Pub Date : 2023-10-01Epub Date: 2023-09-25DOI: 10.1107/S2059798323007027
Zhongrui Liu, Kevin K Gu, Megan L Shelby, Deepshika Gilbile, Artem Y Lyubimov, Silvia Russi, Aina E Cohen, Sankar Raju Narayanasamy, Sabine Botha, Christopher Kupitz, Raymond G Sierra, Fredric Poitevin, Antonio Gilardi, Stella Lisova, Matthew A Coleman, Matthias Frank, Tonya L Kuhl
Over the past two decades, serial X-ray crystallography has enabled the structure determination of a wide range of proteins. With the advent of X-ray free-electron lasers (XFELs), ever-smaller crystals have yielded high-resolution diffraction and structure determination. A crucial need to continue advancement is the efficient delivery of fragile and micrometre-sized crystals to the X-ray beam intersection. This paper presents an improved design of an all-polymer microfluidic `chip' for room-temperature fixed-target serial crystallography that can be tailored to broadly meet the needs of users at either synchrotron or XFEL light sources. The chips are designed to be customized around different types of crystals and offer users a friendly, quick, convenient, ultra-low-cost and robust sample-delivery platform. Compared with the previous iteration of the chip [Gilbile et al. (2021), Lab Chip, 21, 4831-4845], the new design eliminates cleanroom fabrication. It has a larger imaging area to volume, while maintaining crystal hydration stability for both in situ crystallization or direct crystal slurry loading. Crystals of two model proteins, lysozyme and thaumatin, were used to validate the effectiveness of the design at both synchrotron (lysozyme and thaumatin) and XFEL (lysozyme only) facilities, yielding complete data sets with resolutions of 1.42, 1.48 and 1.70 Å, respectively. Overall, the improved chip design, ease of fabrication and high modifiability create a powerful, all-around sample-delivery tool that structural biologists can quickly adopt, especially in cases of limited sample volume and small, fragile crystals.
{"title":"A user-friendly plug-and-play cyclic olefin copolymer-based microfluidic chip for room-temperature, fixed-target serial crystallography.","authors":"Zhongrui Liu, Kevin K Gu, Megan L Shelby, Deepshika Gilbile, Artem Y Lyubimov, Silvia Russi, Aina E Cohen, Sankar Raju Narayanasamy, Sabine Botha, Christopher Kupitz, Raymond G Sierra, Fredric Poitevin, Antonio Gilardi, Stella Lisova, Matthew A Coleman, Matthias Frank, Tonya L Kuhl","doi":"10.1107/S2059798323007027","DOIUrl":"10.1107/S2059798323007027","url":null,"abstract":"<p><p>Over the past two decades, serial X-ray crystallography has enabled the structure determination of a wide range of proteins. With the advent of X-ray free-electron lasers (XFELs), ever-smaller crystals have yielded high-resolution diffraction and structure determination. A crucial need to continue advancement is the efficient delivery of fragile and micrometre-sized crystals to the X-ray beam intersection. This paper presents an improved design of an all-polymer microfluidic `chip' for room-temperature fixed-target serial crystallography that can be tailored to broadly meet the needs of users at either synchrotron or XFEL light sources. The chips are designed to be customized around different types of crystals and offer users a friendly, quick, convenient, ultra-low-cost and robust sample-delivery platform. Compared with the previous iteration of the chip [Gilbile et al. (2021), Lab Chip, 21, 4831-4845], the new design eliminates cleanroom fabrication. It has a larger imaging area to volume, while maintaining crystal hydration stability for both in situ crystallization or direct crystal slurry loading. Crystals of two model proteins, lysozyme and thaumatin, were used to validate the effectiveness of the design at both synchrotron (lysozyme and thaumatin) and XFEL (lysozyme only) facilities, yielding complete data sets with resolutions of 1.42, 1.48 and 1.70 Å, respectively. Overall, the improved chip design, ease of fabrication and high modifiability create a powerful, all-around sample-delivery tool that structural biologists can quickly adopt, especially in cases of limited sample volume and small, fragile crystals.