Pub Date : 2022-08-02eCollection Date: 2022-01-01DOI: 10.20517/cdr.2022.83
Prem Prakash Kushwaha, Sanjay Gupta
Prostate cancer is the most common cancer and is the second leading cause of cancer-related deaths among men in the United States. Androgen deprivation therapy (ADT) is the standard treatment for advanced-stage prostate cancer; however, this treatment eventually fails, leading to an incurable disease subtype known as metastatic castration-resistant prostate cancer (mCRPC). There are several molecular mechanisms that facilitate the development of mCRPC engaging androgen receptor (AR) growth axis, including AR amplification, gain of function AR mutations, and AR splice variants that are constitutively active and are a foremost factor for mCRPC development. AR-independent mechanisms with exceptionally low or absent AR expression found in cancer cells suppress ADT effectiveness and contribute to aggressive variants, including neuroendocrine differentiation. Several other AR regulatory factors such as epigenetic modification(s), and DNA damage response have been reported during post-ADT exposure and play a crucial role in mCRPC development. Therefore, targeting prostate cancer cells before their progression to mCRPC would improve patient outcomes. This special issue in "Cancer Drug Resistance" focuses on understanding the mechanism(s) and development of mCRPC resistance. This special issue also highlights the therapeutic strategies to combat against resistant subtype. This issue comprehensively reviews the mCRPC and delivers the update in the forum of mCRPC resistance development.
前列腺癌是最常见的癌症,也是美国男性癌症相关死亡的第二大原因。雄激素剥夺疗法(ADT)是晚期前列腺癌的标准治疗方法;然而,这种治疗方法最终会失败,导致一种无法治愈的疾病亚型,即转移性抗性前列腺癌(mCRPC)。有几种分子机制可促进雄激素受体(AR)生长轴参与 mCRPC 的发展,其中包括 AR 扩增、AR 功能增益突变以及构成性活跃的 AR 剪接变体,它们是 mCRPC 发展的首要因素。在癌细胞中发现的 AR 表达异常低或缺失的 AR 依赖性机制会抑制 ADT 的有效性,并导致侵袭性变异,包括神经内分泌分化。有报告称,在ADT暴露后,其他一些AR调控因素(如表观遗传修饰和DNA损伤反应)在mCRPC的发展中起着至关重要的作用。因此,在前列腺癌细胞发展为 mCRPC 之前对其进行靶向治疗将改善患者的预后。本期 "癌症耐药性 "特刊的重点是了解mCRPC耐药性的机制和发展。本特刊还重点介绍了对抗耐药亚型的治疗策略。本期特刊全面回顾了mCRPC,并在mCRPC耐药性发展论坛上介绍了最新进展。
{"title":"New insights for drug resistance in metastatic castration-resistant prostate cancer.","authors":"Prem Prakash Kushwaha, Sanjay Gupta","doi":"10.20517/cdr.2022.83","DOIUrl":"10.20517/cdr.2022.83","url":null,"abstract":"<p><p>Prostate cancer is the most common cancer and is the second leading cause of cancer-related deaths among men in the United States. Androgen deprivation therapy (ADT) is the standard treatment for advanced-stage prostate cancer; however, this treatment eventually fails, leading to an incurable disease subtype known as metastatic castration-resistant prostate cancer (mCRPC). There are several molecular mechanisms that facilitate the development of mCRPC engaging androgen receptor (AR) growth axis, including AR amplification, gain of function AR mutations, and AR splice variants that are constitutively active and are a foremost factor for mCRPC development. AR-independent mechanisms with exceptionally low or absent AR expression found in cancer cells suppress ADT effectiveness and contribute to aggressive variants, including neuroendocrine differentiation. Several other AR regulatory factors such as epigenetic modification(s), and DNA damage response have been reported during post-ADT exposure and play a crucial role in mCRPC development. Therefore, targeting prostate cancer cells before their progression to mCRPC would improve patient outcomes. This special issue in \"Cancer Drug Resistance\" focuses on understanding the mechanism(s) and development of mCRPC resistance. This special issue also highlights the therapeutic strategies to combat against resistant subtype. This issue comprehensively reviews the mCRPC and delivers the update in the forum of mCRPC resistance development.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2022-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9511793/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40384872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-07eCollection Date: 2022-01-01DOI: 10.20517/cdr.2021.132
Katelyn E Salotto, Walter C Olson, Karlyn E Pollack, Anuradha Illendula, Elishama Michel, Sydney Henriques, Todd Fox, Susan Walker, Marya Dunlap-Brown, Craig L Slingluff, Mark Kester, Helena W Snyder
