首页 > 最新文献

Mechanics of Time-Dependent Materials最新文献

英文 中文
Comparative study on the hydraulic conductivity of pervious concrete slabs by constant and falling head permeability tests 通过恒定水头和下降水头渗透试验比较研究透水混凝土板的导水性
IF 2.5 4区 材料科学 Q2 Engineering Pub Date : 2024-01-29 DOI: 10.1007/s11043-024-09665-9

Abstract

Stormwater management is still a major concern confronting many countries all over the world. The need to collect the runoff water is highly prioritised to save natural resources and restore groundwater supplies. Pervious concrete is a special type of concrete that possesses the unique characteristic of allowing water to pass through it. Hence, the study of the hydraulic characteristics of pervious concrete is highly required to understand the material’s ability and utilise it to the maximum. The main motive of this experimental investigation is to study the hydraulic conductivity of pervious concrete slabs using two different methods, namely the constant and falling head permeability tests. Seven different pervious concrete mix proportions were examined in this work. A total of 21 pervious concrete slabs of size 1000 mm × 1000 mm × 200 mm were cast with different degrees of compaction and tested for hydraulic conductivity. From each slab, three concrete cores of size 100 mm diameter × 200 mm height were drilled and extracted to test the hydraulic conductivity and to compare with the test results of the pervious concrete slabs. The test results revealed that compaction is the predominant factor that affects the hydraulic conductivity of the pervious concrete slabs. It has also been observed that all the pervious concrete slabs exhibited non-Darcian behaviour irrespective of the degree of compaction. From the results, it is clear that the hydraulic conductivity of the pervious concrete varies according to the test methods and hydraulic gradients. The results from the extracted cores exhibited similar trend behaviour of the concrete slabs, confirming the non-Darcian flow in pervious concrete. The results also showed that the estimated hydraulic conductivity by the constant head method was higher due to the lower hydraulic gradients considered during the experiment. The outcomes of the test results will be helpful in the rational design of pavements using pervious concrete.

摘要 雨水管理仍然是世界上许多国家面临的一个主要问题。为了节约自然资源和恢复地下水供应,收集径流水的需求被列为高度优先事项。透水混凝土是一种特殊的混凝土,具有允许水通过的独特特性。因此,必须对透水混凝土的水力特性进行研究,以了解这种材料的能力并最大限度地加以利用。本次实验研究的主要目的是利用两种不同的方法,即恒定水头渗透试验和下降水头渗透试验,研究透水混凝土板的水力传导性。这项工作研究了七种不同的透水混凝土混合比例。总共浇筑了 21 块透水混凝土板,尺寸为 1000 mm × 1000 mm × 200 mm,并采用了不同的压实度,然后进行了导水率测试。从每块板上钻取了三个直径为 100 毫米 × 高为 200 毫米的混凝土芯,用于测试导水性,并与透水混凝土板的测试结果进行比较。测试结果表明,压实度是影响透水混凝土板导水率的主要因素。此外,还观察到无论压实程度如何,所有透水混凝土板都表现出非达氏行为。从结果可以看出,透水混凝土的导水性因测试方法和水力梯度而异。从提取的岩芯中得到的结果显示了与混凝土板类似的趋势行为,证实了透水混凝土中的非达克斯流。结果还显示,由于实验中考虑的水力梯度较低,采用恒定水头法估算的水力传导率较高。试验结果将有助于合理设计使用透水混凝土的路面。
{"title":"Comparative study on the hydraulic conductivity of pervious concrete slabs by constant and falling head permeability tests","authors":"","doi":"10.1007/s11043-024-09665-9","DOIUrl":"https://doi.org/10.1007/s11043-024-09665-9","url":null,"abstract":"<h3>Abstract</h3> <p>Stormwater management is still a major concern confronting many countries all over the world. The need to collect the runoff water is highly prioritised to save natural resources and restore groundwater supplies. Pervious concrete is a special type of concrete that possesses the unique characteristic of allowing water to pass through it. Hence, the study of the hydraulic characteristics of pervious concrete is highly required to understand the material’s ability and utilise it to the maximum. The main motive of this experimental investigation is to study the hydraulic conductivity of pervious concrete slabs using two different methods, namely the constant and falling head permeability tests. Seven different pervious concrete mix proportions were examined in this work. A total of 21 pervious concrete slabs of size 1000 mm × 1000 mm × 200 mm were cast with different degrees of compaction and tested for hydraulic conductivity. From each slab, three concrete cores of size 100 mm diameter × 200 mm height were drilled and extracted to test the hydraulic conductivity and to compare with the test results of the pervious concrete slabs. The test results revealed that compaction is the predominant factor that affects the hydraulic conductivity of the pervious concrete slabs. It has also been observed that all the pervious concrete slabs exhibited non-Darcian behaviour irrespective of the degree of compaction. From the results, it is clear that the hydraulic conductivity of the pervious concrete varies according to the test methods and hydraulic gradients. The results from the extracted cores exhibited similar trend behaviour of the concrete slabs, confirming the non-Darcian flow in pervious concrete. The results also showed that the estimated hydraulic conductivity by the constant head method was higher due to the lower hydraulic gradients considered during the experiment. The outcomes of the test results will be helpful in the rational design of pavements using pervious concrete.</p>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139579665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization and constitutive modeling of the high strain rate behavior of granite at low temperatures 低温下花岗岩高应变率行为的特征描述和构成模型制作
IF 2.5 4区 材料科学 Q2 Engineering Pub Date : 2024-01-26 DOI: 10.1007/s11043-024-09667-7
Xianqi Zhang, Hangli Gong, Yi Luo, Junjie Peng, Qiaoliang Li, Chunneng Yang