</p>","PeriodicalId":7116,"journal":{"name":"Acta Crystallographica. Section D, Structural Biology","volume":" ","pages":"944-952"},"PeriodicalIF":2.2,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10565732/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41096155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01Epub Date: 2023-09-15DOI: 10.1107/S2059798323006137
Rebecca Ebenhoch, Margit Bauer, Helmut Romig, Dirk Gottschling, Jörg Thomas Kley, Niklas Heine, Alexander Weber, Ingo Uphues, Herbert Nar, Alexander Pautsch
A molecular understanding of the proteins involved in fructose metabolism is essential for controlling the current spread of fructose-related obesity, diabetes and related adverse metabolic states in Western populations. Fructose catabolism starts with the phosphorylation of D-fructose to fructose 1-phosphate by ketohexokinase (KHK). KHK exists in two alternatively spliced isoforms: the hepatic and intestinal isoform KHK-C and the peripheral isoform KHK-A. Here, the structure of apo murine KHK (mKHK), which differs from structures of human KHK in overall conformation, is reported. An isoform-selective ligand, which offers a 50-fold higher potency on mKHK and human KHK-A compared with KHK-C, is further characterized. In mKHK, large-scale conformational changes are observed upon ligand binding. The structures suggest a combined strategy for the design of species- and isoform-selective KHK inhibitors.
{"title":"Crystal structures of human and mouse ketohexokinase provide a structural basis for species- and isoform-selective inhibitor design.","authors":"Rebecca Ebenhoch, Margit Bauer, Helmut Romig, Dirk Gottschling, Jörg Thomas Kley, Niklas Heine, Alexander Weber, Ingo Uphues, Herbert Nar, Alexander Pautsch","doi":"10.1107/S2059798323006137","DOIUrl":"10.1107/S2059798323006137","url":null,"abstract":"<p><p>A molecular understanding of the proteins involved in fructose metabolism is essential for controlling the current spread of fructose-related obesity, diabetes and related adverse metabolic states in Western populations. Fructose catabolism starts with the phosphorylation of D-fructose to fructose 1-phosphate by ketohexokinase (KHK). KHK exists in two alternatively spliced isoforms: the hepatic and intestinal isoform KHK-C and the peripheral isoform KHK-A. Here, the structure of apo murine KHK (mKHK), which differs from structures of human KHK in overall conformation, is reported. An isoform-selective ligand, which offers a 50-fold higher potency on mKHK and human KHK-A compared with KHK-C, is further characterized. In mKHK, large-scale conformational changes are observed upon ligand binding. The structures suggest a combined strategy for the design of species- and isoform-selective KHK inhibitors.</p>","PeriodicalId":7116,"journal":{"name":"Acta Crystallographica. Section D, Structural Biology","volume":" ","pages":"871-880"},"PeriodicalIF":2.2,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10245613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01Epub Date: 2023-09-15DOI: 10.1107/S2059798323006976
J N Mark Glover, Cyril M Kay, Joanne Lemieux, Randy J Read
Michael James is remembered.
