Pub Date : 2024-04-01Epub Date: 2024-03-07DOI: 10.1107/S2059798324001815
Travis Walton, Matthew H Doran, Alan Brown
The axoneme, a microtubule-based array at the center of every cilium, has been the subject of structural investigations for decades, but only recent advances in cryo-EM and cryo-ET have allowed a molecular-level interpretation of the entire complex to be achieved. The unique properties of the nine doublet microtubules and central pair of singlet microtubules that form the axoneme, including the highly decorated tubulin lattice and the docking of massive axonemal complexes, provide opportunities and challenges for sample preparation, 3D reconstruction and atomic modeling. Here, the approaches used for cryo-EM and cryo-ET of axonemes are reviewed, while highlighting the unique opportunities provided by the latest generation of AI-guided tools that are transforming structural biology.
{"title":"Structural determination and modeling of ciliary microtubules.","authors":"Travis Walton, Matthew H Doran, Alan Brown","doi":"10.1107/S2059798324001815","DOIUrl":"10.1107/S2059798324001815","url":null,"abstract":"<p><p>The axoneme, a microtubule-based array at the center of every cilium, has been the subject of structural investigations for decades, but only recent advances in cryo-EM and cryo-ET have allowed a molecular-level interpretation of the entire complex to be achieved. The unique properties of the nine doublet microtubules and central pair of singlet microtubules that form the axoneme, including the highly decorated tubulin lattice and the docking of massive axonemal complexes, provide opportunities and challenges for sample preparation, 3D reconstruction and atomic modeling. Here, the approaches used for cryo-EM and cryo-ET of axonemes are reviewed, while highlighting the unique opportunities provided by the latest generation of AI-guided tools that are transforming structural biology.</p>","PeriodicalId":7116,"journal":{"name":"Acta Crystallographica. Section D, Structural Biology","volume":" ","pages":"220-231"},"PeriodicalIF":2.2,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10994176/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140048527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01Epub Date: 2024-03-15DOI: 10.1107/S2059798324001852
Rene J M Henderikx, Daniel Mann, Aušra Domanska, Jing Dong, Saba Shahzad, Behnam Lak, Aikaterini Filopoulou, Damian Ludig, Martin Grininger, Jeffrey Momoh, Elina Laanto, Hanna M Oksanen, Kyrylo Bisikalo, Pamela A Williams, Sarah J Butcher, Peter J Peters, Bart W A M M Beulen
Single-particle cryo-electron microscopy has become a widely adopted method in structural biology due to many recent technological advances in microscopes, detectors and image processing. Before being able to inspect a biological sample in an electron microscope, it needs to be deposited in a thin layer on a grid and rapidly frozen. The VitroJet was designed with this aim, as well as avoiding the delicate manual handling and transfer steps that occur during the conventional grid-preparation process. Since its creation, numerous technical developments have resulted in a device that is now widely utilized in multiple laboratories worldwide. It features plasma treatment, low-volume sample deposition through pin printing, optical ice-thickness measurement and cryofixation of pre-clipped Autogrids through jet vitrification. This paper presents recent technical improvements to the VitroJet and the benefits that it brings to the cryo-EM workflow. A wide variety of applications are shown: membrane proteins, nucleosomes, fatty-acid synthase, Tobacco mosaic virus, lipid nanoparticles, tick-borne encephalitis viruses and bacteriophages. These case studies illustrate the advancement of the VitroJet into an instrument that enables accurate control and reproducibility, demonstrating its suitability for time-efficient cryo-EM structure determination.