Aim: Despite the huge advancements in cancer therapies and treatments over the past decade, most patients with metastasized melanoma still die from the disease. This poor prognosis largely results from resistance to conventional chemotherapies and other cytotoxic drugs. We have previously identified 6 antigenic peptides derived from melanomas that have proven efficacious for activating CD4+ T cells in clinical trials for melanoma. Our aim was to improve pharmacodynamics, pharmacokinetic and toxicological parameters by individually encapsulating each of the 6 melanoma helper peptides within their own immunogenic nanoliposomes. Methods: We modified these liposomes as necessary to account for differences in the peptides' chemical properties, resulting in 3 distinct formulations. To further enhance immunogenicity, we also incorporated KDO2, a TLR4 agonist, into the lipid bilayer of all nanoliposome formulations. We then conducted in vivo imaging studies in mice and ex vivo cell studies from 2 patient samples who both strongly expressed one of the identified peptides. Results: We demonstrate that these liposomes, loaded with the different melanoma helper peptides, can be readily mixed together and simultaneously delivered without toxicity in vivo. These liposomes are capable of being diffused to the secondary lymphoid organs very quickly and for at least 6 days. In addition, we show that these immunogenic liposomes enhance immune responses to specific peptides ex vivo. Conclusion: Lipid-based delivery systems, including nanoliposomes and lipid nanoparticles, have now been validated for pharmacological (small molecules, bioactive lipids) and molecular (mRNA, siRNA) therapeutic approaches. However, the utility of these formulations as cancer vaccines, delivering antigenic peptides, has not yet achieved the same degree of commercial success. Here, we describe the novel and successful development of a nanoliposome-based cancer vaccine for melanoma. These vaccines help to circumvent drug resistance by increasing a patient's T cell response, making them more susceptible to checkpoint blockade therapy.
{"title":"A nano-enhanced vaccine for metastatic melanoma immunotherapy.","authors":"Katelyn E Salotto, Walter C Olson, Karlyn E Pollack, Anuradha Illendula, Elishama Michel, Sydney Henriques, Todd Fox, Susan Walker, Marya Dunlap-Brown, Craig L Slingluff, Mark Kester, Helena W Snyder","doi":"10.20517/cdr.2021.132","DOIUrl":"https://doi.org/10.20517/cdr.2021.132","url":null,"abstract":"<p><p><b>Aim</b>: Despite the huge advancements in cancer therapies and treatments over the past decade, most patients with metastasized melanoma still die from the disease. This poor prognosis largely results from resistance to conventional chemotherapies and other cytotoxic drugs. We have previously identified 6 antigenic peptides derived from melanomas that have proven efficacious for activating CD4<sup>+</sup> T cells in clinical trials for melanoma. Our aim was to improve pharmacodynamics, pharmacokinetic and toxicological parameters by individually encapsulating each of the 6 melanoma helper peptides within their own immunogenic nanoliposomes. <b>Methods</b>: We modified these liposomes as necessary to account for differences in the peptides' chemical properties, resulting in 3 distinct formulations. To further enhance immunogenicity, we also incorporated KDO2, a TLR4 agonist, into the lipid bilayer of all nanoliposome formulations. We then conducted <i>in vivo</i> imaging studies in mice and <i>ex vivo</i> cell studies from 2 patient samples who both strongly expressed one of the identified peptides. <b>Results</b>: We demonstrate that these liposomes, loaded with the different melanoma helper peptides, can be readily mixed together and simultaneously delivered without toxicity <i>in vivo</i>. These liposomes are capable of being diffused to the secondary lymphoid organs very quickly and for at least 6 days. In addition, we show that these immunogenic liposomes enhance immune responses to specific peptides <i>ex vivo</i>. <b>Conclusion</b>: Lipid-based delivery systems, including nanoliposomes and lipid nanoparticles, have now been validated for pharmacological (small molecules, bioactive lipids) and molecular (mRNA, siRNA) therapeutic approaches. However, the utility of these formulations as cancer vaccines, delivering antigenic peptides, has not yet achieved the same degree of commercial success. Here, we describe the novel and successful development of a nanoliposome-based cancer vaccine for melanoma. These vaccines help to circumvent drug resistance by increasing a patient's T cell response, making them more susceptible to checkpoint blockade therapy.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9511805/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40385714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-03eCollection Date: 2022-01-01DOI: 10.20517/cdr.2022.56
Mario Cioce, Daniela Rutigliano, Annamaria Puglielli, Vito Michele Fazio
