Pub Date : 2024-12-10DOI: 10.1007/s11043-024-09741-0
Yonghui Shen, Rongrong Zhang, Dongdong Ma
To investigate the mechanical properties and energy evolution characteristics of freeze-thawed (F-T) red sandstone subjected to repeated impact loads, a series of repeated impacts were conducted on F-T red sandstone specimens using a split Hopkinson pressure bar (SHPB) device. The results demonstrate that with an increase in F-T cycle numbers, there is a continuous decrease in P-wave velocity accompanied by an increase in porosity and the number of cracks, leading to significant alterations in the microstructure. Both peak stress and modulus of elasticity show negative correlations with both the repeated impact times and F-T cycle numbers, whereas the peak strain and average strain rate exhibit positive correlations with these parameters. Moreover, the absorption energy per unit volume increases with both impact times and F-T cycle numbers, whereas the cumulative absorption energy per unit volume follows a linear increment trend. The established dynamic constitutive model can accurately describe the dynamic stress–strain characteristics of specimens under the repeated impact, demonstrating its high precision in forecasting. Furthermore, the observed failure mode of the specimen was characterized by tensile behavior, with a transition from intergranular fractures to transgranular fractures evident in the microcracks.
{"title":"Energy evolution characteristics and mechanical properties of freeze-thawed red sandstone under repeat impact loading","authors":"Yonghui Shen, Rongrong Zhang, Dongdong Ma","doi":"10.1007/s11043-024-09741-0","DOIUrl":"10.1007/s11043-024-09741-0","url":null,"abstract":"<div><p>To investigate the mechanical properties and energy evolution characteristics of freeze-thawed (F-T) red sandstone subjected to repeated impact loads, a series of repeated impacts were conducted on F-T red sandstone specimens using a split Hopkinson pressure bar (SHPB) device. The results demonstrate that with an increase in F-T cycle numbers, there is a continuous decrease in P-wave velocity accompanied by an increase in porosity and the number of cracks, leading to significant alterations in the microstructure. Both peak stress and modulus of elasticity show negative correlations with both the repeated impact times and F-T cycle numbers, whereas the peak strain and average strain rate exhibit positive correlations with these parameters. Moreover, the absorption energy per unit volume increases with both impact times and F-T cycle numbers, whereas the cumulative absorption energy per unit volume follows a linear increment trend. The established dynamic constitutive model can accurately describe the dynamic stress–strain characteristics of specimens under the repeated impact, demonstrating its high precision in forecasting. Furthermore, the observed failure mode of the specimen was characterized by tensile behavior, with a transition from intergranular fractures to transgranular fractures evident in the microcracks.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"29 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142798261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In concrete engineering, high temperatures at varying heating rates significantly affect the stability of concrete structures. In this paper, the dynamic tensile characteristics were investigated on concrete specimens subjected to heating rates ranging from 2 to 40 °C/min, using the digital image correlation (DIC) method. The results reveal a critical heating rate threshold, between 5 and 10 °C/min, which marks a shift in the influence of heating rates on both physical and dynamic tensile properties. Below this threshold, changes are minimal, but beyond it, significant effects are observed. As the heating rate increases, longitudinal wave velocity, density, and mass decrease, while porosity increases. Both wave velocity and dynamic tensile strength exhibit a linear decline with increasing heating rates, whereas porosity increases linearly. Additionally, when the heating rate surpasses the threshold, the angle between the failure surface and the loading bar increases, and the maximum principal strain in the direction perpendicular to the loading direction, measured on the specimen’s plane, decreases. Initial failure occurs at the location of highest strain, typically along the central axis of the specimen. These findings suggest that rapid heating should be avoided in concrete engineering to maintain structural integrity. However, rapid heating could be used to break and reuse concrete materials.