{"title":"VitroJet: new features and case studies.","authors":"Rene J M Henderikx, Daniel Mann, Aušra Domanska, Jing Dong, Saba Shahzad, Behnam Lak, Aikaterini Filopoulou, Damian Ludig, Martin Grininger, Jeffrey Momoh, Elina Laanto, Hanna M Oksanen, Kyrylo Bisikalo, Pamela A Williams, Sarah J Butcher, Peter J Peters, Bart W A M M Beulen","doi":"10.1107/S2059798324001852","DOIUrl":"10.1107/S2059798324001852","url":null,"abstract":"<p><p>Single-particle cryo-electron microscopy has become a widely adopted method in structural biology due to many recent technological advances in microscopes, detectors and image processing. Before being able to inspect a biological sample in an electron microscope, it needs to be deposited in a thin layer on a grid and rapidly frozen. The VitroJet was designed with this aim, as well as avoiding the delicate manual handling and transfer steps that occur during the conventional grid-preparation process. Since its creation, numerous technical developments have resulted in a device that is now widely utilized in multiple laboratories worldwide. It features plasma treatment, low-volume sample deposition through pin printing, optical ice-thickness measurement and cryofixation of pre-clipped Autogrids through jet vitrification. This paper presents recent technical improvements to the VitroJet and the benefits that it brings to the cryo-EM workflow. A wide variety of applications are shown: membrane proteins, nucleosomes, fatty-acid synthase, Tobacco mosaic virus, lipid nanoparticles, tick-borne encephalitis viruses and bacteriophages. These case studies illustrate the advancement of the VitroJet into an instrument that enables accurate control and reproducibility, demonstrating its suitability for time-efficient cryo-EM structure determination.</p>","PeriodicalId":7116,"journal":{"name":"Acta Crystallographica. Section D, Structural Biology","volume":" ","pages":"232-246"},"PeriodicalIF":2.2,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10994172/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140130476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01Epub Date: 2024-03-21DOI: 10.1107/S2059798324001840
Maxime Comet, Patricia M Dijkman, Reint Boer Iwema, Tilman Franke, Simonas Masiulis, Ruud Schampers, Oliver Raschdorf, Fanis Grollios, Edward E Pryor, Ieva Drulyte
Data acquisition and processing for cryo-electron tomography can be a significant bottleneck for users. To simplify and streamline the cryo-ET workflow, Tomo Live, an on-the-fly solution that automates the alignment and reconstruction of tilt-series data, enabling real-time data-quality assessment, has been developed. Through the integration of Tomo Live into the data-acquisition workflow for cryo-ET, motion correction is performed directly after each of the acquired tilt angles. Immediately after the tilt-series acquisition has completed, an unattended tilt-series alignment and reconstruction into a 3D volume is performed. The results are displayed in real time in a dedicated remote web platform that runs on the microscope hardware. Through this web platform, users can review the acquired data (aligned stack and 3D volume) and several quality metrics that are obtained during the alignment and reconstruction process. These quality metrics can be used for fast feedback for subsequent acquisitions to save time. Parameters such as Alignment Accuracy, Deleted Tilts and Tilt Axis Correction Angle are visualized as graphs and can be used as filters to export only the best tomograms (raw data, reconstruction and intermediate data) for further processing. Here, the Tomo Live algorithms and workflow are described and representative results on several biological samples are presented. The Tomo Live workflow is accessible to both expert and non-expert users, making it a valuable tool for the continued advancement of structural biology, cell biology and histology.
低温电子断层扫描的数据采集和处理可能成为用户的一大瓶颈。为了简化和精简低温电子断层扫描的工作流程,Tomo Live 应运而生,这是一种可自动对齐和重建倾斜系列数据的即时解决方案,可实现实时数据质量评估。通过将 Tomo Live 集成到冷冻电子显微镜的数据采集工作流程中,可在每次采集倾斜角度后直接进行运动校正。倾斜序列采集完成后,立即进行无人值守的倾斜序列配准并重建为三维体积。结果实时显示在显微镜硬件上运行的专用远程网络平台上。通过该网络平台,用户可以查看获取的数据(对齐的堆栈和三维体积)以及在对齐和重建过程中获得的多个质量指标。这些质量指标可用于后续采集的快速反馈,以节省时间。配准精度、删除的倾斜度和倾斜轴校正角度等参数可视化为图表,并可用作过滤器,只导出最佳断层图像(原始数据、重建数据和中间数据)进行进一步处理。这里介绍了 Tomo Live 算法和工作流程,并展示了几个生物样本的代表性结果。Tomo Live 工作流程对专家和非专家用户都适用,是结构生物学、细胞生物学和组织学不断进步的重要工具。