Aim: Malignant pleural mesothelioma is a chemoresistant tumor, and biphasic and sarcomatoid histologies portend the worst prognosis for malignant pleural mesothelioma (MPM) patients. We obtained the microRNA expression profile of three biphasic-sarcomatoid MPM cell lines to identify commonly expressed microRNAs and evaluate the effect of butein, a chemo-sensitizing compound, on this microRNA subset. Methods: Nanostring-based microRNA profiling and analysis through the ROSALIND platform were employed to identify the commonly modulated microRNAs and their targets. MicroRNA-mimic transfection, Luciferase assay, and Western blotting were employed to show specific perturbation of TWIST1 levels by miR-186-5p. Sphere-forming assays, invasion assay, and metabolic profiling were used to assess the biological consequences of the butein-instigated miR-186-5p-mediated perturbation of TWIST1 levels. TGCA analysis was used to search for the correlation between TWIST1 and miR-186-5p levels in biphasic and epithelioid MPM specimens. Results: We identified a set of perturbed microRNAs, common to three biphasic/sarcomatoid MPM cell lines, after butein treatment. When focusing on miR-186-5p, we unraveled a butein-ignited and miR-186-5p-mediated modulation of TWIST1 levels which affected the 3D anchorage-independent growth, cisplatin resistance, invasion, and bioenergetics of the MPM cell lines tested. We showed that miR-186-5p and TWIST1 levels are anti-correlated in biphasic MPM specimens from TCGA. Conclusion: We unraveled a novel mechanism of action of butein, which attenuated the pro-tumorigenic features of MPM at least through a miR-186-5p-TWIST1 axis. We suggest that those activities converge into the chemo-sensitizing effect of this compound and may be of translational relevance.
{"title":"Butein-instigated miR-186-5p-dependent modulation of TWIST1 affects resistance to cisplatin and bioenergetics of Malignant Pleural Mesothelioma cells.","authors":"Mario Cioce, Daniela Rutigliano, Annamaria Puglielli, Vito Michele Fazio","doi":"10.20517/cdr.2022.56","DOIUrl":"https://doi.org/10.20517/cdr.2022.56","url":null,"abstract":"<p><p><b>Aim:</b> Malignant pleural mesothelioma is a chemoresistant tumor, and biphasic and sarcomatoid histologies portend the worst prognosis for malignant pleural mesothelioma (MPM) patients. We obtained the microRNA expression profile of three biphasic-sarcomatoid MPM cell lines to identify commonly expressed microRNAs and evaluate the effect of butein, a chemo-sensitizing compound, on this microRNA subset. <b>Methods:</b> Nanostring-based microRNA profiling and analysis through the ROSALIND platform were employed to identify the commonly modulated microRNAs and their targets. MicroRNA-mimic transfection, Luciferase assay, and Western blotting were employed to show specific perturbation of TWIST1 levels by miR-186-5p. Sphere-forming assays, invasion assay, and metabolic profiling were used to assess the biological consequences of the butein-instigated miR-186-5p-mediated perturbation of TWIST1 levels. TGCA analysis was used to search for the correlation between TWIST1 and miR-186-5p levels in biphasic and epithelioid MPM specimens. <b>Results:</b> We identified a set of perturbed microRNAs, common to three biphasic/sarcomatoid MPM cell lines, after butein treatment. When focusing on miR-186-5p, we unraveled a butein-ignited and miR-186-5p-mediated modulation of TWIST1 levels which affected the 3D anchorage-independent growth, cisplatin resistance, invasion, and bioenergetics of the MPM cell lines tested. We showed that miR-186-5p and TWIST1 levels are anti-correlated in biphasic MPM specimens from TCGA. <b>Conclusion:</b> We unraveled a novel mechanism of action of butein, which attenuated the pro-tumorigenic features of MPM at least through a miR-186-5p-TWIST1 axis. We suggest that those activities converge into the chemo-sensitizing effect of this compound and may be of translational relevance.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9511809/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40384873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-01eCollection Date: 2022-01-01DOI: 10.20517/cdr.2022.11
Jixian Xiong, Tiantian Zhang, Penglin Lan, Shuhong Zhang, Li Fu
Gastric cancer (GC) is one of the most common causes of cancer-related death worldwide, and gastric cancer stem cells (GCSCs) are considered as the major factor for resistance to conventional radio- and chemotherapy. Accumulating evidence in recent years implies that GCSCs regulate the drug resistance in GC through multiple mechanisms, including dormancy, drug trafficking, drug metabolism and targeting, apoptosis, DNA damage, epithelial-mesenchymal transition, and tumor microenvironment. In this review, we summarize current advancements regarding the relationship between GCSCs and drug resistance and evaluate the molecular bases of GCSCs in drug resistance.