迈克尔·詹姆斯被人们铭记。
{"title":"Michael James (1940-2023).","authors":"J N Mark Glover, Cyril M Kay, Joanne Lemieux, Randy J Read","doi":"10.1107/S2059798323006976","DOIUrl":"10.1107/S2059798323006976","url":null,"abstract":"<p><p>Michael James is remembered.</p>","PeriodicalId":7116,"journal":{"name":"Acta Crystallographica. Section D, Structural Biology","volume":" ","pages":"953-955"},"PeriodicalIF":2.2,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10565731/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10247135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01Epub Date: 2023-09-15DOI: 10.1107/S2059798323006514
Italo A Cavini, Ashley J Winter, Humberto D'Muniz Pereira, Derek N Woolfson, Matthew P Crump, Richard C Garratt
Septins are membrane-associated, GTP-binding proteins that are present in most eukaryotes. They polymerize to play important roles as scaffolds and/or diffusion barriers as part of the cytoskeleton. α-Helical coiled-coil domains are believed to contribute to septin assembly, and those observed in both human SEPT6 and SEPT8 form antiparallel homodimers. These are not compatible with their parallel heterodimeric organization expected from the current model for protofilament assembly, but they could explain the interfilament cross-bridges observed by microscopy. Here, the first structure of a heterodimeric septin coiled coil is presented, that between SEPT14 and SEPT7; the former is a SEPT6/SEPT8 homolog. This new structure is parallel, with two long helices that are axially shifted by a full helical turn with reference to their sequence alignment. The structure also has unusual knobs-into-holes packing of side chains. Both standard seven-residue (heptad) and the less common 11-residue (hendecad) repeats are present, creating two distinct regions with opposite supercoiling, which gives rise to an overall straight coiled coil. Part of the hendecad region is required for heterodimerization and therefore may be crucial for selective septin recognition. These unconventional sequences and structural features produce a metastable heterocomplex that nonetheless has enough specificity to promote correct protofilament assembly. For instance, the lack of supercoiling may facilitate unzipping and transitioning to the antiparallel homodimeric state.
{"title":"X-ray structure of the metastable SEPT14-SEPT7 coiled coil reveals a hendecad region crucial for heterodimerization.","authors":"Italo A Cavini, Ashley J Winter, Humberto D'Muniz Pereira, Derek N Woolfson, Matthew P Crump, Richard C Garratt","doi":"10.1107/S2059798323006514","DOIUrl":"10.1107/S2059798323006514","url":null,"abstract":"<p><p>Septins are membrane-associated, GTP-binding proteins that are present in most eukaryotes. They polymerize to play important roles as scaffolds and/or diffusion barriers as part of the cytoskeleton. α-Helical coiled-coil domains are believed to contribute to septin assembly, and those observed in both human SEPT6 and SEPT8 form antiparallel homodimers. These are not compatible with their parallel heterodimeric organization expected from the current model for protofilament assembly, but they could explain the interfilament cross-bridges observed by microscopy. Here, the first structure of a heterodimeric septin coiled coil is presented, that between SEPT14 and SEPT7; the former is a SEPT6/SEPT8 homolog. This new structure is parallel, with two long helices that are axially shifted by a full helical turn with reference to their sequence alignment. The structure also has unusual knobs-into-holes packing of side chains. Both standard seven-residue (heptad) and the less common 11-residue (hendecad) repeats are present, creating two distinct regions with opposite supercoiling, which gives rise to an overall straight coiled coil. Part of the hendecad region is required for heterodimerization and therefore may be crucial for selective septin recognition. These unconventional sequences and structural features produce a metastable heterocomplex that nonetheless has enough specificity to promote correct protofilament assembly. For instance, the lack of supercoiling may facilitate unzipping and transitioning to the antiparallel homodimeric state.</p>","PeriodicalId":7116,"journal":{"name":"Acta Crystallographica. Section D, Structural Biology","volume":" ","pages":"881-894"},"PeriodicalIF":2.6,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10565730/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10247137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-09DOI: 10.1101/2022.12.25.521900
Mehmet Gul, Busra Yuksel, H. Bulut, H. Demirci
Candida boidinii NAD+-dependent formate dehydrogenase (CbFDH) has gained significant attention for its potential applications in the production of biofuels and various industrial chemicals from inorganic carbon dioxide. The present study reports the atomic X-ray crystal structures of the wild-type CbFDH at cryogenic and ambient temperatures as well as Val120Thr mutant at cryogenic temperature determined at the Turkish Light Source “Turkish DeLight”. The structures reveal new hydrogen bonds between Thr120 and water molecules in the mutant CbFDH’s active site, suggesting increased stability of the active site and more efficient electron transfer during the reaction. Further experimental data is needed to test these hypotheses. Collectively, our findings provide invaluable insights into future protein engineering efforts that could potentially enhance the efficiency and effectiveness of CbFDH.