{"title":"Dynamic tensile properties of thermally treated concrete specimens subjected to varied heating rates: an investigation using the digital image correlation method","authors":"Ronghua Shu, Jiabao Cheng, Guang Xu, Yuzhang Lai, Lijinhong Huang","doi":"10.1007/s11043-024-09750-z","DOIUrl":"10.1007/s11043-024-09750-z","url":null,"abstract":"<div><p>In concrete engineering, high temperatures at varying heating rates significantly affect the stability of concrete structures. In this paper, the dynamic tensile characteristics were investigated on concrete specimens subjected to heating rates ranging from 2 to 40 °C/min, using the digital image correlation (DIC) method. The results reveal a critical heating rate threshold, between 5 and 10 °C/min, which marks a shift in the influence of heating rates on both physical and dynamic tensile properties. Below this threshold, changes are minimal, but beyond it, significant effects are observed. As the heating rate increases, longitudinal wave velocity, density, and mass decrease, while porosity increases. Both wave velocity and dynamic tensile strength exhibit a linear decline with increasing heating rates, whereas porosity increases linearly. Additionally, when the heating rate surpasses the threshold, the angle between the failure surface and the loading bar increases, and the maximum principal strain in the direction perpendicular to the loading direction, measured on the specimen’s plane, decreases. Initial failure occurs at the location of highest strain, typically along the central axis of the specimen. These findings suggest that rapid heating should be avoided in concrete engineering to maintain structural integrity. However, rapid heating could be used to break and reuse concrete materials.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"29 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142798405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-16DOI: 10.1007/s11043-024-09734-z
A. R. El-Dhaba, H. K. Awad, S. M. Mousavi
In this paper, we provide detailed variational formulations for the reduced micromorphic model in rectangular and cylindrical coordinates. In these formulations, the material is modeled as consisting of deformable particles that exhibit microstrain and macroscopic strain fields. This microstrain field is independent of the macroscopic strain field of the entire material. In addition, all the kinematical and kinetical variables, equations of motion, and boundary conditions are formulated depending on the displacement and microstrain fields. Here we define the conditions that give the reduced micromorphic model with decoupled equations of motion such that the displacement field is described as independent of the microstrain field. In addition, we show the applicability of the developed formulation to investigate the simple shear behavior of solid-lubricant cylindrical films. An analytical solution for this model is developed, and numerical results are represented to demonstrate the microstructural topology effects on the mechanics of the lubricant film. The formulations and revealed findings of the present study are important for the design of novel coating architectures materials.
{"title":"Analysis of solid lubricating materials microstructures properties in the frame of cylindrical coordinates system and reduced micromorphic model","authors":"A. R. El-Dhaba, H. K. Awad, S. M. Mousavi","doi":"10.1007/s11043-024-09734-z","DOIUrl":"https://doi.org/10.1007/s11043-024-09734-z","url":null,"abstract":"<p>In this paper, we provide detailed variational formulations for the reduced micromorphic model in rectangular and cylindrical coordinates. In these formulations, the material is modeled as consisting of deformable particles that exhibit microstrain and macroscopic strain fields. This microstrain field is independent of the macroscopic strain field of the entire material. In addition, all the kinematical and kinetical variables, equations of motion, and boundary conditions are formulated depending on the displacement and microstrain fields. Here we define the conditions that give the reduced micromorphic model with decoupled equations of motion such that the displacement field is described as independent of the microstrain field. In addition, we show the applicability of the developed formulation to investigate the simple shear behavior of solid-lubricant cylindrical films. An analytical solution for this model is developed, and numerical results are represented to demonstrate the microstructural topology effects on the mechanics of the lubricant film. The formulations and revealed findings of the present study are important for the design of novel coating architectures materials.</p>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"4 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142248984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-09DOI: 10.1007/s11043-024-09715-2
Shan Ali Khan, Haihu Liu, Muhammad Imran, Umar Farooq, Sumeira Yasmin, Binjian Ma, Abdullah Alhushaybari
The study of fluid flow and heat transfer within a rectangular frame domain has diverse applications across various engineering fields, including energy and power, cooling technology, and nuclear reactors. Motivated by these applications, the current research examines the steady incompressible flow of two different mononanofluids: copper/ethylene glycol–water and titanium dioxide/ethylene glycol–water, within a rectangular frame. The dynamics of the flow, influenced by magnetohydrodynamics (MHD) effects and thermal radiation, are presented. The analysis includes the effects of suction and dual stretching behavior. Additionally, statistical analysis has been conducted to highlight skin-friction characteristics. The dimensionless system of equations has been solved numerically with the help of a numerical shooting scheme. Additionally, experimental design (response surface methodology) and sensitivity are performed for skin frictions. The rheological effects of the relevant parameters against subjective fields are analyzed through graphical representation.