A split Hopkinson pressure bar (SHPB) was used to characterize the high-strain rate behavior of saturated and frozen granite specimens. The effects of low temperatures and strain rates on dynamic mechanical response and failure behavior were investigated. The damage constitutive model of granite was established, considering both strain rate effect and low-temperature effect. The damage constitutive relationship took into account the statistical damage model based on Weibull distribution and nonlinear viscoelastic behavior. Results show that the dynamic compressive strength of the saturated and frozen granite at low temperatures (−20 °C to 15 °C) generally increases first and then decreases with the decrease of temperature. The peak strain decreases with the decrease of temperature and the peak strain at low temperatures (0 °C to −20 °C) decreases more than that at 15 °C. The dynamic Young’s modulus of the samples shows an increasing trend from 0 °C to −20 °C, and the range of variation decreases with the decrease of temperature. At low temperature, the brittle characteristics of saturated granite are more pronounced due to water-ice phase change and cold shrinkage of the rock matrix, while the ductility is gradually reduced. The modeling results on the stress-strain relationships are consistent with experimental data. It is verified that the constitutive relationship can describe the high strain rate characteristics of saturated frozen granite.

使用分体式霍普金森压力棒(SHPB)来表征饱和和冷冻花岗岩试样的高应变率行为。研究了低温和应变率对动态力学响应和破坏行为的影响。考虑到应变率效应和低温效应,建立了花岗岩的损伤构成模型。该损伤构成关系考虑了基于威布尔分布的统计损伤模型和非线性粘弹行为。结果表明,饱和和冷冻花岗岩在低温(-20 ° C 至 15 ° C)条件下的动态抗压强度一般先增大,然后随着温度的降低而减小。峰值应变随着温度的降低而减小,低温(0 °C至-20 °C)下的峰值应变比15 °C下的峰值应变减小得更多。样品的动态杨氏模量从 0 °C 到 -20 °C 呈上升趋势,其变化范围随温度的降低而减小。在低温条件下,由于水冰相变和岩石基质的冷缩,饱和花岗岩的脆性特征更加明显,而延展性则逐渐降低。应力-应变关系的建模结果与实验数据一致。验证了该构成关系能够描述饱和冷冻花岗岩的高应变率特征。
{"title":"Characterization and constitutive modeling of the high strain rate behavior of granite at low temperatures","authors":"Xianqi Zhang, Hangli Gong, Yi Luo, Junjie Peng, Qiaoliang Li, Chunneng Yang","doi":"10.1007/s11043-024-09667-7","DOIUrl":"https://doi.org/10.1007/s11043-024-09667-7","url":null,"abstract":"<p>A split Hopkinson pressure bar (SHPB) was used to characterize the high-strain rate behavior of saturated and frozen granite specimens. The effects of low temperatures and strain rates on dynamic mechanical response and failure behavior were investigated. The damage constitutive model of granite was established, considering both strain rate effect and low-temperature effect. The damage constitutive relationship took into account the statistical damage model based on Weibull distribution and nonlinear viscoelastic behavior. Results show that the dynamic compressive strength of the saturated and frozen granite at low temperatures (−20 °C to 15 °C) generally increases first and then decreases with the decrease of temperature. The peak strain decreases with the decrease of temperature and the peak strain at low temperatures (0 °C to −20 °C) decreases more than that at 15 °C. The dynamic Young’s modulus of the samples shows an increasing trend from 0 °C to −20 °C, and the range of variation decreases with the decrease of temperature. At low temperature, the brittle characteristics of saturated granite are more pronounced due to water-ice phase change and cold shrinkage of the rock matrix, while the ductility is gradually reduced. The modeling results on the stress-strain relationships are consistent with experimental data. It is verified that the constitutive relationship can describe the high strain rate characteristics of saturated frozen granite.</p>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139579666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stress distribution in a multi-layer soft viscoelastic material under sliding motion of a spherical indenter tip 球形压头滑动运动下多层软粘弹性材料的应力分布
IF 2.5 4区 材料科学 Q2 Engineering Pub Date : 2024-01-24 DOI: 10.1007/s11043-024-09663-x
Hiep Xuan Trinh, Trung Kien Hoang, Manh Cuong Bui, Xuan Trang Mai