{"title":"Tomo Live: an on-the-fly reconstruction pipeline to judge data quality for cryo-electron tomography workflows.","authors":"Maxime Comet, Patricia M Dijkman, Reint Boer Iwema, Tilman Franke, Simonas Masiulis, Ruud Schampers, Oliver Raschdorf, Fanis Grollios, Edward E Pryor, Ieva Drulyte","doi":"10.1107/S2059798324001840","DOIUrl":"10.1107/S2059798324001840","url":null,"abstract":"<p><p>Data acquisition and processing for cryo-electron tomography can be a significant bottleneck for users. To simplify and streamline the cryo-ET workflow, Tomo Live, an on-the-fly solution that automates the alignment and reconstruction of tilt-series data, enabling real-time data-quality assessment, has been developed. Through the integration of Tomo Live into the data-acquisition workflow for cryo-ET, motion correction is performed directly after each of the acquired tilt angles. Immediately after the tilt-series acquisition has completed, an unattended tilt-series alignment and reconstruction into a 3D volume is performed. The results are displayed in real time in a dedicated remote web platform that runs on the microscope hardware. Through this web platform, users can review the acquired data (aligned stack and 3D volume) and several quality metrics that are obtained during the alignment and reconstruction process. These quality metrics can be used for fast feedback for subsequent acquisitions to save time. Parameters such as Alignment Accuracy, Deleted Tilts and Tilt Axis Correction Angle are visualized as graphs and can be used as filters to export only the best tomograms (raw data, reconstruction and intermediate data) for further processing. Here, the Tomo Live algorithms and workflow are described and representative results on several biological samples are presented. The Tomo Live workflow is accessible to both expert and non-expert users, making it a valuable tool for the continued advancement of structural biology, cell biology and histology.</p>","PeriodicalId":7116,"journal":{"name":"Acta Crystallographica. Section D, Structural Biology","volume":" ","pages":"247-258"},"PeriodicalIF":2.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10994173/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140178911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01Epub Date: 2024-02-27DOI: 10.1107/S2059798324000482
Joshua A Hull, Cheol Lee, Jin Kyun Kim, Seon Woo Lim, Jaehyun Park, Sehan Park, Sang Jae Lee, Gisu Park, Intae Eom, Minseok Kim, HyoJung Hyun, Jacob E Combs, Jacob T Andring, Carrie Lomelino, Chae Un Kim, Robert McKenna
The combination of X-ray free-electron lasers (XFELs) with serial femtosecond crystallography represents cutting-edge technology in structural biology, allowing the study of enzyme reactions and dynamics in real time through the generation of `molecular movies'. This technology combines short and precise high-energy X-ray exposure to a stream of protein microcrystals. Here, the XFEL structure of carbonic anhydrase II, a ubiquitous enzyme responsible for the interconversion of CO2 and bicarbonate, is reported, and is compared with previously reported NMR and synchrotron X-ray and neutron single-crystal structures.
X 射线自由电子激光器(XFEL)与串行飞秒晶体学的结合代表了结构生物学领域的尖端技术,可通过生成 "分子电影 "实时研究酶的反应和动力学。这项技术结合了对蛋白质微晶体流的短时间和精确的高能 X 射线照射。碳酸酐酶 II 是一种负责二氧化碳和碳酸氢盐相互转化的无处不在的酶,本文报告了碳酸酐酶 II 的 XFEL 结构,并将其与之前报告的核磁共振和同步辐射 X 射线及中子单晶结构进行了比较。
{"title":"XFEL structure of carbonic anhydrase II: a comparative study of XFEL, NMR, X-ray and neutron structures.","authors":"Joshua A Hull, Cheol Lee, Jin Kyun Kim, Seon Woo Lim, Jaehyun Park, Sehan Park, Sang Jae Lee, Gisu Park, Intae Eom, Minseok Kim, HyoJung Hyun, Jacob E Combs, Jacob T Andring, Carrie Lomelino, Chae Un Kim, Robert McKenna","doi":"10.1107/S2059798324000482","DOIUrl":"10.1107/S2059798324000482","url":null,"abstract":"<p><p>The combination of X-ray free-electron lasers (XFELs) with serial femtosecond crystallography represents cutting-edge technology in structural biology, allowing the study of enzyme reactions and dynamics in real time through the generation of `molecular movies'. This technology combines short and precise high-energy X-ray exposure to a stream of protein microcrystals. Here, the XFEL structure of carbonic anhydrase II, a ubiquitous enzyme responsible for the interconversion of CO<sub>2</sub> and bicarbonate, is reported, and is compared with previously reported NMR and synchrotron X-ray and neutron single-crystal structures.</p>","PeriodicalId":7116,"journal":{"name":"Acta Crystallographica. Section D, Structural Biology","volume":" ","pages":"194-202"},"PeriodicalIF":2.6,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10910541/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139970606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01Epub Date: 2024-02-27DOI: 10.1107/S2059798324001360
Lygie Esquirol, Janet Newman, Tom Nebl, Colin Scott, Claudia Vickers, Frank Sainsbury, Thomas S Peat
Mevalonate kinase is central to the isoprenoid biosynthesis pathway. Here, high-resolution X-ray crystal structures of two mevalonate kinases are presented: a eukaryotic protein from Ramazzottius varieornatus and an archaeal protein from Methanococcoides burtonii. Both enzymes possess the highly conserved motifs of the GHMP enzyme superfamily, with notable differences between the two enzymes in the N-terminal part of the structures. Biochemical characterization of the two enzymes revealed major differences in their sensitivity to geranyl pyrophosphate and farnesyl pyrophosphate, and in their thermal stabilities. This work adds to the understanding of the structural basis of enzyme inhibition and thermostability in mevalonate kinases.