{"title":"Structural analysis of wild-type and Val120Thr mutant Candida boidinii formate dehydrogenase by X-ray crystallography","authors":"Mehmet Gul, Busra Yuksel, H. Bulut, H. Demirci","doi":"10.1101/2022.12.25.521900","DOIUrl":"https://doi.org/10.1101/2022.12.25.521900","url":null,"abstract":"Candida boidinii NAD+-dependent formate dehydrogenase (CbFDH) has gained significant attention for its potential applications in the production of biofuels and various industrial chemicals from inorganic carbon dioxide. The present study reports the atomic X-ray crystal structures of the wild-type CbFDH at cryogenic and ambient temperatures as well as Val120Thr mutant at cryogenic temperature determined at the Turkish Light Source “Turkish DeLight”. The structures reveal new hydrogen bonds between Thr120 and water molecules in the mutant CbFDH’s active site, suggesting increased stability of the active site and more efficient electron transfer during the reaction. Further experimental data is needed to test these hypotheses. Collectively, our findings provide invaluable insights into future protein engineering efforts that could potentially enhance the efficiency and effectiveness of CbFDH.","PeriodicalId":7116,"journal":{"name":"Acta Crystallographica. Section D, Structural Biology","volume":"53 1","pages":"1010 - 1017"},"PeriodicalIF":2.2,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80240491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.1107/S2059798323006897
Elspeth F Garman
Raimond B. G. Ravelli is remembered.
雷蒙德·b·g·拉维里被铭记。
{"title":"Raimond B. G. Ravelli (25 March 1968-30 June 2023).","authors":"Elspeth F Garman","doi":"10.1107/S2059798323006897","DOIUrl":"https://doi.org/10.1107/S2059798323006897","url":null,"abstract":"<p><p>Raimond B. G. Ravelli is remembered.</p>","PeriodicalId":7116,"journal":{"name":"Acta Crystallographica. Section D, Structural Biology","volume":"79 Pt 9","pages":"866-870"},"PeriodicalIF":2.2,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10150838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01Epub Date: 2023-08-16DOI: 10.1107/S2059798323005855
Marjan Hadian-Jazi, Alireza Sadri
The term robustness in statistics refers to methods that are generally insensitive to deviations from model assumptions. In other words, robust methods are able to preserve their accuracy even when the data do not perfectly fit the statistical models. Robust statistical analyses are particularly effective when analysing mixtures of probability distributions. Therefore, these methods enable the discretization of X-ray serial crystallography data into two probability distributions: a group comprising true data points (for example the background intensities) and another group comprising outliers (for example Bragg peaks or bad pixels on an X-ray detector). These characteristics of robust statistical analysis are beneficial for the ever-increasing volume of serial crystallography (SX) data sets produced at synchrotron and X-ray free-electron laser (XFEL) sources. The key advantage of the use of robust statistics for some applications in SX data analysis is that it requires minimal parameter tuning because of its insensitivity to the input parameters. In this paper, a software package called Robust Gaussian Fitting library (RGFlib) is introduced that is based on the concept of robust statistics. Two methods are presented based on the concept of robust statistics and RGFlib for two SX data-analysis tasks: (i) a robust peak-finding algorithm and (ii) an automated robust method to detect bad pixels on X-ray pixel detectors.