Modeling stress distributions in multi-layer soft viscoelastic materials has great importance for evolving robotics and mechanism of machines, where soft viscoelastic materials are increasingly replacing traditional rigid materials. Nevertheless, tackling this problem remains a challenge, particularly when considering the viscoelastic properties of soft materials. This research presents a theoretical model for stress distribution in a two-dimensional sliding contact between a spherical rigid indenter tip and a plane composed of multi-layer soft viscoelastic material. The material is characterized using the viscoelastic Kelvin–Voigt model, where the viscosity coefficient defines the viscoelastic behavior. Explicit mathematical formulas for stress and strain determination in the multiple soft layers are derived using mathematical transformations based on the Fourier transformation. The system of third-order nonlinear differential equations of the contact model is tackled using the finite difference method, within the given boundary conditions. Then, a numerical algorithm is proposed to effectively solve the finite difference equations, considering various parameters of soft viscoelastic material’s properties and sliding velocity. The effectiveness of our proposed model is validated by numerical simulations and the machine learning method. The developed contact model is expected to be a platform for modeling and analyzing the sliding-spherical contact in novel mechanism designs, such as soft robotics, soft tactile sensors, and intelligent integration in soft bodies.

多层软粘弹性材料中的应力分布建模对于不断发展的机器人技术和机械装置具有重要意义,因为软粘弹性材料正日益取代传统的刚性材料。然而,解决这一问题仍然是一项挑战,尤其是在考虑软材料的粘弹性能时。本研究提出了球形刚性压头尖端与多层软粘弹性材料组成的平面之间二维滑动接触的应力分布理论模型。该材料采用粘弹性 Kelvin-Voigt 模型进行表征,其中粘度系数定义了粘弹性行为。通过基于傅立叶变换的数学变换,得出了确定多软层应力和应变的明确数学公式。在给定的边界条件下,使用有限差分法处理了接触模型的三阶非线性微分方程系统。然后,考虑到软粘弹性材料特性和滑动速度的各种参数,提出了一种有效求解有限差分方程的数值算法。我们提出的模型的有效性通过数值模拟和机器学习方法得到了验证。所建立的接触模型有望成为新型机构设计(如软机器人、软触觉传感器和软体智能集成)中滑动-球形接触建模和分析的平台。
{"title":"Stress distribution in a multi-layer soft viscoelastic material under sliding motion of a spherical indenter tip","authors":"Hiep Xuan Trinh, Trung Kien Hoang, Manh Cuong Bui, Xuan Trang Mai","doi":"10.1007/s11043-024-09663-x","DOIUrl":"https://doi.org/10.1007/s11043-024-09663-x","url":null,"abstract":"<p>Modeling stress distributions in multi-layer soft viscoelastic materials has great importance for evolving robotics and mechanism of machines, where soft viscoelastic materials are increasingly replacing traditional rigid materials. Nevertheless, tackling this problem remains a challenge, particularly when considering the viscoelastic properties of soft materials. This research presents a theoretical model for stress distribution in a two-dimensional sliding contact between a spherical rigid indenter tip and a plane composed of multi-layer soft viscoelastic material. The material is characterized using the viscoelastic Kelvin–Voigt model, where the viscosity coefficient defines the viscoelastic behavior. Explicit mathematical formulas for stress and strain determination in the multiple soft layers are derived using mathematical transformations based on the Fourier transformation. The system of third-order nonlinear differential equations of the contact model is tackled using the finite difference method, within the given boundary conditions. Then, a numerical algorithm is proposed to effectively solve the finite difference equations, considering various parameters of soft viscoelastic material’s properties and sliding velocity. The effectiveness of our proposed model is validated by numerical simulations and the machine learning method. The developed contact model is expected to be a platform for modeling and analyzing the sliding-spherical contact in novel mechanism designs, such as soft robotics, soft tactile sensors, and intelligent integration in soft bodies.</p>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139556468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling the magneto-thermoelastic diffusion in four-phase-lags memory dependent heat transfer 四相滞后记忆相关传热中的磁热弹性扩散建模
IF 2.5 4区 材料科学 Q2 Engineering Pub Date : 2024-01-04 DOI: 10.1007/s11043-023-09659-z
Debarghya Bhattacharya, Mridula Kanoria

Our present work aims to deal with a conceptual structure to investigate the generalized magneto-thermodiffusion relations in an isotropic medium in the context of four-phase lag thermoelastic model using a memory-dependent derivative (MDD). In this new model, the traditional Fourier’s heat conduction law and Fick’s mass diffusion law have been modified by introducing an improvised Taylor’s series expansion, which assimilates the MDD and incorporates four phase lags (FPL) generalized thermoelastic model. Utilizing the Laplace transformation technique as a mechanism, the control equations are presented in the Laplace domain, where they are decoded by incorporating a finite element (Galerkin) approach. The impact of the FPL parameters in several studied fields like stresses, temperature, and chemical potential has been demonstrated in the presence of MDD and magnetic field. A comparison of the results for different models like classical thermo-elasticity model, Lord-Shulman model, and FPL model is presented.

