulus master curve and relaxation spectrum is negligible. This indicates that confinement pressure only influences the real part of the complex modulus, with no effect on the imaginary part.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"28 4","pages":"3157 - 3181"},"PeriodicalIF":2.1,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141641272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-11DOI: 10.1007/s11043-024-09727-y
Abhik Sur
Structures made of graded composites play an important role in various industrial fields, such as aerospace and biomechanics. By incorporating nonlocal stress theory the internal length scale parameter of the nonlocal model provides detailed information on long-range forces of atoms or molecules. This paper investigates the size-dependent modeling of a functionally graded unbounded medium influenced by a heat source and an induced magnetic field on the bounding plane. The heat transport equation is governed by a unified formulation that integrates both the three-phase-lag model and Moore–Gibson–Thompson theory of generalized thermoelasticity, incorporating a memory-dependent derivative with nonlinear and linear kernels. Using nonlocal stress theory, the constitutive equations are addressed. The basic equations are simplified in the transformed domain through the Laplace and Fourier integral transforms. To obtain solutions in the real space-time domain, the Fourier transforms are analytically inverted using residue calculus, with poles of the integrand numerically determined in the complex domain via Laguerre’s method. Subsequently, the numerical inversion of the Laplace transform is performed using a method based on Fourier series expansion. The computational results and corresponding graphical representations reveal significant effects of parameters such as the nonlocality parameter, time-delay parameter, and the influence of the magnetic field. Furthermore, the impact of different kernel functions is examined, demonstrating the superiority of nonlinear kernels over linear kernels within this new theoretical framework.
{"title":"Effectiveness of nonlinear kernel with memory for a functionally graded solid with size dependency","authors":"Abhik Sur","doi":"10.1007/s11043-024-09727-y","DOIUrl":"10.1007/s11043-024-09727-y","url":null,"abstract":"<div><p>Structures made of graded composites play an important role in various industrial fields, such as aerospace and biomechanics. By incorporating nonlocal stress theory the internal length scale parameter of the nonlocal model provides detailed information on long-range forces of atoms or molecules. This paper investigates the size-dependent modeling of a functionally graded unbounded medium influenced by a heat source and an induced magnetic field on the bounding plane. The heat transport equation is governed by a unified formulation that integrates both the three-phase-lag model and Moore–Gibson–Thompson theory of generalized thermoelasticity, incorporating a memory-dependent derivative with nonlinear and linear kernels. Using nonlocal stress theory, the constitutive equations are addressed. The basic equations are simplified in the transformed domain through the Laplace and Fourier integral transforms. To obtain solutions in the real space-time domain, the Fourier transforms are analytically inverted using residue calculus, with poles of the integrand numerically determined in the complex domain via Laguerre’s method. Subsequently, the numerical inversion of the Laplace transform is performed using a method based on Fourier series expansion. The computational results and corresponding graphical representations reveal significant effects of parameters such as the nonlocality parameter, time-delay parameter, and the influence of the magnetic field. Furthermore, the impact of different kernel functions is examined, demonstrating the superiority of nonlinear kernels over linear kernels within this new theoretical framework.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"28 3","pages":"1761 - 1786"},"PeriodicalIF":2.1,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141586367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-05DOI: 10.1007/s11043-024-09726-z
Kerim Gökhan Aktaş
This research addresses the three-dimensional thermomechanical wave propagation behavior in sandwich composite nanoplates with a metamaterial honeycomb core layer and double functionally graded (FG) ultra-stiff surface layers. Due to its potential for high-temperature applications, pure nickel (Ni) is preferred for the honeycomb core layer, and an Al2O3/Ni ceramic-metal matrix is preferred for the surface layers. The functional distribution of graphene platelets (GPLs) in three different patterns, Type-U, Type-X, and Type-O, in the metal-ceramic matrix with a power law distribution provides double-FG properties to the surface layers. The mechanical and thermal material characteristics of the core and surface layers, as well as the reinforcing GPLs, are temperature-dependent. The pattern of temperature variation over the plate thickness is considered to be nonlinear. The sandwich nanoplate’s motion equations are obtained by combining the sinusoidal higher-order shear deformation theory (SHSDT) with nonlocal integral elasticity and strain gradient elasticity theories. The wave equations are established by using Hamilton’s principle. Parametric simulations and graphical representations are performed to analyze the effects of honeycomb size variables, wave number, the power law index, the GPL distribution pattern, the GPL weight ratio, and the temperature rise on three-dimensional wave propagation in an ultra-stiff sandwich plate. The results of the analysis reveal that the 3D wave propagation of the sandwich nanoplate can be significantly modified or tuned depending on the desired parameters and conditions. Thus, the proposed sandwich structure is expected to provide essential contributions to radar/sonar stealth applications in air, space, and submarine vehicles in high or low-temperature environments, protection of microelectromechanical devices from high noise and vibration, soft robotics applications, and wearable health and protective equipment applications.