统计学中的稳健性是指对模型假设偏差通常不敏感的方法。换句话说,即使数据与统计模型不完全吻合,稳健方法也能保持其准确性。稳健统计分析在分析概率分布混合物时尤为有效。因此,这些方法可以将 X 射线序列晶体学数据离散化为两个概率分布:一组包括真实数据点(例如背景强度),另一组包括异常值(例如布拉格峰或 X 射线探测器上的坏像素)。同步加速器和 X 射线自由电子激光 (XFEL) 源产生的序列晶体学 (SX) 数据集数量不断增加,而稳健统计分析的这些特性对它们大有裨益。在 SX 数据分析的某些应用中使用稳健统计的主要优点是,由于它对输入参数不敏感,因此只需进行最少的参数调整。本文介绍了一个基于鲁棒统计概念的软件包,名为鲁棒高斯拟合库(RGFlib)。本文介绍了基于鲁棒统计概念和 RGFlib 的两种方法,分别用于两个 SX 数据分析任务:(i) 鲁棒峰值搜索算法和 (ii) 自动鲁棒方法,用于检测 X 射线像素探测器上的坏像素。
{"title":"A Python package based on robust statistical analysis for serial crystallography data processing.","authors":"Marjan Hadian-Jazi, Alireza Sadri","doi":"10.1107/S2059798323005855","DOIUrl":"10.1107/S2059798323005855","url":null,"abstract":"<p><p>The term robustness in statistics refers to methods that are generally insensitive to deviations from model assumptions. In other words, robust methods are able to preserve their accuracy even when the data do not perfectly fit the statistical models. Robust statistical analyses are particularly effective when analysing mixtures of probability distributions. Therefore, these methods enable the discretization of X-ray serial crystallography data into two probability distributions: a group comprising true data points (for example the background intensities) and another group comprising outliers (for example Bragg peaks or bad pixels on an X-ray detector). These characteristics of robust statistical analysis are beneficial for the ever-increasing volume of serial crystallography (SX) data sets produced at synchrotron and X-ray free-electron laser (XFEL) sources. The key advantage of the use of robust statistics for some applications in SX data analysis is that it requires minimal parameter tuning because of its insensitivity to the input parameters. In this paper, a software package called Robust Gaussian Fitting library (RGFlib) is introduced that is based on the concept of robust statistics. Two methods are presented based on the concept of robust statistics and RGFlib for two SX data-analysis tasks: (i) a robust peak-finding algorithm and (ii) an automated robust method to detect bad pixels on X-ray pixel detectors.</p>","PeriodicalId":7116,"journal":{"name":"Acta Crystallographica. Section D, Structural Biology","volume":"79 Pt 9","pages":"820-829"},"PeriodicalIF":2.6,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10478633/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10521367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01Epub Date: 2023-08-10DOI: 10.1107/S2059798323005703
Prabhanshu Tripathi, Jarrod J Mousa, Naga Sandhya Guntaka, Steven D Bruner
Colibactin is a genotoxic natural product produced by select commensal bacteria in the human gut microbiota. The compound is a bis-electrophile that is predicted to form interstrand DNA cross-links in target cells, leading to double-strand DNA breaks. The biosynthesis of colibactin is carried out by a mixed NRPS-PKS assembly line with several noncanonical features. An amidase, ClbL, plays a key role in the pathway, catalyzing the final step in the formation of the pseudodimeric scaffold. ClbL couples α-aminoketone and β-ketothioester intermediates attached to separate carrier domains on the NRPS-PKS assembly. Here, the 1.9 Å resolution structure of ClbL is reported, providing a structural basis for this key step in the colibactin biosynthetic pathway. The structure reveals an open hydrophobic active site surrounded by flexible loops, and comparison with homologous amidases supports its unusual function and predicts macromolecular interactions with pathway carrier-protein substrates. Modeling protein-protein interactions supports a predicted molecular basis for enzyme-carrier domain interactions. Overall, the work provides structural insight into this unique enzyme that is central to the biosynthesis of colibactin.