甲羟戊酸激酶是异戊二烯生物合成途径的核心。本文展示了两种甲羟戊酸激酶的高分辨率 X 射线晶体结构:一种是来自 Ramazzottius varieornatus 的真核蛋白,另一种是来自 Methanococcoides burtonii 的古细菌蛋白。这两种酶都具有 GHMP 酶超家族的高度保守基团,但在结构的 N 端部分存在明显差异。这两种酶的生化特征显示,它们对焦磷酸香叶酯和焦磷酸法呢酯的敏感性以及热稳定性存在重大差异。这项工作加深了人们对甲羟戊酸激酶的酶抑制和热稳定性的结构基础的理解。
{"title":"Characterization of novel mevalonate kinases from the tardigrade Ramazzottius varieornatus and the psychrophilic archaeon Methanococcoides burtonii.","authors":"Lygie Esquirol, Janet Newman, Tom Nebl, Colin Scott, Claudia Vickers, Frank Sainsbury, Thomas S Peat","doi":"10.1107/S2059798324001360","DOIUrl":"10.1107/S2059798324001360","url":null,"abstract":"<p><p>Mevalonate kinase is central to the isoprenoid biosynthesis pathway. Here, high-resolution X-ray crystal structures of two mevalonate kinases are presented: a eukaryotic protein from Ramazzottius varieornatus and an archaeal protein from Methanococcoides burtonii. Both enzymes possess the highly conserved motifs of the GHMP enzyme superfamily, with notable differences between the two enzymes in the N-terminal part of the structures. Biochemical characterization of the two enzymes revealed major differences in their sensitivity to geranyl pyrophosphate and farnesyl pyrophosphate, and in their thermal stabilities. This work adds to the understanding of the structural basis of enzyme inhibition and thermostability in mevalonate kinases.</p>","PeriodicalId":7116,"journal":{"name":"Acta Crystallographica. Section D, Structural Biology","volume":" ","pages":"203-215"},"PeriodicalIF":2.2,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10910542/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139970605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01Epub Date: 2024-02-20DOI: 10.1107/S2059798324000986
Anna Horstmann, Stephen Riggs, Yuriy Chaban, Daniel K Clare, Guilherme de Freitas, David Farmer, Andrew Howe, Kyle L Morris, Daniel Hatton
Electron cryo-microscopy image-processing workflows are typically composed of elements that may, broadly speaking, be categorized as high-throughput workloads which transition to high-performance workloads as preprocessed data are aggregated. The high-throughput elements are of particular importance in the context of live processing, where an optimal response is highly coupled to the temporal profile of the data collection. In other words, each movie should be processed as quickly as possible at the earliest opportunity. The high level of disconnected parallelization in the high-throughput problem directly allows a completely scalable solution across a distributed computer system, with the only technical obstacle being an efficient and reliable implementation. The cloud computing frameworks primarily developed for the deployment of high-availability web applications provide an environment with a number of appealing features for such high-throughput processing tasks. Here, an implementation of an early-stage processing pipeline for electron cryotomography experiments using a service-based architecture deployed on a Kubernetes cluster is discussed in order to demonstrate the benefits of this approach and how it may be extended to scenarios of considerably increased complexity.