{"title":"Insight into the molecular mechanisms of gastric cancer stem cell in drug resistance of gastric cancer.","authors":"Jixian Xiong, Tiantian Zhang, Penglin Lan, Shuhong Zhang, Li Fu","doi":"10.20517/cdr.2022.11","DOIUrl":"https://doi.org/10.20517/cdr.2022.11","url":null,"abstract":"<p><p>Gastric cancer (GC) is one of the most common causes of cancer-related death worldwide, and gastric cancer stem cells (GCSCs) are considered as the major factor for resistance to conventional radio- and chemotherapy. Accumulating evidence in recent years implies that GCSCs regulate the drug resistance in GC through multiple mechanisms, including dormancy, drug trafficking, drug metabolism and targeting, apoptosis, DNA damage, epithelial-mesenchymal transition, and tumor microenvironment. In this review, we summarize current advancements regarding the relationship between GCSCs and drug resistance and evaluate the molecular bases of GCSCs in drug resistance.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9511795/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40385715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Overcoming drug resistance in cancer therapies remains challenging, and the tumor microenvironment plays an important part in it. Microvesicles (MVs) are functional natural carriers of cellular information, participate in intercellular communication, and dynamically regulate the tumor microenvironment. They contribute to drug resistance by transferring functional molecules between cells. Conversely, due to their specific cell or tissue targeting ability, MVs are considered as carriers for therapeutic molecules to reverse drug resistance. Thus, in this mini-review, we aim to highlight the crucial role of MVs in cell-to-cell communication and therefore their diverse impact mainly on liver cancer progression and treatment. In addition, we summarize the possible mechanisms for sorafenib resistance (one of the main hurdles in hepatocellular carcinoma treatments) and recent advances in using MVs to reverse sorafenib resistance in liver cancer therapies. Identifying the functional role of MVs in cancer therapy might provide a new aspect for developing precise novel therapeutics in the future.
{"title":"Microvesicles: the functional mediators in sorafenib resistance.","authors":"Cong He, Doulathunnisa Jaffar Ali, Bo Sun, Bei-Cheng Sun, Zhong-Dang Xiao","doi":"10.20517/cdr.2021.137","DOIUrl":"https://doi.org/10.20517/cdr.2021.137","url":null,"abstract":"Overcoming drug resistance in cancer therapies remains challenging, and the tumor microenvironment plays an important part in it. Microvesicles (MVs) are functional natural carriers of cellular information, participate in intercellular communication, and dynamically regulate the tumor microenvironment. They contribute to drug resistance by transferring functional molecules between cells. Conversely, due to their specific cell or tissue targeting ability, MVs are considered as carriers for therapeutic molecules to reverse drug resistance. Thus, in this mini-review, we aim to highlight the crucial role of MVs in cell-to-cell communication and therefore their diverse impact mainly on liver cancer progression and treatment. In addition, we summarize the possible mechanisms for sorafenib resistance (one of the main hurdles in hepatocellular carcinoma treatments) and recent advances in using MVs to reverse sorafenib resistance in liver cancer therapies. Identifying the functional role of MVs in cancer therapy might provide a new aspect for developing precise novel therapeutics in the future.","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9511799/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40385713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Osteosarcoma (OS) is the most common type of bone sarcoma. Despite the availability of multimodal treatment with surgery and chemotherapy, the clinical results remain unsatisfactory. The main reason for the poor outcomes in patients with OS is the development of resistance to methotrexate, cisplatin, doxorubicin, and ifosfamide. Molecular and cellular mechanisms associated with resistance to chemotherapy include DNA repair and cell-cycle alterations, enhanced drug efflux, increased detoxification, resistance to apoptosis, autophagy, tumor extracellular matrix, and angiogenesis. This versatility of cells to generate chemoresistance has motivated the use of anti-angiogenic therapy based on tyrosine kinase inhibitors. This approach has shown that other therapies, along with standard chemotherapy, can improve responses to therapy in patients with OS. Moreover, microRNAs may act as predictors of drug resistance in OS. This review provides insight into the molecular and cellular mechanisms involved in the development of resistance during the treatment of OS and discusses promising novel therapies (e.g., afatinib and palbociclib) for overcoming resistance to chemotherapy in OS.