本研究探讨了具有超材料蜂窝芯层和双功能分级(FG)超刚性表层的夹层复合纳米板的三维热机械波传播行为。由于其在高温应用中的潜力,蜂窝芯层首选纯镍(Ni),表层首选 Al2O3/Ni 陶瓷金属基体。石墨烯小板块(GPL)在金属陶瓷基体中以 U 型、X 型和 O 型三种不同模式进行功能分布,其幂律分布为表层提供了双重石墨烯特性。芯层和表层以及增强 GPL 的机械和热材料特性与温度有关。温度在板厚度上的变化规律被认为是非线性的。通过将正弦高阶剪切变形理论(SHSDT)与非局部积分弹性和应变梯度弹性理论相结合,可获得夹层纳米板的运动方程。利用汉密尔顿原理建立了波方程。通过参数模拟和图形表示,分析了蜂窝尺寸变量、波数、幂律指数、GPL 分布模式、GPL 重量比和温升对超刚性夹层板中三维波传播的影响。分析结果表明,夹层纳米板的三维波传播可根据所需的参数和条件进行显著改变或调整。因此,所提出的夹层结构有望为高温或低温环境下的航空、航天和潜艇飞行器中的雷达/声纳隐形应用、保护微机电设备免受高噪音和振动的影响、软机器人应用以及可穿戴健康和防护设备应用做出重要贡献。
{"title":"3D wave dispersion analysis of graphene platelet-reinforced ultra-stiff double functionally graded nanocomposite sandwich plates with metamaterial honeycomb core layer","authors":"Kerim Gökhan Aktaş","doi":"10.1007/s11043-024-09726-z","DOIUrl":"https://doi.org/10.1007/s11043-024-09726-z","url":null,"abstract":"<p>This research addresses the three-dimensional thermomechanical wave propagation behavior in sandwich composite nanoplates with a metamaterial honeycomb core layer and double functionally graded (FG) ultra-stiff surface layers. Due to its potential for high-temperature applications, pure nickel (Ni) is preferred for the honeycomb core layer, and an Al<sub>2</sub>O<sub>3</sub>/Ni ceramic-metal matrix is preferred for the surface layers. The functional distribution of graphene platelets (GPLs) in three different patterns, Type-U, Type-X, and Type-O, in the metal-ceramic matrix with a power law distribution provides double-FG properties to the surface layers. The mechanical and thermal material characteristics of the core and surface layers, as well as the reinforcing GPLs, are temperature-dependent. The pattern of temperature variation over the plate thickness is considered to be nonlinear. The sandwich nanoplate’s motion equations are obtained by combining the sinusoidal higher-order shear deformation theory (SHSDT) with nonlocal integral elasticity and strain gradient elasticity theories. The wave equations are established by using Hamilton’s principle. Parametric simulations and graphical representations are performed to analyze the effects of honeycomb size variables, wave number, the power law index, the GPL distribution pattern, the GPL weight ratio, and the temperature rise on three-dimensional wave propagation in an ultra-stiff sandwich plate. The results of the analysis reveal that the 3D wave propagation of the sandwich nanoplate can be significantly modified or tuned depending on the desired parameters and conditions. Thus, the proposed sandwich structure is expected to provide essential contributions to radar/sonar stealth applications in air, space, and submarine vehicles in high or low-temperature environments, protection of microelectromechanical devices from high noise and vibration, soft robotics applications, and wearable health and protective equipment applications.</p>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"1 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141552602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This article uses a memory-dependent derivative (MDD) — which may be better than a fractional derivative — to develop a novel heat conduction problem in a functionally graded material (FGM) layer with a distinct exponential gradient model. A theoretical framework is designed for a functionally graded plate (FGP) incorporating the fractional heat conduction theory that incorporates single-phase-lag (SPL) and two-temperature discrepancy factors to capture the thermoelastic response and the memory-dependent effect. Then, the modified model is used to investigate the thermoelastic response of an FGP subjected to thermal shock at the left surface of the plate, keeping other faces at zero temperature. The temperature change is determined using the integral transform technique, and the solution is obtained in the Laplace transform domain. The transient temperature response in the time domain is evaluated through numerical inversion of the Laplace transform to generate numerical data. The general solutions of the governing equation of stress function are obtained by utilizing material attributes represented by the exponential-law index. The transient responses, namely temperature, displacement, and stress, are graphically depicted. FGP is composed of partially stabilized zirconia (PSZ) particles, and the austenitic stainless steel (SUS304) matrix was used in the analysis. The use of FGM requires careful compositional choices to prevent thermal stresses from being generated in the FGP. The study compares temperature distributions using non-Fourier and classical Fourier models, revealing wave-like phenomena in fractional heat transfer, which are undetected in classical Fourier heat conduction.