{"title":"A service-based approach to cryoEM facility processing pipelines at eBIC.","authors":"Anna Horstmann, Stephen Riggs, Yuriy Chaban, Daniel K Clare, Guilherme de Freitas, David Farmer, Andrew Howe, Kyle L Morris, Daniel Hatton","doi":"10.1107/S2059798324000986","DOIUrl":"10.1107/S2059798324000986","url":null,"abstract":"<p><p>Electron cryo-microscopy image-processing workflows are typically composed of elements that may, broadly speaking, be categorized as high-throughput workloads which transition to high-performance workloads as preprocessed data are aggregated. The high-throughput elements are of particular importance in the context of live processing, where an optimal response is highly coupled to the temporal profile of the data collection. In other words, each movie should be processed as quickly as possible at the earliest opportunity. The high level of disconnected parallelization in the high-throughput problem directly allows a completely scalable solution across a distributed computer system, with the only technical obstacle being an efficient and reliable implementation. The cloud computing frameworks primarily developed for the deployment of high-availability web applications provide an environment with a number of appealing features for such high-throughput processing tasks. Here, an implementation of an early-stage processing pipeline for electron cryotomography experiments using a service-based architecture deployed on a Kubernetes cluster is discussed in order to demonstrate the benefits of this approach and how it may be extended to scenarios of considerably increased complexity.</p>","PeriodicalId":7116,"journal":{"name":"Acta Crystallographica. Section D, Structural Biology","volume":" ","pages":"174-180"},"PeriodicalIF":2.2,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10910546/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139904730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01Epub Date: 2024-02-19DOI: 10.1107/S205979832400113X
Javier Gutiérrez-Fernández, Hans Petter Hersleth, Marta Hammerstad
Low-molecular-weight (LMW) thiols are involved in many processes in all organisms, playing a protective role against reactive species, heavy metals, toxins and antibiotics. Actinobacteria, such as Mycobacterium tuberculosis, use the LMW thiol mycothiol (MSH) to buffer the intracellular redox environment. The NADPH-dependent FAD-containing oxidoreductase mycothiol disulfide reductase (Mtr) is known to reduce oxidized mycothiol disulfide (MSSM) to MSH, which is crucial to maintain the cellular redox balance. In this work, the first crystal structures of Mtr are presented, expanding the structural knowledge and understanding of LMW thiol reductases. The structural analyses and docking calculations provide insight into the nature of Mtrs, with regard to the binding and reduction of the MSSM substrate, in the context of related oxidoreductases. The putative binding site for MSSM suggests a similar binding to that described for the homologous glutathione reductase and its respective substrate glutathione disulfide, but with distinct structural differences shaped to fit the bulkier MSSM substrate, assigning Mtrs as uniquely functioning reductases. As MSH has been acknowledged as an attractive antitubercular target, the structural findings presented in this work may contribute towards future antituberculosis drug development.
{"title":"The crystal structure of mycothiol disulfide reductase (Mtr) provides mechanistic insight into the specific low-molecular-weight thiol reductase activity of Actinobacteria.","authors":"Javier Gutiérrez-Fernández, Hans Petter Hersleth, Marta Hammerstad","doi":"10.1107/S205979832400113X","DOIUrl":"10.1107/S205979832400113X","url":null,"abstract":"<p><p>Low-molecular-weight (LMW) thiols are involved in many processes in all organisms, playing a protective role against reactive species, heavy metals, toxins and antibiotics. Actinobacteria, such as Mycobacterium tuberculosis, use the LMW thiol mycothiol (MSH) to buffer the intracellular redox environment. The NADPH-dependent FAD-containing oxidoreductase mycothiol disulfide reductase (Mtr) is known to reduce oxidized mycothiol disulfide (MSSM) to MSH, which is crucial to maintain the cellular redox balance. In this work, the first crystal structures of Mtr are presented, expanding the structural knowledge and understanding of LMW thiol reductases. The structural analyses and docking calculations provide insight into the nature of Mtrs, with regard to the binding and reduction of the MSSM substrate, in the context of related oxidoreductases. The putative binding site for MSSM suggests a similar binding to that described for the homologous glutathione reductase and its respective substrate glutathione disulfide, but with distinct structural differences shaped to fit the bulkier MSSM substrate, assigning Mtrs as uniquely functioning reductases. As MSH has been acknowledged as an attractive antitubercular target, the structural findings presented in this work may contribute towards future antituberculosis drug development.</p>","PeriodicalId":7116,"journal":{"name":"Acta Crystallographica. Section D, Structural Biology","volume":" ","pages":"181-193"},"PeriodicalIF":2.2,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10910545/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139899183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01Epub Date: 2024-02-29DOI: 10.1107/S2059798324002006
Charles S Bond, Elspeth F Garman, Randy J Read
Five new Co-editors are appointed to the Editorial Board of Acta Cryst. D - Structural Biology.