我们目前的工作旨在利用记忆相关导数(MDD)的概念结构,在四相滞后热弹性模型的背景下研究各向同性介质中的广义磁热扩散关系。在这个新模型中,传统的傅里叶热传导定律和菲克质量扩散定律通过引入简便的泰勒级数展开得到了修正,该级数展开与 MDD 相似,并纳入了四相滞后(FPL)广义热弹性模型。利用拉普拉斯变换技术作为一种机制,控制方程在拉普拉斯域中呈现,并通过有限元(Galerkin)方法对其进行解码。在存在 MDD 和磁场的情况下,FPL 参数对应力、温度和化学势等几个研究领域的影响已得到证实。对经典热弹性模型、Lord-Shulman 模型和 FPL 模型等不同模型的结果进行了比较。
{"title":"Modeling the magneto-thermoelastic diffusion in four-phase-lags memory dependent heat transfer","authors":"Debarghya Bhattacharya, Mridula Kanoria","doi":"10.1007/s11043-023-09659-z","DOIUrl":"https://doi.org/10.1007/s11043-023-09659-z","url":null,"abstract":"<p>Our present work aims to deal with a conceptual structure to investigate the generalized magneto-thermodiffusion relations in an isotropic medium in the context of four-phase lag thermoelastic model using a memory-dependent derivative (MDD). In this new model, the traditional Fourier’s heat conduction law and Fick’s mass diffusion law have been modified by introducing an improvised Taylor’s series expansion, which assimilates the MDD and incorporates four phase lags (FPL) generalized thermoelastic model. Utilizing the Laplace transformation technique as a mechanism, the control equations are presented in the Laplace domain, where they are decoded by incorporating a finite element (Galerkin) approach. The impact of the FPL parameters in several studied fields like stresses, temperature, and chemical potential has been demonstrated in the presence of MDD and magnetic field. A comparison of the results for different models like classical thermo-elasticity model, Lord-Shulman model, and FPL model is presented.</p>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139104611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of viscosity and hyperbolic two-temperature on energy ratios in elastic and piezoviscothermoelastic half-spaces 粘度和双曲二温对弹性半空间和压粘热弹性半空间能量比的影响
IF 2.5 4区 材料科学 Q2 Engineering Pub Date : 2024-01-03 DOI: 10.1007/s11043-023-09657-1

Abstract

This paper reports the behavior of plane wave propagation through the interface of an elastic half-space (ES) and a transversely isotropic piezoviscothermoelastic half-space composed of dual phase lag and hyperbolic two-temperature (PTHD). Two waves are reflected when P waves move longitudinally, or SV waves move transversally to reach the ES medium, and the four waves are transmitted through the PTHD medium. The amplitude ratios for reflected and transmitted waves are determined by satisfying the boundary conditions. These ratios are subsequently utilized to calculate energy ratios for those waves. The effects of viscosity, hyperbolic two-temperature (HTT), classical two-temperature (CTT), and one-temperature (OTT) on the energy ratios are analyzed. The balance of energy conservation is analyzed for some cases.

摘要 本文报告了平面波在弹性半空间(ES)和由双相位滞后和双曲双温(PTHD)组成的横向各向同性压变温弹性半空间界面中的传播行为。当 P 波纵向移动或 SV 波横向移动到达 ES 介质时,两波被反射,四波通过 PTHD 介质传输。反射波和透射波的振幅比是通过满足边界条件确定的。随后利用这些比率计算这些波的能量比率。分析了粘度、双曲双温 (HTT)、经典双温 (CTT) 和单温 (OTT) 对能量比的影响。分析了某些情况下的能量守恒平衡。
{"title":"The effect of viscosity and hyperbolic two-temperature on energy ratios in elastic and piezoviscothermoelastic half-spaces","authors":"","doi":"10.1007/s11043-023-09657-1","DOIUrl":"https://doi.org/10.1007/s11043-023-09657-1","url":null,"abstract":"<h3>Abstract</h3> <p>This paper reports the behavior of plane wave propagation through the interface of an elastic half-space (ES) and a transversely isotropic piezoviscothermoelastic half-space composed of dual phase lag and hyperbolic two-temperature (PTHD). Two waves are reflected when P waves move longitudinally, or SV waves move transversally to reach the ES medium, and the four waves are transmitted through the PTHD medium. The amplitude ratios for reflected and transmitted waves are determined by satisfying the boundary conditions. These ratios are subsequently utilized to calculate energy ratios for those waves. The effects of viscosity, hyperbolic two-temperature (HTT), classical two-temperature (CTT), and one-temperature (OTT) on the energy ratios are analyzed. The balance of energy conservation is analyzed for some cases.</p>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139082143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of applied strain, magnetic field, and temperature on the compressive stress relaxation behavior of magneto-sensitive elastomers 外加应变、磁场和温度对磁敏弹性体压缩应力松弛行为的影响
IF 2.5 4区 材料科学 Q2 Engineering Pub Date : 2024-01-02 DOI: 10.1007/s11043-023-09654-4