{"title":"An overview of resistance to chemotherapy in osteosarcoma and future perspectives.","authors":"Dorian Yarih Garcia-Ortega, Sara Aileen Cabrera-Nieto, Haydee Sarai Caro-Sánchez, Marlid Cruz-Ramos","doi":"10.20517/cdr.2022.18","DOIUrl":"https://doi.org/10.20517/cdr.2022.18","url":null,"abstract":"<p><p>Osteosarcoma (OS) is the most common type of bone sarcoma. Despite the availability of multimodal treatment with surgery and chemotherapy, the clinical results remain unsatisfactory. The main reason for the poor outcomes in patients with OS is the development of resistance to methotrexate, cisplatin, doxorubicin, and ifosfamide. Molecular and cellular mechanisms associated with resistance to chemotherapy include DNA repair and cell-cycle alterations, enhanced drug efflux, increased detoxification, resistance to apoptosis, autophagy, tumor extracellular matrix, and angiogenesis. This versatility of cells to generate chemoresistance has motivated the use of anti-angiogenic therapy based on tyrosine kinase inhibitors. This approach has shown that other therapies, along with standard chemotherapy, can improve responses to therapy in patients with OS. Moreover, microRNAs may act as predictors of drug resistance in OS. This review provides insight into the molecular and cellular mechanisms involved in the development of resistance during the treatment of OS and discusses promising novel therapies (e.g., afatinib and palbociclib) for overcoming resistance to chemotherapy in OS.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9511812/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40384775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-22eCollection Date: 2022-01-01DOI: 10.20517/cdr.2022.36
Elise Vickridge, Camila C F Faraco, Alain Nepveu
Cancer cells, in which the RAS and PI3K pathways are activated, produce high levels of reactive oxygen species (ROS), which cause oxidative DNA damage and ultimately cellular senescence. This process has been documented in tissue culture, mouse models, and human pre-cancerous lesions. In this context, cellular senescence functions as a tumour suppressor mechanism. Some rare cancer cells, however, manage to adapt to avoid senescence and continue to proliferate. One well-documented mode of adaptation involves increased production of antioxidants often associated with inactivation of the KEAP1 tumour suppressor gene and the resulting upregulation of the NRF2 transcription factor. In this review, we detail an alternative mode of adaptation to oxidative DNA damage induced by ROS: the increased activity of the base excision repair (BER) pathway, achieved through the enhanced expression of BER enzymes and DNA repair accessory factors. These proteins, exemplified here by the CUT domain proteins CUX1, CUX2, and SATB1, stimulate the activity of BER enzymes. The ensued accelerated repair of oxidative DNA damage enables cancer cells to avoid senescence despite high ROS levels. As a by-product of this adaptation, these cancer cells exhibit increased resistance to genotoxic treatments including ionizing radiation, temozolomide, and cisplatin. Moreover, considering the intrinsic error rate associated with DNA repair and translesion synthesis, the elevated number of oxidative DNA lesions caused by high ROS leads to the accumulation of mutations in the cancer cell population, thereby contributing to tumour heterogeneity and eventually to the acquisition of resistance, a major obstacle to clinical treatment.