{"title":"Memory-dependent response of the thermoelastic two-dimensional functionally graded rectangular plate","authors":"Jitendra Patil, Chandrakant Jadhav, Nitin Chandel, Vinod Varghese","doi":"10.1007/s11043-024-09728-x","DOIUrl":"10.1007/s11043-024-09728-x","url":null,"abstract":"<div><p>This article uses a memory-dependent derivative (MDD) — which may be better than a fractional derivative — to develop a novel heat conduction problem in a functionally graded material (FGM) layer with a distinct exponential gradient model. A theoretical framework is designed for a functionally graded plate (FGP) incorporating the fractional heat conduction theory that incorporates single-phase-lag (SPL) and two-temperature discrepancy factors to capture the thermoelastic response and the memory-dependent effect. Then, the modified model is used to investigate the thermoelastic response of an FGP subjected to thermal shock at the left surface of the plate, keeping other faces at zero temperature. The temperature change is determined using the integral transform technique, and the solution is obtained in the Laplace transform domain. The transient temperature response in the time domain is evaluated through numerical inversion of the Laplace transform to generate numerical data. The general solutions of the governing equation of stress function are obtained by utilizing material attributes represented by the exponential-law index. The transient responses, namely temperature, displacement, and stress, are graphically depicted. FGP is composed of partially stabilized zirconia (PSZ) particles, and the austenitic stainless steel (SUS304) matrix was used in the analysis. The use of FGM requires careful compositional choices to prevent thermal stresses from being generated in the FGP. The study compares temperature distributions using non-Fourier and classical Fourier models, revealing wave-like phenomena in fractional heat transfer, which are undetected in classical Fourier heat conduction.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"28 3","pages":"1521 - 1542"},"PeriodicalIF":2.1,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141548533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-02DOI: 10.1007/s11043-024-09722-3
Fengrui Zhang, Annan Jiang, Haopeng Jiang, Xinping Guo, Fu Zheng
To conduct a more realistic numerical simulation analysis of jointed rock mass engineering in cold regions, shear creep tests were conducted on the jointed rock masses under freeze-thaw and chemical corrosion. Based on test results, a shear creep damage model of jointed rock masses was established. The FISH language was used on the 3DEC platform to implement the secondary development of the model, and the rationality of the model was verified through degradation analysis and test data. Finally, the developed model was used to numerically calculate the creep characteristics of tunnel in cold regions, the research results show that: (1) The maximum creep deformations of tunnel subjected to 0, 20, 40, and 60 freeze-thaw cycles and chemical corrosion are 16.0 mm, 20.9 mm, 24.2 mm, and 34.1 mm, respectively. With the increase of freeze-thaw cycles and chemical corrosion, the creep deformation and plastic zone gradually increase. (2) As the joint plane inclination angle increases from 0° to 90°, the creep deformation gradually decreases. When the joint plane inclination angle are 0°, 30°, 60°, and 90°, the maximum creep deformations are 29.7 mm, 27.6 mm, 24.2 mm, and 22.5 mm, respectively. (3) With the increase of creep time, the creep deformation of the tunnel gradually increases. The arch deformation is 9.3 mm, 18.6 mm, 24.2 mm and 27.3 mm after 10 days, 30 days, 60 days and 90 days respectively. The research results provide an effective computational method for the stability analysis of rock mass engineering in cold regions.