{"title":"Quadratic regression model for response surface methodology based on sensitivity analysis of heat transport in mono nanofluids with suction and dual stretching in a rectangular frame","authors":"Shan Ali Khan, Haihu Liu, Muhammad Imran, Umar Farooq, Sumeira Yasmin, Binjian Ma, Abdullah Alhushaybari","doi":"10.1007/s11043-024-09715-2","DOIUrl":"10.1007/s11043-024-09715-2","url":null,"abstract":"<div><p>The study of fluid flow and heat transfer within a rectangular frame domain has diverse applications across various engineering fields, including energy and power, cooling technology, and nuclear reactors. Motivated by these applications, the current research examines the steady incompressible flow of two different mononanofluids: copper/ethylene glycol–water and titanium dioxide/ethylene glycol–water, within a rectangular frame. The dynamics of the flow, influenced by magnetohydrodynamics (MHD) effects and thermal radiation, are presented. The analysis includes the effects of suction and dual stretching behavior. Additionally, statistical analysis has been conducted to highlight skin-friction characteristics. The dimensionless system of equations has been solved numerically with the help of a numerical shooting scheme. Additionally, experimental design (response surface methodology) and sensitivity are performed for skin frictions. The rheological effects of the relevant parameters against subjective fields are analyzed through graphical representation.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"28 3","pages":"1019 - 1048"},"PeriodicalIF":2.1,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142181947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-28DOI: 10.1007/s11043-024-09704-5
Alessandro Comitti, Federico Bosi
Ethylene-tetra-fluoroethylene (ETFE) is a polymer employed in tension membrane structures with mechanical properties that strongly depend on time and temperature effects. A comprehensive understanding of the mutual influence of these variables and a unified viscoelastic constitutive model design can enable wider exploitation of ETFE in sustainable lightweight construction. This study presents a thermomechanical characterisation of ETFE foils through quasi-static tensile experiments spanning two orders of magnitude of strain rates, creep, relaxation, shear and dynamic cyclic tests in a wide range of temperatures suitable for building applications, from (-20^{circ }text{ C}) to (60^{circ }text{ C}). The experimental results in different material orientations are used to identify the limits of the linear viscoelastic domain, define the direction-dependent creep compliance master curves and calibrate the parameters of a plane stress orthotropic linear viscoelastic model, employing the Boltzmann superposition and the time-temperature superposition principles. The model has been numerically implemented using a recursive integration algorithm and its code is provided open source. A validation on independently acquired data shows the accuracy of the constitutive model in predicting ETFE behaviour within the linear viscoelastic regime usually adopted during structural design, with excellent extrapolation capabilities outside the range of the calibration data.
{"title":"Thermomechanical characterisation and plane stress linear viscoelastic modelling of ethylene-tetra-fluoroethylene foils","authors":"Alessandro Comitti, Federico Bosi","doi":"10.1007/s11043-024-09704-5","DOIUrl":"https://doi.org/10.1007/s11043-024-09704-5","url":null,"abstract":"<p>Ethylene-tetra-fluoroethylene (ETFE) is a polymer employed in tension membrane structures with mechanical properties that strongly depend on time and temperature effects. A comprehensive understanding of the mutual influence of these variables and a unified viscoelastic constitutive model design can enable wider exploitation of ETFE in sustainable lightweight construction. This study presents a thermomechanical characterisation of ETFE foils through quasi-static tensile experiments spanning two orders of magnitude of strain rates, creep, relaxation, shear and dynamic cyclic tests in a wide range of temperatures suitable for building applications, from <span>(-20^{circ }text{ C})</span> to <span>(60^{circ }text{ C})</span>. The experimental results in different material orientations are used to identify the limits of the linear viscoelastic domain, define the direction-dependent creep compliance master curves and calibrate the parameters of a plane stress orthotropic linear viscoelastic model, employing the Boltzmann superposition and the time-temperature superposition principles. The model has been numerically implemented using a recursive integration algorithm and its code is provided open source. A validation on independently acquired data shows the accuracy of the constitutive model in predicting ETFE behaviour within the linear viscoelastic regime usually adopted during structural design, with excellent extrapolation capabilities outside the range of the calibration data.</p>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"96 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142181948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-27DOI: 10.1007/s11043-024-09735-y
Rezvan Abedini, Vahid Fartashvand, Amir Abdullah, Yunes Alizadeh
Ultrasonication has widely been used in many industries to develop advanced materials, improve materials behaviors, and enhance mechanical strength to name a few. The present investigation aims to accelerate the densification mechanisms during the hot-pressing process of Ti-6Al-4 V powder through high power ultrasonication. A computational study has been developed and implemented to simulate the consolidation behavior, then compared with the experimental data to ensure the simulation accuracy. The constitutive equations, encompassing thermoplastic and power-law creep models, were implemented in the simulation as UMAT and CREEP subroutines. Finally, the simulation results in densification curves and density distribution have been compared with the results of experimental tests. The comparison of the simulation and experimental results shows a maximum error of 6.8 and 2.8% in predicting the densification behavior of hot pressing without and with ultrasonication, respectively. The results show the good accuracy of the simulation in predicting final relative density and density distribution with ultrasonic vibrations.