{"title":"Base excision repair accessory factors in senescence avoidance and resistance to treatments.","authors":"Elise Vickridge, Camila C F Faraco, Alain Nepveu","doi":"10.20517/cdr.2022.36","DOIUrl":"https://doi.org/10.20517/cdr.2022.36","url":null,"abstract":"<p><p>Cancer cells, in which the RAS and PI3K pathways are activated, produce high levels of reactive oxygen species (ROS), which cause oxidative DNA damage and ultimately cellular senescence. This process has been documented in tissue culture, mouse models, and human pre-cancerous lesions. In this context, cellular senescence functions as a tumour suppressor mechanism. Some rare cancer cells, however, manage to adapt to avoid senescence and continue to proliferate. One well-documented mode of adaptation involves increased production of antioxidants often associated with inactivation of the <i>KEAP1</i> tumour suppressor gene and the resulting upregulation of the NRF2 transcription factor. In this review, we detail an alternative mode of adaptation to oxidative DNA damage induced by ROS: the increased activity of the base excision repair (BER) pathway, achieved through the enhanced expression of BER enzymes and DNA repair accessory factors. These proteins, exemplified here by the CUT domain proteins CUX1, CUX2, and SATB1, stimulate the activity of BER enzymes. The ensued accelerated repair of oxidative DNA damage enables cancer cells to avoid senescence despite high ROS levels. As a by-product of this adaptation, these cancer cells exhibit increased resistance to genotoxic treatments including ionizing radiation, temozolomide, and cisplatin. Moreover, considering the intrinsic error rate associated with DNA repair and translesion synthesis, the elevated number of oxidative DNA lesions caused by high ROS leads to the accumulation of mutations in the cancer cell population, thereby contributing to tumour heterogeneity and eventually to the acquisition of resistance, a major obstacle to clinical treatment.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9511810/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40385161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-22eCollection Date: 2022-01-01DOI: 10.20517/cdr.2022.23
James J Ignatz-Hoover, James J Driscoll
Multiple myeloma (MM) remains an incurable, genetically heterogeneous disease characterized by the uncontrolled proliferation of transformed plasma cells nurtured within a permissive bone marrow (BM) microenvironment. Current therapies leverage the unique biology of MM cells and target the immune microenvironment that drives tumor growth and facilitates immune evasion. Proteasome inhibitors and immunomodulatory drugs were initially introduced to complement and have now supplanted cytotoxic chemotherapy as frontline anti-myeloma agents. Recently, monoclonal antibodies, bispecific antibodies, and chimeric antigen receptor T cells were developed to revamp the immune system to overcome immune suppression and improve patient responses. While current MM therapies have markedly extended patient survival, acquired drug resistance inevitably emerges and drives disease progression. The logical progression for the next generation of MM therapies would be to design and validate agents that prevent and/or overcome acquired resistance to immunotherapies. The complex BM microenvironment promotes resistance to both current anti-myeloma agents and emerging immunotherapies. Myeloma cells are intertwined with a complex BM immune microenvironment that contributes to the development of adaptive drug resistance. Here, we describe recently FDA-approved and investigational anti-myeloma agents that directly or indirectly target the BM microenvironment to prevent or overcome drug resistance. Synergistic effects of anti-myeloma agents may foster the development of rationally-designed drug cocktails that prevent BM-mediated resistance to immunotherapies.
{"title":"Therapeutics to harness the immune microenvironment in multiple myeloma.","authors":"James J Ignatz-Hoover, James J Driscoll","doi":"10.20517/cdr.2022.23","DOIUrl":"https://doi.org/10.20517/cdr.2022.23","url":null,"abstract":"<p><p>Multiple myeloma (MM) remains an incurable, genetically heterogeneous disease characterized by the uncontrolled proliferation of transformed plasma cells nurtured within a permissive bone marrow (BM) microenvironment. Current therapies leverage the unique biology of MM cells and target the immune microenvironment that drives tumor growth and facilitates immune evasion. Proteasome inhibitors and immunomodulatory drugs were initially introduced to complement and have now supplanted cytotoxic chemotherapy as frontline anti-myeloma agents. Recently, monoclonal antibodies, bispecific antibodies, and chimeric antigen receptor T cells were developed to revamp the immune system to overcome immune suppression and improve patient responses. While current MM therapies have markedly extended patient survival, acquired drug resistance inevitably emerges and drives disease progression. The logical progression for the next generation of MM therapies would be to design and validate agents that prevent and/or overcome acquired resistance to immunotherapies. The complex BM microenvironment promotes resistance to both current anti-myeloma agents and emerging immunotherapies. Myeloma cells are intertwined with a complex BM immune microenvironment that contributes to the development of adaptive drug resistance. Here, we describe recently FDA-approved and investigational anti-myeloma agents that directly or indirectly target the BM microenvironment to prevent or overcome drug resistance. Synergistic effects of anti-myeloma agents may foster the development of rationally-designed drug cocktails that prevent BM-mediated resistance to immunotherapies.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9511806/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40385712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-22eCollection Date: 2022-01-01DOI: 10.20517/cdr.2022.12
Siew-Fei Ngu, Hextan Y S Ngan, Karen K L Chan
We report our experience in the management of a relapsed ovarian cancer patient with somatic RAD51C mutation, treated with olaparib monotherapy. The patient was diagnosed with stage 4 high-grade serous ovarian carcinoma and was treated with neoadjuvant chemotherapy, cytoreductive surgery, and postoperative chemotherapy. After a second cancer recurrence, she underwent FoundationOne CDx testing following disease progression on multiple lines of chemotherapy. Based on the FoundationOne CDx results, olaparib monotherapy was started. After 13 months of therapy, all lesions responded to the treatment, and she achieved complete response as demonstrated by normalization of the levels of CA125 and positron emission tomography-computed tomography (PET-CT). We plan to continue olaparib monotherapy until disease progression.