Abstract

The paper investigates the short- and long-term compressive stress relaxation behavior of isotropic and anisotropic magneto-sensitive elastomers (MSEs) prepared by incorporating carbonyl iron microparticles into a silicone rubber. The effects of applied compressive strain, magnetic field, and temperature on the short-term stress relaxation behavior of the isotropic and anisotropic MSEs were determined up to 1200 s. The stress relaxation behavior of the MSEs considerably depended on the applied compressive strain, magnetic field, and temperature. The stress of the MSEs increased with increasing compressive strain and magnetic-field intensity, but decreased with increasing temperature. The isotropic MSE exhibited approximately linear elastic behavior, while the anisotropic MSE revealed nonlinear elastic characteristics. The compressive stress and the relaxation modulus of the anisotropic MSE are considerably higher than those of the isotropic MSE. The compressive stress relaxation behavior of the isotropic and anisotropic MSEs was simulated using a fractional derivative viscoelastic Kelvin–Voigt model. The model parameters were identified by fitting the relaxation modulus to the short-term measured data of the MSEs. The compressive stress estimated from the studied model with fitted parameters was in excellent agreement with the measured data of the MSEs at different compressive strains, magnetic fields, and temperatures. The model was then used to estimate the long-term stress relaxation of the MSEs. An excellent agreement between long-term predicted results and experimental data of the MSEs has been reached when fitting the model to the medium-term experimental data.

摘要 本文研究了在硅橡胶中加入羰基铁微颗粒制备的各向同性和各向异性磁敏弹性体(MSE)的短期和长期压缩应力松弛行为。外加压缩应变、磁场和温度对各向同性和各向异性磁敏弹性体短期应力松弛行为的影响最长可达 1200 秒。MSE 的应力随着压缩应变和磁场强度的增加而增加,但随着温度的增加而减少。各向同性的 MSE 表现出近似线性的弹性行为,而各向异性的 MSE 则显示出非线性弹性特征。各向异性 MSE 的压缩应力和松弛模量大大高于各向同性 MSE。利用分数导数粘弹性 Kelvin-Voigt 模型模拟了各向同性和各向异性 MSE 的压缩应力松弛行为。通过将松弛模量与 MSE 的短期测量数据进行拟合,确定了模型参数。根据所研究的模型和拟合参数估算出的压缩应力与不同压缩应变、磁场和温度下的 MSE 测量数据非常吻合。随后,该模型被用于估算 MSE 的长期应力松弛。在将模型拟合到中期实验数据时,MSE 的长期预测结果与实验数据达到了极佳的一致。
{"title":"Effects of applied strain, magnetic field, and temperature on the compressive stress relaxation behavior of magneto-sensitive elastomers","authors":"","doi":"10.1007/s11043-023-09654-4","DOIUrl":"https://doi.org/10.1007/s11043-023-09654-4","url":null,"abstract":"<h3>Abstract</h3> <p>The paper investigates the short- and long-term compressive stress relaxation behavior of isotropic and anisotropic magneto-sensitive elastomers (MSEs) prepared by incorporating carbonyl iron microparticles into a silicone rubber. The effects of applied compressive strain, magnetic field, and temperature on the short-term stress relaxation behavior of the isotropic and anisotropic MSEs were determined up to 1200 s. The stress relaxation behavior of the MSEs considerably depended on the applied compressive strain, magnetic field, and temperature. The stress of the MSEs increased with increasing compressive strain and magnetic-field intensity, but decreased with increasing temperature. The isotropic MSE exhibited approximately linear elastic behavior, while the anisotropic MSE revealed nonlinear elastic characteristics. The compressive stress and the relaxation modulus of the anisotropic MSE are considerably higher than those of the isotropic MSE. The compressive stress relaxation behavior of the isotropic and anisotropic MSEs was simulated using a fractional derivative viscoelastic Kelvin–Voigt model. The model parameters were identified by fitting the relaxation modulus to the short-term measured data of the MSEs. The compressive stress estimated from the studied model with fitted parameters was in excellent agreement with the measured data of the MSEs at different compressive strains, magnetic fields, and temperatures. The model was then used to estimate the long-term stress relaxation of the MSEs. An excellent agreement between long-term predicted results and experimental data of the MSEs has been reached when fitting the model to the medium-term experimental data.</p>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139082133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An investigation of the coal wall zoning failure patterns resulting from the changes in support parameters of large mining height 大采高支护参数变化导致的煤壁分区崩落规律研究
IF 2.5 4区 材料科学 Q2 Engineering Pub Date : 2023-12-29 DOI: 10.1007/s11043-023-09660-6
Bo Xue, Chen Wang, Yuyang Wang, Wenshuai Zhang, Shuai Yang

To address control of the coal wall rib spalling in a work face with large mining height, an investigation was conducted on the Caojiatan mine 122107 work face as a case study. Using a combination of theoretical analysis, orthogonal experiments, and numerical simulations, we determined the influence of hydraulic support parameters on coal wall rib spalling. Our results show that reducing the end-face distance and the resultant force application point and increasing the vertical force and the horizontal force of a hydraulic support provide increased stability of the coal wall. Extensive verification was made through simulations. The work presented herein suggested a structural zoning of the coal wall rib spalling, it also established the coal wall stability coefficient, and determined the lower limit of the coal wall’s nonstructural area stability coefficient. Additionally, this study provided methods for the prevention and control of coal wall rib spalling in a large mining height work face, via improving the nonstructural area mechanical parameters, and optimization of the hydraulic support.