晶体学报》(Acta Cryst.D - 结构生物学》编委会的五位新联合编辑。
{"title":"Welcoming five new Co-editors.","authors":"Charles S Bond, Elspeth F Garman, Randy J Read","doi":"10.1107/S2059798324002006","DOIUrl":"10.1107/S2059798324002006","url":null,"abstract":"<p><p>Five new Co-editors are appointed to the Editorial Board of Acta Cryst. D - Structural Biology.</p>","PeriodicalId":7116,"journal":{"name":"Acta Crystallographica. Section D, Structural Biology","volume":"80 Pt 3","pages":"147"},"PeriodicalIF":2.2,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140020719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01Epub Date: 2024-02-27DOI: 10.1107/S2059798324001487
Clemens Vonrhein, Claus Flensburg, Peter Keller, Rasmus Fogh, Andrew Sharff, Ian J Tickle, Gérard Bricogne
The validation of structural models obtained by macromolecular X-ray crystallography against experimental diffraction data, whether before deposition into the PDB or after, is typically carried out exclusively against the merged data that are eventually archived along with the atomic coordinates. It is shown here that the availability of unmerged reflection data enables valuable additional analyses to be performed that yield improvements in the final models, and tools are presented to implement them, together with examples of the results to which they give access. The first example is the automatic identification and removal of image ranges affected by loss of crystal centering or by excessive decay of the diffraction pattern as a result of radiation damage. The second example is the `reflection-auditing' process, whereby individual merged data items showing especially poor agreement with model predictions during refinement are investigated thanks to the specific metadata (such as image number and detector position) that are available for the corresponding unmerged data, potentially revealing previously undiagnosed instrumental, experimental or processing problems. The third example is the calculation of so-called F(early) - F(late) maps from carefully selected subsets of unmerged amplitude data, which can not only highlight the location and extent of radiation damage but can also provide guidance towards suitable fine-grained parametrizations to model the localized effects of such damage.
通过大分子 X 射线晶体学获得的结构模型,无论是在存入 PDB 之前还是之后,通常都是根据最终与原子坐标一起存档的合并数据,对照实验衍射数据进行验证的。本文显示,未合并反射数据的可用性使我们能够进行有价值的附加分析,从而改进最终模型,本文还介绍了实现这些分析的工具,并举例说明了这些工具所能获得的结果。第一个例子是自动识别和移除因晶体失中或因辐射损伤导致衍射图样过度衰减而受影响的图像范围。第二个例子是 "反射-审计 "过程,在此过程中,由于相应的未合并数据具有特定的元数据(如图像编号和探测器位置),因此可以对在细化过程中显示与模型预测特别不一致的个别合并数据项进行调查,从而有可能揭示之前未诊断出的仪器、实验或处理问题。第三个例子是通过精心挑选的未合并振幅数据子集计算所谓的 F(早期)-F(晚期)图,这不仅可以突出辐射损伤的位置和程度,还可以为适当的细粒度参数建模提供指导,以模拟此类损伤的局部效应。
{"title":"Advanced exploitation of unmerged reflection data during processing and refinement with autoPROC and BUSTER.","authors":"Clemens Vonrhein, Claus Flensburg, Peter Keller, Rasmus Fogh, Andrew Sharff, Ian J Tickle, Gérard Bricogne","doi":"10.1107/S2059798324001487","DOIUrl":"10.1107/S2059798324001487","url":null,"abstract":"<p><p>The validation of structural models obtained by macromolecular X-ray crystallography against experimental diffraction data, whether before deposition into the PDB or after, is typically carried out exclusively against the merged data that are eventually archived along with the atomic coordinates. It is shown here that the availability of unmerged reflection data enables valuable additional analyses to be performed that yield improvements in the final models, and tools are presented to implement them, together with examples of the results to which they give access. The first example is the automatic identification and removal of image ranges affected by loss of crystal centering or by excessive decay of the diffraction pattern as a result of radiation damage. The second example is the `reflection-auditing' process, whereby individual merged data items showing especially poor agreement