超声技术已广泛应用于许多行业,如开发先进材料、改善材料性能和提高机械强度等。本研究旨在通过高功率超声加速 Ti-6Al-4 V 粉末热压过程中的致密化机制。我们开发并实施了一项计算研究来模拟固结行为,然后与实验数据进行比较,以确保模拟的准确性。包括热塑性和幂律蠕变模型在内的构成方程以 UMAT 和 CREEP 子程序的形式在模拟中实现。最后,将致密化曲线和密度分布的模拟结果与实验测试结果进行了比较。模拟结果和实验结果的对比显示,在预测不使用超声波和使用超声波的热压工艺的致密化行为时,最大误差分别为 6.8%和 2.8%。结果表明,模拟在预测超声波振动的最终相对密度和密度分布方面具有良好的准确性。
{"title":"Finite element modelling of ultrasonic assisted hot pressing of metal powder","authors":"Rezvan Abedini, Vahid Fartashvand, Amir Abdullah, Yunes Alizadeh","doi":"10.1007/s11043-024-09735-y","DOIUrl":"https://doi.org/10.1007/s11043-024-09735-y","url":null,"abstract":"<p>Ultrasonication has widely been used in many industries to develop advanced materials, improve materials behaviors, and enhance mechanical strength to name a few. The present investigation aims to accelerate the densification mechanisms during the hot-pressing process of Ti-6Al-4 V powder through high power ultrasonication. A computational study has been developed and implemented to simulate the consolidation behavior, then compared with the experimental data to ensure the simulation accuracy. The constitutive equations, encompassing thermoplastic and power-law creep models, were implemented in the simulation as UMAT and CREEP subroutines. Finally, the simulation results in densification curves and density distribution have been compared with the results of experimental tests. The comparison of the simulation and experimental results shows a maximum error of 6.8 and 2.8% in predicting the densification behavior of hot pressing without and with ultrasonication, respectively. The results show the good accuracy of the simulation in predicting final relative density and density distribution with ultrasonic vibrations.</p>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"18 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142181949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-23DOI: 10.1007/s11043-024-09736-x
Muhammad Sohail, Kamaleldin Abodayeh, Umar Nazir
Due to the unlimited usage and involvement of nanoparticles, researchers got much interest in their study. This research discusses the utilization of a hybrid nanofluid model mixed in water-based liquid in a rotating disk. The flow is considered with the involvement of Hall and ion slip effects in a rotating disk. Thermal transport is discussed by engaging quadratic thermal radiation phenomenon along with Joule heating. The boundary layer equations are generated in the form of coupled PDEs and are converted into a set of ODEs by engaging similarity variables. The derived converted ODEs are highly nonlinear and have been solved numerically via the finite element method. The involvement of numerous emerging parameters against velocity, temperature and concentration is plotted and tabulated and their insight physics is discussed in detail. The obtained results confirm the reliability of finite element scheme.