为了解决大采高工作面煤壁肋剥落的控制问题,我们以曹家滩煤矿 122107 工作面为案例进行了研究。通过理论分析、正交实验和数值模拟相结合的方法,我们确定了液压支架参数对煤壁肋剥落的影响。结果表明,减小端面距离和施力点,增加液压支架的垂直力和水平力,可提高煤壁的稳定性。我们通过模拟进行了广泛的验证。本文提出了煤壁肋骨剥落的结构分区,还确定了煤壁稳定系数,并确定了煤壁非结构区稳定系数的下限。此外,该研究还提供了通过改进非结构区力学参数和优化液压支架来预防和控制大采高工作面煤壁肋剥落的方法。
{"title":"An investigation of the coal wall zoning failure patterns resulting from the changes in support parameters of large mining height","authors":"Bo Xue, Chen Wang, Yuyang Wang, Wenshuai Zhang, Shuai Yang","doi":"10.1007/s11043-023-09660-6","DOIUrl":"https://doi.org/10.1007/s11043-023-09660-6","url":null,"abstract":"<p>To address control of the coal wall rib spalling in a work face with large mining height, an investigation was conducted on the Caojiatan mine 122107 work face as a case study. Using a combination of theoretical analysis, orthogonal experiments, and numerical simulations, we determined the influence of hydraulic support parameters on coal wall rib spalling. Our results show that reducing the end-face distance and the resultant force application point and increasing the vertical force and the horizontal force of a hydraulic support provide increased stability of the coal wall. Extensive verification was made through simulations. The work presented herein suggested a structural zoning of the coal wall rib spalling, it also established the coal wall stability coefficient, and determined the lower limit of the coal wall’s nonstructural area stability coefficient. Additionally, this study provided methods for the prevention and control of coal wall rib spalling in a large mining height work face, via improving the nonstructural area mechanical parameters, and optimization of the hydraulic support.</p>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139071201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Accelerated thermal-oxidative aging and degradation mechanism of high-density polyethylene butt-fusion welded joint 高密度聚乙烯对接熔焊接头的加速热氧化老化和降解机理
IF 2.5 4区 材料科学 Q2 Engineering Pub Date : 2023-12-29 DOI: 10.1007/s11043-023-09655-3
Ying-Chun Chen, Yan-Feng Li, Jie Yang, Yan Xi, Qiang Li, Xiao-li Fan

High-density polyethylene (HDPE) pipelines are widely used for the transportation of natural gas. The butt-fusion welded joints melt and cool during the welding process, resulting in changes in mechanical properties, molecular chain spatial position microstructure, and functional groups. Herein, we investigate the aging behavior of an HDPE butt-fusion welded joint in accelerated thermal-oxidative aging tests under various temperature gradients. The Vicat softening temperature, oxidation induction time, and infrared spectrum were measured, and the microstructures were observed. The results indicated that the mechanical and chemical properties of the butt-fusion welded joint degraded with incresing aging temperature. Analysis was conducted to identify the molecular chain intersection mechanism in the heat-affected zone and the weld joining mechanism. The findings help understand the aging behavior of HDPE and provide guidelines to reduce the risk caused by butt-fusion welded joint degradation.