with model predictions during refinement are investigated thanks to the specific metadata (such as image number and detector position) that are available for the corresponding unmerged data, potentially revealing previously undiagnosed instrumental, experimental or processing problems. The third example is the calculation of so-called F(early) - F(late) maps from carefully selected subsets of unmerged amplitude data, which can not only highlight the location and extent of radiation damage but can also provide guidance towards suitable fine-grained parametrizations to model the localized effects of such damage.</p>","PeriodicalId":7116,"journal":{"name":"Acta Crystallographica. Section D, Structural Biology","volume":" ","pages":"148-158"},"PeriodicalIF":2.2,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10910543/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139970604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01Epub Date: 2024-02-19DOI: 10.1107/S205979832400086X
Eike Laube, Jonathan Schiller, Volker Zickermann, Janet Vonck
Complex I (proton-pumping NADH:ubiquinone oxidoreductase) is the first component of the mitochondrial respiratory chain. In recent years, high-resolution cryo-EM studies of complex I from various species have greatly enhanced the understanding of the structure and function of this important membrane-protein complex. Less well studied is the structural basis of complex I biogenesis. The assembly of this complex of more than 40 subunits, encoded by nuclear or mitochondrial DNA, is an intricate process that requires at least 20 different assembly factors in humans. These are proteins that are transiently associated with building blocks of the complex and are involved in the assembly process, but are not part of mature complex I. Although the assembly pathways have been studied extensively, there is limited information on the structure and molecular function of the assembly factors. Here, the insights that have been gained into the assembly process using cryo-EM are reviewed.
复合体 I(质子泵NADH:泛醌氧化还原酶)是线粒体呼吸链的第一个组成部分。近年来,对不同物种的复合体 I 进行的高分辨率低温电子显微镜研究大大提高了人们对这一重要膜蛋白复合体的结构和功能的认识。但对复合体 I 生物发生的结构基础研究较少。这一复合体由 40 多个亚基组成,由核或线粒体 DNA 编码,其组装过程错综复杂,在人类中至少需要 20 种不同的组装因子。这些蛋白质与复合体的构件瞬时关联,参与组装过程,但不是成熟复合体 I 的一部分。尽管对组装途径进行了广泛的研究,但有关组装因子的结构和分子功能的信息却很有限。本文回顾了利用低温电子显微镜对组装过程进行的深入研究。
{"title":"Using cryo-EM to understand the assembly pathway of respiratory complex I.","authors":"Eike Laube, Jonathan Schiller, Volker Zickermann, Janet Vonck","doi":"10.1107/S205979832400086X","DOIUrl":"10.1107/S205979832400086X","url":null,"abstract":"<p><p>Complex I (proton-pumping NADH:ubiquinone oxidoreductase) is the first component of the mitochondrial respiratory chain. In recent years, high-resolution cryo-EM studies of complex I from various species have greatly enhanced the understanding of the structure and function of this important membrane-protein complex. Less well studied is the structural basis of complex I biogenesis. The assembly of this complex of more than 40 subunits, encoded by nuclear or mitochondrial DNA, is an intricate process that requires at least 20 different assembly factors in humans. These are proteins that are transiently associated with building blocks of the complex and are involved in the assembly process, but are not part of mature complex I. Although the assembly pathways have been studied extensively, there is limited information on the structure and molecular function of the assembly factors. Here, the insights that have been gained into the assembly process using cryo-EM are reviewed.</p>","PeriodicalId":7116,"journal":{"name":"Acta Crystallographica. Section D, Structural Biology","volume":" ","pages":"159-173"},"PeriodicalIF":2.2,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10910544/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139899184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}