{"title":"Development of a shear creep damage model of jointed rock masses considering the influence of freeze-thaw and chemical corrosion","authors":"Fengrui Zhang, Annan Jiang, Haopeng Jiang, Xinping Guo, Fu Zheng","doi":"10.1007/s11043-024-09722-3","DOIUrl":"10.1007/s11043-024-09722-3","url":null,"abstract":"<div><p>To conduct a more realistic numerical simulation analysis of jointed rock mass engineering in cold regions, shear creep tests were conducted on the jointed rock masses under freeze-thaw and chemical corrosion. Based on test results, a shear creep damage model of jointed rock masses was established. The FISH language was used on the 3DEC platform to implement the secondary development of the model, and the rationality of the model was verified through degradation analysis and test data. Finally, the developed model was used to numerically calculate the creep characteristics of tunnel in cold regions, the research results show that: (1) The maximum creep deformations of tunnel subjected to 0, 20, 40, and 60 freeze-thaw cycles and chemical corrosion are 16.0 mm, 20.9 mm, 24.2 mm, and 34.1 mm, respectively. With the increase of freeze-thaw cycles and chemical corrosion, the creep deformation and plastic zone gradually increase. (2) As the joint plane inclination angle increases from 0° to 90°, the creep deformation gradually decreases. When the joint plane inclination angle are 0°, 30°, 60°, and 90°, the maximum creep deformations are 29.7 mm, 27.6 mm, 24.2 mm, and 22.5 mm, respectively. (3) With the increase of creep time, the creep deformation of the tunnel gradually increases. The arch deformation is 9.3 mm, 18.6 mm, 24.2 mm and 27.3 mm after 10 days, 30 days, 60 days and 90 days respectively. The research results provide an effective computational method for the stability analysis of rock mass engineering in cold regions.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"28 4","pages":"3117 - 3137"},"PeriodicalIF":2.1,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141530608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-02DOI: 10.1007/s11043-024-09725-0
Umar Farooq, Ali Basem, Muhammad Imran, Nahid Fatima, Abdullah Alhushaybari, Taseer Muhammad, Hassan Waqas, Sobia Noreen
Hybrid nanofluids, which incorporate two distinct nanoparticles, are an innovative class of nanofluids designed to improve thermal and mechanical properties. These fluids have garnered considerable interest in numerous engineering and scientific fields. The fundamental goal of this research is to investigate the heat-transfer increase of MnZnFe2O4-NiZnFe2O4/C10H22 hybrid nanofluids in the presence of magnetohydrodynamics, nonlinear thermal radiation, and the Biot number on a stretched sheet. In this case, nanomaterials (MnZnFe2O4 and NiZnFe2O4) are combined with a base fluid C10H22. To do this, the system’s partial differential equations are transformed into a set of nonlinear ordinary differential equations using systematic similarity transformations. The shooting approach is then used in combination with MATLAB’s BVP4C solver to solve the resultant ordinary differential equations. The study presents the impact of various physical parameters, including the porosity parameter, magnetic parameter, Prandtl number, thermal-radiation parameter, Biot number, and Schmidt number, on the velocity and temperature fields, illustrated through graphs and tables. The velocity field reduces for increasing values of both magnetic and porosity parameters. The thermal-distribution profile is increased for increasing variations of the temperature-ratio parameter, Biot number, volume fraction of nanoparticles, and the thermal-radiation parameter. The MnZnFe2O4-NiZnFe2O4/C10H22 hybrid nanofluids combine thermal, magnetic, and fluidic properties, making them versatile for applications in thermal management, medicine, industrial processes, environmental remediation, and advanced sensing technologies. Their multifunctional characteristics provide significant advantages in improving efficiency, performance, and control in various engineering and scientific fields. This research has potential applications in heat transfer, biomedical research, manufacturing, aerospace technology, and beyond.