{"title":"A patient with relapsed high-grade serous ovarian carcinoma with somatic <i>RAD51C</i> mutations treated with PARPi monotherapy: a case report.","authors":"Siew-Fei Ngu, Hextan Y S Ngan, Karen K L Chan","doi":"10.20517/cdr.2022.12","DOIUrl":"https://doi.org/10.20517/cdr.2022.12","url":null,"abstract":"<p><p>We report our experience in the management of a relapsed ovarian cancer patient with somatic <i>RAD51C</i> mutation, treated with olaparib monotherapy. The patient was diagnosed with stage 4 high-grade serous ovarian carcinoma and was treated with neoadjuvant chemotherapy, cytoreductive surgery, and postoperative chemotherapy. After a second cancer recurrence, she underwent FoundationOne CDx testing following disease progression on multiple lines of chemotherapy. Based on the FoundationOne CDx results, olaparib monotherapy was started. After 13 months of therapy, all lesions responded to the treatment, and she achieved complete response as demonstrated by normalization of the levels of CA125 and positron emission tomography-computed tomography (PET-CT). We plan to continue olaparib monotherapy until disease progression.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9511802/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40384870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-22eCollection Date: 2022-01-01DOI: 10.20517/cdr.2021.146
Rebekah Summey, Denise Uyar
Epithelial ovarian cancer remains the most lethal female malignancy despite options for systemic therapy and the emergence of targeted therapies. Although initial response to therapy is observed, recurrence and ultimately chemoresistance result in overall therapeutic failure. This pattern has been evident with platinum therapy since the 1980s. Significant excitement surrounded the approval of poly (ADP-ribose) polymerase inhibition (PARPi) as a novel therapeutic option, especially with the advent of personalized medicine, but resistance has similarly developed to these treatments. Novel agents are constantly being sought, but if the obstacle of chemoresistance remains, the durability of responses will remain tenuous. Unraveling the multifactorial mechanisms of platinum and PARPi resistance is increasingly important as a therapeutic failure with current strategies is almost assured. Focusing greater efforts on expanding the current understanding of the complex nature of platinum and PARPi chemoresistance has tremendous potential to improve clinical outcomes.
{"title":"Ovarian cancer resistance to PARPi and platinum-containing chemotherapy.","authors":"Rebekah Summey, Denise Uyar","doi":"10.20517/cdr.2021.146","DOIUrl":"https://doi.org/10.20517/cdr.2021.146","url":null,"abstract":"<p><p>Epithelial ovarian cancer remains the most lethal female malignancy despite options for systemic therapy and the emergence of targeted therapies. Although initial response to therapy is observed, recurrence and ultimately chemoresistance result in overall therapeutic failure. This pattern has been evident with platinum therapy since the 1980s. Significant excitement surrounded the approval of poly (ADP-ribose) polymerase inhibition (PARPi) as a novel therapeutic option, especially with the advent of personalized medicine, but resistance has similarly developed to these treatments. Novel agents are constantly being sought, but if the obstacle of chemoresistance remains, the durability of responses will remain tenuous. Unraveling the multifactorial mechanisms of platinum and PARPi resistance is increasingly important as a therapeutic failure with current strategies is almost assured. Focusing greater efforts on expanding the current understanding of the complex nature of platinum and PARPi chemoresistance has tremendous potential to improve clinical outcomes.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9511803/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40384773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}