Colibactin 是一种具有基因毒性的天然产物,由人类肠道微生物群中的特定共生细菌产生。该化合物是一种双亲电化合物,预计会在靶细胞中形成 DNA 链间交联,导致 DNA 双链断裂。可乐菌素的生物合成是由一条具有若干非规范特征的混合 NRPS-PKS 装配线完成的。酰胺酶 ClbL 在该途径中起着关键作用,催化形成假二聚体支架的最后一步。ClbL 将连接到 NRPS-PKS 组装上不同载体结构域上的α-氨基酮和β-硫代酮中间体耦合在一起。本文报告了 ClbL 的 1.9 Å 分辨率结构,为可乐菌素生物合成途径中的这一关键步骤提供了结构基础。该结构揭示了一个开放的疏水活性位点,其周围环绕着柔性环,与同源酰胺酶的比较支持了其不寻常的功能,并预测了与途径载体蛋白底物的大分子相互作用。蛋白质-蛋白质相互作用模型支持酶-载体结构域相互作用的分子基础预测。总之,这项研究从结构上深入了解了这种独特的酶,它是生物合成可乐菌素的核心。
{"title":"Structural basis of the amidase ClbL central to the biosynthesis of the genotoxin colibactin.","authors":"Prabhanshu Tripathi, Jarrod J Mousa, Naga Sandhya Guntaka, Steven D Bruner","doi":"10.1107/S2059798323005703","DOIUrl":"10.1107/S2059798323005703","url":null,"abstract":"<p><p>Colibactin is a genotoxic natural product produced by select commensal bacteria in the human gut microbiota. The compound is a bis-electrophile that is predicted to form interstrand DNA cross-links in target cells, leading to double-strand DNA breaks. The biosynthesis of colibactin is carried out by a mixed NRPS-PKS assembly line with several noncanonical features. An amidase, ClbL, plays a key role in the pathway, catalyzing the final step in the formation of the pseudodimeric scaffold. ClbL couples α-aminoketone and β-ketothioester intermediates attached to separate carrier domains on the NRPS-PKS assembly. Here, the 1.9 Å resolution structure of ClbL is reported, providing a structural basis for this key step in the colibactin biosynthetic pathway. The structure reveals an open hydrophobic active site surrounded by flexible loops, and comparison with homologous amidases supports its unusual function and predicts macromolecular interactions with pathway carrier-protein substrates. Modeling protein-protein interactions supports a predicted molecular basis for enzyme-carrier domain interactions. Overall, the work provides structural insight into this unique enzyme that is central to the biosynthesis of colibactin.</p>","PeriodicalId":7116,"journal":{"name":"Acta Crystallographica. Section D, Structural Biology","volume":"79 Pt 9","pages":"830-836"},"PeriodicalIF":2.6,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10478638/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10539163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.1107/S205979832300582X
Jonathan Pletzer-Zelgert, Christiane Ehrt, Inken Fender, Axel Griewel, Florian Flachsenberg, Gerhard Klebe, Matthias Rarey
Due to the structural complexity of proteins, their corresponding crystal arrangements generally contain a significant amount of solvent-occupied space. These areas allow a certain degree of intracrystalline protein flexibility and mobility of solutes. Therefore, knowledge of the geometry of solvent-filled channels and cavities is essential whenever the dynamics inside a crystal are of interest. Especially in soaking experiments for structure-based drug design, ligands must be able to traverse the crystal solvent channels and reach the corresponding binding pockets. Unsuccessful screenings are sometimes attributed to the geometry of the crystal packing, but the underlying causes are often difficult to understand. This work presents LifeSoaks, a novel tool for analyzing and visualizing solvent channels in protein crystals. LifeSoaks uses a Voronoi diagram-based periodic channel representation which can be efficiently computed. The size and location of channel bottlenecks, which might hinder molecular diffusion, can be directly derived from this representation. This work presents the calculated bottleneck radii for all crystal structures in the PDB and the analysis of a new, hand-curated data set of structures obtained by soaking experiments. The results indicate that the consideration of bottleneck radii and the visual inspection of channels are beneficial for planning soaking experiments.