{"title":"Computational assessment of hybrid nanofluid with the rule of heat-transfer enhancement over a stretched sheet: a comparative study","authors":"Umar Farooq, Ali Basem, Muhammad Imran, Nahid Fatima, Abdullah Alhushaybari, Taseer Muhammad, Hassan Waqas, Sobia Noreen","doi":"10.1007/s11043-024-09725-0","DOIUrl":"https://doi.org/10.1007/s11043-024-09725-0","url":null,"abstract":"<p>Hybrid nanofluids, which incorporate two distinct nanoparticles, are an innovative class of nanofluids designed to improve thermal and mechanical properties. These fluids have garnered considerable interest in numerous engineering and scientific fields. The fundamental goal of this research is to investigate the heat-transfer increase of MnZnFe<sub>2</sub>O<sub>4</sub>-NiZnFe<sub>2</sub>O<sub>4</sub>/C<sub>10</sub>H<sub>22</sub> hybrid nanofluids in the presence of magnetohydrodynamics, nonlinear thermal radiation, and the Biot number on a stretched sheet. In this case, nanomaterials (MnZnFe<sub>2</sub>O<sub>4</sub> and NiZnFe<sub>2</sub>O<sub>4</sub>) are combined with a base fluid C<sub>10</sub>H<sub>22</sub>. To do this, the system’s partial differential equations are transformed into a set of nonlinear ordinary differential equations using systematic similarity transformations. The shooting approach is then used in combination with MATLAB’s BVP4C solver to solve the resultant ordinary differential equations. The study presents the impact of various physical parameters, including the porosity parameter, magnetic parameter, Prandtl number, thermal-radiation parameter, Biot number, and Schmidt number, on the velocity and temperature fields, illustrated through graphs and tables. The velocity field reduces for increasing values of both magnetic and porosity parameters. The thermal-distribution profile is increased for increasing variations of the temperature-ratio parameter, Biot number, volume fraction of nanoparticles, and the thermal-radiation parameter. The MnZnFe<sub>2</sub>O<sub>4</sub>-NiZnFe<sub>2</sub>O<sub>4</sub>/C<sub>10</sub>H<sub>22</sub> hybrid nanofluids combine thermal, magnetic, and fluidic properties, making them versatile for applications in thermal management, medicine, industrial processes, environmental remediation, and advanced sensing technologies. Their multifunctional characteristics provide significant advantages in improving efficiency, performance, and control in various engineering and scientific fields. This research has potential applications in heat transfer, biomedical research, manufacturing, aerospace technology, and beyond.</p>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"170 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141514390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-28DOI: 10.1007/s11043-024-09723-2
Shaoqiang Liu, Hongbao Zhao, Jiabin Zhu, Boyi Su
To reveal the bedding effects on the deformation field evolution of coal bodies containing parallel bedding under static loading, the maximum shear strain field of raw coal specimens under vertical bedding loading and parallel bedding loading conditions was observed by the digital scatter correlation method, and the deformation field evolution and deformation localization characteristics of raw coal specimens containing parallel bedding during loading process under two loading conditions were quantitatively analyzed. A damage variable was defined to describe the damage of coal specimens based on the characteristic statistics, and a damage constitutive model was established to reflect the full stress–strain characteristics of coal specimens with parallel bedding. The results show that the strain field of the parallel-bedding-loaded specimens is patchily distributed during the initial compaction stage, whereas the vertical-bedding-loaded specimens form a deformation-concentrated area at the loading end. Before and after the peak strength, the strain field of the vertical-bedding loading specimen changes dramatically, and the specimen shows shear damage, whereas the strain field of the parallel-bedding loading specimen does not have large changes, and the specimen shows splitting damage, with higher crack development and degree of specimen failure. The initiation stress of deformation localization in the vertical bedding specimens is closer to the peak strength, whereas the parallel bedding specimens are more likely to show deformation localization characteristics. The damage constitutive model based on the characteristic statistics can well reflect the stress–strain characteristics of the raw coal specimens under the loading conditions of vertical and parallel bedding.