{"title":"Implementation of finite element scheme to study thermal and mass transportation in water-based nanofluid model under quadratic thermal radiation in a disk","authors":"Muhammad Sohail, Kamaleldin Abodayeh, Umar Nazir","doi":"10.1007/s11043-024-09736-x","DOIUrl":"10.1007/s11043-024-09736-x","url":null,"abstract":"<div><p>Due to the unlimited usage and involvement of nanoparticles, researchers got much interest in their study. This research discusses the utilization of a hybrid nanofluid model mixed in water-based liquid in a rotating disk. The flow is considered with the involvement of Hall and ion slip effects in a rotating disk. Thermal transport is discussed by engaging quadratic thermal radiation phenomenon along with Joule heating. The boundary layer equations are generated in the form of coupled PDEs and are converted into a set of ODEs by engaging similarity variables. The derived converted ODEs are highly nonlinear and have been solved numerically via the finite element method. The involvement of numerous emerging parameters against velocity, temperature and concentration is plotted and tabulated and their insight physics is discussed in detail. The obtained results confirm the reliability of finite element scheme.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"28 3","pages":"1049 - 1072"},"PeriodicalIF":2.1,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142181951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-19DOI: 10.1007/s11043-024-09732-1
Nahid Fatima, Ali Basem, Umar Farooq, Muhammad Imran, Madeeha Tahir, Naim Ben Ali, Wajdi Rajhi, Hassan Waqas
The study of nanofluids using a stretchy disc has lately gained importance in fluid mechanics. This work investigates the impacts of the Cattaneo-Christov model, heat radiation, and melting events on TiO2–Al2O3/water and Ag–MoS2/water hybrid nanofluids over a disc. The results show that hybrid nanofluids greatly increase the thermal conductivity and heat transfer capabilities of base fluids. Water-based hybrid nanofluids are used in military applications such as solar thermal energy, heating pumps, heat exchanger devices, ships, air cleaners, the automotive industry, electric chillers, nuclear-powered systems, turbines, and equipment. To explain the flow of hybrid nanofluids, the two-dimensional nonlinear governing equations, which include the continuity, momentum, and heat transfer rate equations, are expressed in a non-dimensional form. The bvp4c solver firing technique in MATLAB is used to solve these non-dimensional equations and investigate the physical effects of various parameters on velocity and temperature profiles. Increasing the magnetic parameter and nanoparticle volume fraction substantially affects the velocity profile in opposing flow. Greater values of the thermal radiation and heat source-sink parameters result in a greater temperature profile. In addition, raising the thermal relaxation and melting parameters improves the temperature profile. The study’s findings may be utilized in various sectors, including drainage, chemical engineering, solar panels, solar absorption and filtration, groundwater hydrology, solar cells, and other sheet flow applications.
{"title":"Numerical analysis of TiO2–Al2O3/water and Ag–MoS2/water hybrid nanofluid flow over a rotating disk with thermal radiation and Cattaneo–Christov heat flux effects","authors":"Nahid Fatima, Ali Basem, Umar Farooq, Muhammad Imran, Madeeha Tahir, Naim Ben Ali, Wajdi Rajhi, Hassan Waqas","doi":"10.1007/s11043-024-09732-1","DOIUrl":"10.1007/s11043-024-09732-1","url":null,"abstract":"<div><p>The study of nanofluids using a stretchy disc has lately gained importance in fluid mechanics. This work investigates the impacts of the Cattaneo-Christov model, heat radiation, and melting events on TiO<sub>2</sub>–Al<sub>2</sub>O<sub>3</sub>/water and Ag–MoS<sub>2</sub>/water hybrid nanofluids over a disc. The results show that hybrid nanofluids greatly increase the thermal conductivity and heat transfer capabilities of base fluids. Water-based hybrid nanofluids are used in military applications such as solar thermal energy, heating pumps, heat exchanger devices, ships, air cleaners, the automotive industry, electric chillers, nuclear-powered systems, turbines, and equipment. To explain the flow of hybrid nanofluids, the two-dimensional nonlinear governing equations, which include the continuity, momentum, and heat transfer rate equations, are expressed in a non-dimensional form. The bvp4c solver firing technique in MATLAB is used to solve these non-dimensional equations and investigate the physical effects of various parameters on velocity and temperature profiles. Increasing the magnetic parameter and nanoparticle volume fraction substantially affects the velocity profile in opposing flow. Greater values of the thermal radiation and heat source-sink parameters result in a greater temperature profile. In addition, raising the thermal relaxation and melting parameters improves the temperature profile. The study’s findings may be utilized in various sectors, including drainage, chemical engineering, solar panels, solar absorption and filtration, groundwater hydrology, solar cells, and other sheet flow applications.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"28 3","pages":"1313 - 1329"},"PeriodicalIF":2.1,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142181950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-16DOI: 10.1007/s11043-024-09730-3
S. K. Sutar, K. Ganguly, S. K. Pradhan, R. Pradhan
This study investigates the role of a breathing crack on a viscoelastic composite rotor-shaft system supported at the ends by journal bearings. A finite element-based mathematical formulation is developed to model the breathing crack. The geometry of the crack configuration is used to derive a time-dependent stiffness matrix. This matrix is then incorporated into the equation of motion for the composite shaft, derived with the Equivalent Modulus Theory (EMT). The equation of motion is of higher order due to the inclusion of the material’s internal damping behavior, modeled using an operator-based viscoelastic model. Upon validating the mathematical model of the breathing crack, we analyzed its effects over one complete shaft rotation. This analysis further compared the strain energy and orbit plots of the cracked shaft with those of an intact shaft.