{"title":"LifeSoaks: a tool for analyzing solvent channels in protein crystals and obstacles for soaking experiments.","authors":"Jonathan Pletzer-Zelgert, Christiane Ehrt, Inken Fender, Axel Griewel, Florian Flachsenberg, Gerhard Klebe, Matthias Rarey","doi":"10.1107/S205979832300582X","DOIUrl":"https://doi.org/10.1107/S205979832300582X","url":null,"abstract":"<p><p>Due to the structural complexity of proteins, their corresponding crystal arrangements generally contain a significant amount of solvent-occupied space. These areas allow a certain degree of intracrystalline protein flexibility and mobility of solutes. Therefore, knowledge of the geometry of solvent-filled channels and cavities is essential whenever the dynamics inside a crystal are of interest. Especially in soaking experiments for structure-based drug design, ligands must be able to traverse the crystal solvent channels and reach the corresponding binding pockets. Unsuccessful screenings are sometimes attributed to the geometry of the crystal packing, but the underlying causes are often difficult to understand. This work presents LifeSoaks, a novel tool for analyzing and visualizing solvent channels in protein crystals. LifeSoaks uses a Voronoi diagram-based periodic channel representation which can be efficiently computed. The size and location of channel bottlenecks, which might hinder molecular diffusion, can be directly derived from this representation. This work presents the calculated bottleneck radii for all crystal structures in the PDB and the analysis of a new, hand-curated data set of structures obtained by soaking experiments. The results indicate that the consideration of bottleneck radii and the visual inspection of channels are beneficial for planning soaking experiments.</p>","PeriodicalId":7116,"journal":{"name":"Acta Crystallographica. Section D, Structural Biology","volume":"79 Pt 9","pages":"837-856"},"PeriodicalIF":2.2,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10478636/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10539167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.1107/S2059798323005223
Friederike T Füsser, Jan Wollenhaupt, Manfred S Weiss, Daniel Kümmel, Oliver Koch
The increasing number of people dying from tuberculosis and the existence of extensively drug-resistant strains has led to an urgent need for new antituberculotic drugs with alternative modes of action. As part of the thioredoxin system, thioredoxin reductase (TrxR) is essential for the survival of Mycobacterium tuberculosis (Mtb) and shows substantial differences from human TrxR, making it a promising and most likely selective target. As a model organism for Mtb, crystals of Mycobacterium smegmatis TrxR that diffracted to high resolution were used in crystallographic fragment screening to discover binding fragments and new binding sites. The application of the 96 structurally diverse fragments from the F2X-Entry Screen revealed 56 new starting points for fragment-based drug design of new TrxR inhibitors. Over 200 crystal structures were analyzed using FragMAXapp, which includes processing and refinement by largely automated software pipelines and hit identification via the multi-data-set analysis approach PanDDA. The fragments are bound to 11 binding sites, of which four are positioned at binding pockets or important interaction sites and therefore show high potential for possible inhibition of TrxR.
{"title":"Novel starting points for fragment-based drug design against mycobacterial thioredoxin reductase identified using crystallographic fragment screening.","authors":"Friederike T Füsser, Jan Wollenhaupt, Manfred S Weiss, Daniel Kümmel, Oliver Koch","doi":"10.1107/S2059798323005223","DOIUrl":"https://doi.org/10.1107/S2059798323005223","url":null,"abstract":"<p><p>The increasing number of people dying from tuberculosis and the existence of extensively drug-resistant strains has led to an urgent need for new antituberculotic drugs with alternative modes of action. As part of the thioredoxin system, thioredoxin reductase (TrxR) is essential for the survival of Mycobacterium tuberculosis (Mtb) and shows substantial differences from human TrxR, making it a promising and most likely selective target. As a model organism for Mtb, crystals of Mycobacterium smegmatis TrxR that diffracted to high resolution were used in crystallographic fragment screening to discover binding fragments and new binding sites. The application of the 96 structurally diverse fragments from the F2X-Entry Screen revealed 56 new starting points for fragment-based drug design of new TrxR inhibitors. Over 200 crystal structures were analyzed using FragMAXapp, which includes processing and refinement by largely automated software pipelines and hit identification via the multi-data-set analysis approach PanDDA. The fragments are bound to 11 binding sites, of which four are positioned at binding pockets or important interaction sites and therefore show high potential for possible inhibition of TrxR.</p>","PeriodicalId":7116,"journal":{"name":"Acta Crystallographica. Section D, Structural Biology","volume":"79 Pt 9","pages":"857-865"},"PeriodicalIF":2.2,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10478635/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10520895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}