高密度聚乙烯(HDPE)管道广泛应用于天然气运输。对熔焊接接头在焊接过程中会熔化和冷却,从而导致机械性能、分子链空间位置微观结构和官能团发生变化。在此,我们通过各种温度梯度下的加速热氧化老化试验来研究高密度聚乙烯对熔焊接接头的老化行为。测量了维卡软化温度、氧化诱导时间和红外光谱,并观察了微观结构。结果表明,随着老化温度的升高,对接熔焊接头的机械和化学性能都有所下降。分析确定了热影响区的分子链交叉机制和焊接连接机制。研究结果有助于理解高密度聚乙烯的老化行为,并为降低对接熔接接头降解造成的风险提供指导。
{"title":"Accelerated thermal-oxidative aging and degradation mechanism of high-density polyethylene butt-fusion welded joint","authors":"Ying-Chun Chen, Yan-Feng Li, Jie Yang, Yan Xi, Qiang Li, Xiao-li Fan","doi":"10.1007/s11043-023-09655-3","DOIUrl":"https://doi.org/10.1007/s11043-023-09655-3","url":null,"abstract":"<p>High-density polyethylene (HDPE) pipelines are widely used for the transportation of natural gas. The butt-fusion welded joints melt and cool during the welding process, resulting in changes in mechanical properties, molecular chain spatial position microstructure, and functional groups. Herein, we investigate the aging behavior of an HDPE butt-fusion welded joint in accelerated thermal-oxidative aging tests under various temperature gradients. The Vicat softening temperature, oxidation induction time, and infrared spectrum were measured, and the microstructures were observed. The results indicated that the mechanical and chemical properties of the butt-fusion welded joint degraded with incresing aging temperature. Analysis was conducted to identify the molecular chain intersection mechanism in the heat-affected zone and the weld joining mechanism. The findings help understand the aging behavior of HDPE and provide guidelines to reduce the risk caused by butt-fusion welded joint degradation.</p>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139071258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermoelectric interactions in Euler–Bernoulli microbeams under the influence of a thermal pulse via the size-dependent couple stress model 欧拉-伯努利微梁在热脉冲影响下通过尺寸相关耦合应力模型产生的热电相互作用
IF 2.5 4区 材料科学 Q2 Engineering Pub Date : 2023-12-28 DOI: 10.1007/s11043-023-09661-5
Ahmed E. Abouelregal, Sami F. Megahid, Doaa Atta, Abdalah M. K. Al-Azmi

A novel comparative examination is conducted on homogeneous flexible microbeams to explore the impact of various electrical voltage sources on their thermomechanical properties. A mathematical model based on the modified couple stress theory has been established, allowing the prediction of size-dependent phenomena observed in microbeam resonators. In addition, the heat transfer inside the microbeam is characterized by the use of a non-Fourier law that involves thermal relaxation, implying an infinite speed of heat propagation. The developed theoretical framework is applied to investigate the thermoelastic response of an Euler–Bernoulli microbeam simply supported at both ends and subjected to a sinusoidal heat pulse. Moreover, a graphene strip, connected to an electrical voltage supply, acts as a heat source at a specific end of the microbeam. The Laplace transform method is used to solve the coupled heat transfer and motion equations. This gives closed formulas that describe the physical fields of thermoelastic microbeams. Numerical case studies are performed in a comparative analysis between the results obtained and those derived from conventional models using graphical representations. Additionally, an investigation is conducted to explore the influence of various factors, such as coupling stress, voltage, electrical resistance, and heat pulses, on the dynamic behavior of all the investigated fields.

对均质柔性微梁进行了一项新颖的比较研究,以探索各种电压源对其热机械特性的影响。基于修正的耦合应力理论建立的数学模型可以预测微梁谐振器中观察到的与尺寸有关的现象。此外,微梁内部传热的特点是使用非傅里叶定律,其中涉及热弛豫,这意味着热传播速度是无限的。所开发的理论框架被用于研究两端简单支撑的欧拉-伯努利微梁在正弦热脉冲作用下的热弹性响应。此外,与电压电源相连的石墨烯带在微梁的特定端部充当热源。拉普拉斯变换法用于求解热传递和运动耦合方程。这给出了描述热弹性微梁物理场的封闭公式。在对所获得的结果与使用图形表示的传统模型得出的结果进行比较分析时,进行了数值案例研究。此外,研究还探讨了耦合应力、电压、电阻和热脉冲等各种因素对所有研究领域动态行为的影响。
{"title":"Thermoelectric interactions in Euler–Bernoulli microbeams under the influence of a thermal pulse via the size-dependent couple stress model","authors":"Ahmed E. Abouelregal, Sami F. Megahid, Doaa Atta, Abdalah M. K. Al-Azmi","doi":"10.1007/s11043-023-09661-5","DOIUrl":"https://doi.org/10.1007/s11043-023-09661-5","url":null,"abstract":"<p>A novel comparative examination is conducted on homogeneous flexible microbeams to explore the impact of various electrical voltage sources on their thermomechanical properties. A mathematical model based on the modified couple stress theory has been established, allowing the prediction of size-dependent phenomena observed in microbeam resonators. In addition, the heat transfer inside the microbeam is characterized by the use of a non-Fourier law that involves thermal relaxation, implying an infinite speed of heat propagation. The developed theoretical framework is applied to investigate the thermoelastic response of an Euler–Bernoulli microbeam simply supported at both ends and subjected to a sinusoidal heat pulse. Moreover, a graphene strip, connected to an electrical voltage supply, acts as a heat source at a specific end of the microbeam. The Laplace transform method is used to solve the coupled heat transfer and motion equations. This gives closed formulas that describe the physical fields of thermoelastic microbeams. Numerical case studies are performed in a comparative analysis between the results obtained and those derived from conventional models using graphical representations. Additionally, an investigation is conducted to explore the influence of various factors, such as coupling stress, voltage, electrical resistance, and heat pulses, on the dynamic behavior of all the investigated fields.</p>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139071422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of the thermal, water absorption, and viscoelastic behavior of short date palm fiber reinforced epoxy 短枣椰纤维增强环氧树脂的热性能、吸水性和粘弹性特征
IF 2.5 4区 材料科学 Q2 Engineering Pub Date : 2023-12-28 DOI: 10.1007/s11043-023-09656-2
Khaled Abdessemed, Omar Allaoui, Belhi Guerira, Laala Ghelani