{"title":"The effect of a geometry-based breathing crack model on a viscoelastic composite rotor-shaft system","authors":"S. K. Sutar, K. Ganguly, S. K. Pradhan, R. Pradhan","doi":"10.1007/s11043-024-09730-3","DOIUrl":"https://doi.org/10.1007/s11043-024-09730-3","url":null,"abstract":"<p>This study investigates the role of a breathing crack on a viscoelastic composite rotor-shaft system supported at the ends by journal bearings. A finite element-based mathematical formulation is developed to model the breathing crack. The geometry of the crack configuration is used to derive a time-dependent stiffness matrix. This matrix is then incorporated into the equation of motion for the composite shaft, derived with the Equivalent Modulus Theory (EMT). The equation of motion is of higher order due to the inclusion of the material’s internal damping behavior, modeled using an operator-based viscoelastic model. Upon validating the mathematical model of the breathing crack, we analyzed its effects over one complete shaft rotation. This analysis further compared the strain energy and orbit plots of the cracked shaft with those of an intact shaft.</p>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"3 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142181954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-07DOI: 10.1007/s11043-024-09733-0
Ahmed Alamer, Amal F. Alharbi, Mounirah Areshi, Muhammad Usman
This work investigates the problem of time- and space-dependent thin film thickness, specifically focusing on the flow of a Carreau–Yasuda (CY) ternary nanofluid over a porous stretching and rotating disk. The study examines how the thin film thickness varies under partial slip conditions. The CY-ternary nanofluid is composed of silver, alumina, and carborundum nanocombination in ethylene glycol. Also, the study takes into account the effect of thermal radiation with the extension of a magnetic field. To solve the unsteady nonlinear problem, it is transformed into a nonlinear problem and solved using the homotopy analysis method (HAM). The acquired data, together with the CY-ternary nanofluid percentage heat transfer augmentation, are shown visually and quantitatively. The results demonstrate that the CY-ternary nanofluid thin film thickness is influenced by the flow parameters. Moreover, a decrease in thin film thickness is facilitated by rotation, magnetic field, and porosity, which significantly boosts heat transfer rates. These findings are practical applications and offer opportunities for improved thermal management in engineering, biomedical, and industrial processes.
{"title":"Exploring viscoelastic potential: unsteady magnetohydrodynamic thin film flow of Carreau–Yasuda ternary nanofluid on a rotating disk","authors":"Ahmed Alamer, Amal F. Alharbi, Mounirah Areshi, Muhammad Usman","doi":"10.1007/s11043-024-09733-0","DOIUrl":"https://doi.org/10.1007/s11043-024-09733-0","url":null,"abstract":"<p>This work investigates the problem of time- and space-dependent thin film thickness, specifically focusing on the flow of a Carreau–Yasuda (CY) ternary nanofluid over a porous stretching and rotating disk. The study examines how the thin film thickness varies under partial slip conditions. The CY-ternary nanofluid is composed of silver, alumina, and carborundum nanocombination in ethylene glycol. Also, the study takes into account the effect of thermal radiation with the extension of a magnetic field. To solve the unsteady nonlinear problem, it is transformed into a nonlinear problem and solved using the homotopy analysis method (HAM). The acquired data, together with the CY-ternary nanofluid percentage heat transfer augmentation, are shown visually and quantitatively. The results demonstrate that the CY-ternary nanofluid thin film thickness is influenced by the flow parameters. Moreover, a decrease in thin film thickness is facilitated by rotation, magnetic field, and porosity, which significantly boosts heat transfer rates. These findings are practical applications and offer opportunities for improved thermal management in engineering, biomedical, and industrial processes.</p>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"197 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141943871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}