{"title":"The effect of bedding on deformation localization and damage constitutive modeling in coal specimens","authors":"Shaoqiang Liu, Hongbao Zhao, Jiabin Zhu, Boyi Su","doi":"10.1007/s11043-024-09723-2","DOIUrl":"10.1007/s11043-024-09723-2","url":null,"abstract":"<div><p>To reveal the bedding effects on the deformation field evolution of coal bodies containing parallel bedding under static loading, the maximum shear strain field of raw coal specimens under vertical bedding loading and parallel bedding loading conditions was observed by the digital scatter correlation method, and the deformation field evolution and deformation localization characteristics of raw coal specimens containing parallel bedding during loading process under two loading conditions were quantitatively analyzed. A damage variable was defined to describe the damage of coal specimens based on the characteristic statistics, and a damage constitutive model was established to reflect the full stress–strain characteristics of coal specimens with parallel bedding. The results show that the strain field of the parallel-bedding-loaded specimens is patchily distributed during the initial compaction stage, whereas the vertical-bedding-loaded specimens form a deformation-concentrated area at the loading end. Before and after the peak strength, the strain field of the vertical-bedding loading specimen changes dramatically, and the specimen shows shear damage, whereas the strain field of the parallel-bedding loading specimen does not have large changes, and the specimen shows splitting damage, with higher crack development and degree of specimen failure. The initiation stress of deformation localization in the vertical bedding specimens is closer to the peak strength, whereas the parallel bedding specimens are more likely to show deformation localization characteristics. The damage constitutive model based on the characteristic statistics can well reflect the stress–strain characteristics of the raw coal specimens under the loading conditions of vertical and parallel bedding.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"28 4","pages":"3139 - 3155"},"PeriodicalIF":2.1,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141503339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-26DOI: 10.1007/s11043-024-09720-5
Praveen Ailawalia, Priyanka, K. Lotfy, A. M. S. Mahdy
In present work, Green–Nagdhi (type III) thermoelastic half-space under hydrostatic initial stress is taken into consideration. The thermoelastic half-space is subjected to a mechanical load acting on the free surface along the normal direction. The thermal conductivity of the medium is believed to be temperature-dependent and to vary linearly. The formulas for the temperature distribution, stress, and displacement components are obtained by applying the normal mode analysis approach. Analytical evaluation is performed on the physical characteristics exhibiting temperature-dependent thermal conductivity. The influence of temperature dependency and hydrostatic starting stress on these physical parameters is then illustrated graphically by evaluating these physical values numerically using algorithms created in MATLAB 7.0.
{"title":"Temperature-dependent thermal conductivity in Green–Naghdi (type III) thermoelastic half-space with hydrostatic initial stress","authors":"Praveen Ailawalia, Priyanka, K. Lotfy, A. M. S. Mahdy","doi":"10.1007/s11043-024-09720-5","DOIUrl":"10.1007/s11043-024-09720-5","url":null,"abstract":"<div><p>In present work, Green–Nagdhi (type III) thermoelastic half-space under hydrostatic initial stress is taken into consideration. The thermoelastic half-space is subjected to a mechanical load acting on the free surface along the normal direction. The thermal conductivity of the medium is believed to be temperature-dependent and to vary linearly. The formulas for the temperature distribution, stress, and displacement components are obtained by applying the normal mode analysis approach. Analytical evaluation is performed on the physical characteristics exhibiting temperature-dependent thermal conductivity. The influence of temperature dependency and hydrostatic starting stress on these physical parameters is then illustrated graphically by evaluating these physical values numerically using algorithms created in MATLAB 7.0.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"28 3","pages":"1839 - 1852"},"PeriodicalIF":2.1,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141529060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}