Two epoxy resins (flexible and rigid) with new formulations that are more respectful of the environment are used to make five blends of epoxy resins in different proportions reinforced by 30% date palm fibers (DPF). The purpose is to determine how the blend’s composition and the addition of DPF affect the material’s thermal, water absorption, and viscoelastic properties. It was found that water absorption increases with the increase of flexible epoxy content. The incorporation of DPF multiplies the water absorption by about 6. Thermogravimetric analysis (TGA) revealed that the maximum degradation temperature (Tmax) increases with increasing flexible epoxy content. The incorporation of DPF causes a slight decrease in Tmax. Dynamic mechanical analysis (DMA) showed that raising the amount of flexible epoxy reduces the storage modulus (E’) while expanding the size of the transition zone. Conversely, the incorporation of DPF increases E’ over the studied temperature range. Similarly, increasing the percentage of flexible resin decreases the glass transition temperature (Tg) from 65.15 °C (100% rigid) to 29.75 °C (100% flexible). On the other hand, the incorporation of DPF improves the Tg. Isochronous stress-strain curves revealed that, at room temperature, the R50S50 epoxy (50% flexible + 50% rigid) and the R50S50R composite (R50S50 + 30% DPF) have linear viscoelastic behavior for tensile stress of 0.5 MPa and nonlinear one for higher stresses. The Schapery model was successfully used to model the nonlinear viscoelastic behavior of R50S50 epoxy and R50S50R composite.

两种环氧树脂(柔性和刚性)采用了更环保的新配方,用于制造五种不同比例的环氧树脂混合物,并用 30% 的枣椰纤维(DPF)进行增强。目的是确定混合物的成分和 DPF 的添加如何影响材料的热性能、吸水性能和粘弹性能。研究发现,吸水性会随着柔性环氧树脂含量的增加而增加。热重分析(TGA)显示,最大降解温度(Tmax)随柔性环氧树脂含量的增加而升高。加入 DPF 后,Tmax 会略有下降。动态机械分析(DMA)显示,增加柔性环氧的含量会降低储存模量(E'),同时扩大过渡区的尺寸。相反,在研究的温度范围内,加入 DPF 会增加 E'。同样,增加柔性树脂的比例会降低玻璃化转变温度(Tg),从 65.15 °C(100% 刚性)降至 29.75 °C(100% 柔性)。另一方面,DPF 的加入提高了玻璃化转变温度(Tg)。等时应力-应变曲线显示,在室温下,R50S50 环氧树脂(50% 柔性 + 50% 刚性)和 R50S50R 复合材料(R50S50 + 30% DPF)在拉伸应力为 0.5 兆帕时具有线性粘弹性行为,而在更高应力下则具有非线性行为。Schapery 模型成功地用于模拟 R50S50 环氧树脂和 R50S50R 复合材料的非线性粘弹性行为。
{"title":"Characterization of the thermal, water absorption, and viscoelastic behavior of short date palm fiber reinforced epoxy","authors":"Khaled Abdessemed, Omar Allaoui, Belhi Guerira, Laala Ghelani","doi":"10.1007/s11043-023-09656-2","DOIUrl":"https://doi.org/10.1007/s11043-023-09656-2","url":null,"abstract":"<p>Two epoxy resins (flexible and rigid) with new formulations that are more respectful of the environment are used to make five blends of epoxy resins in different proportions reinforced by 30% date palm fibers (DPF). The purpose is to determine how the blend’s composition and the addition of DPF affect the material’s thermal, water absorption, and viscoelastic properties. It was found that water absorption increases with the increase of flexible epoxy content. The incorporation of DPF multiplies the water absorption by about 6. Thermogravimetric analysis (TGA) revealed that the maximum degradation temperature (T<sub>max</sub>) increases with increasing flexible epoxy content. The incorporation of DPF causes a slight decrease in T<sub>max</sub>. Dynamic mechanical analysis (DMA) showed that raising the amount of flexible epoxy reduces the storage modulus (E’) while expanding the size of the transition zone. Conversely, the incorporation of DPF increases E’ over the studied temperature range. Similarly, increasing the percentage of flexible resin decreases the glass transition temperature (Tg) from 65.15 °C (100% rigid) to 29.75 °C (100% flexible). On the other hand, the incorporation of DPF improves the Tg. Isochronous stress-strain curves revealed that, at room temperature, the R50S50 epoxy (50% flexible + 50% rigid) and the R50S50R composite (R50S50 + 30% DPF) have linear viscoelastic behavior for tensile stress of 0.5 MPa and nonlinear one for higher stresses. The Schapery model was successfully used to model the nonlinear viscoelastic behavior of R50S50 epoxy and R50S50R composite.</p>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139071200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Mechanics of Time-Dependent Materials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1