Pub Date : 2023-11-21DOI: 10.1186/s40580-023-00400-7
Hyosim Kim, Tianyao Wang, Jonathan Gigax, Arezoo Zare, Don A. Lucca, Zhihan Hu, Yongchang Li, Trevor Parker, Lin Shao
Amorphous metallic glasses (MGs) convert to crystalline solids upon annealing at a high temperature. Such a phase change, however, does not occur with the local melting caused by damage cascades introduced by ion irradiation, although the resulting thermal spikes can reach temperatures > 1000 K. This is because the quenching rate of the local melting zone is several orders of magnitude higher than the critical cooling rate for MG formation. Thus the amorphous structure is sustained. This mechanism increases the highest temperature at which irradiated MG sustains amorphous phase. More interestingly, if an irradiated MG is pre-annealed to form a polycrystalline structure, ion irradiation can locally convert this crystalline phase to an amorphous phase if the grains are nanometers in size and comparable to the damage cascade volume size. Combining pre-annealing and site selective ion irradiation, patterned crystalline-amorphous heterogeneous structures have been fabricated. This finding opens new doors for various applications.
{"title":"Phase patterning of metallic glasses through superfast quenching of ion irradiation-induced thermal spikes","authors":"Hyosim Kim, Tianyao Wang, Jonathan Gigax, Arezoo Zare, Don A. Lucca, Zhihan Hu, Yongchang Li, Trevor Parker, Lin Shao","doi":"10.1186/s40580-023-00400-7","DOIUrl":"10.1186/s40580-023-00400-7","url":null,"abstract":"<div><p>Amorphous metallic glasses (MGs) convert to crystalline solids upon annealing at a high temperature. Such a phase change, however, does not occur with the local melting caused by damage cascades introduced by ion irradiation, although the resulting thermal spikes can reach temperatures > 1000 K. This is because the quenching rate of the local melting zone is several orders of magnitude higher than the critical cooling rate for MG formation. Thus the amorphous structure is sustained. This mechanism increases the highest temperature at which irradiated MG sustains amorphous phase. More interestingly, if an irradiated MG is pre-annealed to form a polycrystalline structure, ion irradiation can locally convert this crystalline phase to an amorphous phase if the grains are nanometers in size and comparable to the damage cascade volume size. Combining pre-annealing and site selective ion irradiation, patterned crystalline-amorphous heterogeneous structures have been fabricated. This finding opens new doors for various applications.</p></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"10 1","pages":""},"PeriodicalIF":11.7,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10663422/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138175210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-16DOI: 10.1186/s40580-023-00401-6
Philipp Schadte, Franziska Rademacher, Gerrit Andresen, Marie Hellfritzsch, Haoyi Qiu, Gregor Maschkowitz, Regine Gläser, Nina Heinemann, Daniel Drücke, Helmut Fickenscher, Regina Scherließ, Jürgen Harder, Rainer Adelung, Leonard Siebert
Wound treatment requires a plethora of independent properties. Hydration, anti-bacterial properties, oxygenation and patient-specific drug delivery all contribute to the best possible wound healing. Three-dimensional (3D) printing has emerged as a set of techniques to realize individually adapted wound dressings with open porous structure from biomedically optimized materials. To include all the desired properties into the so-called bioinks is still challenging. In this work, a bioink system based on anti-bacterial zinc oxide tetrapods (t-ZnO) and biocompatible sodium alginate is presented. Additive manufacturing of these hydrogels with high t-ZnO content (up to 15 wt.%) could be realized. Additionally, protein adsorption on the t-ZnO particles was evaluated to test their suitability as carriers for active pharmaceutical ingredients (APIs). Open porous and closed cell printed wound dressings were tested for their cell and skin compatibility and anti-bacterial properties. In these categories, the open porous constructs exhibited protruding t-ZnO arms and proved to be anti-bacterial. Dermatological tests on ex vivo skin showed no negative influence of the alginate wound dressing on the skin, making this bioink an ideal carrier and evaluation platform for APIs in wound treatment and healing.
{"title":"3D-printed wound dressing platform for protein administration based on alginate and zinc oxide tetrapods","authors":"Philipp Schadte, Franziska Rademacher, Gerrit Andresen, Marie Hellfritzsch, Haoyi Qiu, Gregor Maschkowitz, Regine Gläser, Nina Heinemann, Daniel Drücke, Helmut Fickenscher, Regina Scherließ, Jürgen Harder, Rainer Adelung, Leonard Siebert","doi":"10.1186/s40580-023-00401-6","DOIUrl":"10.1186/s40580-023-00401-6","url":null,"abstract":"<div><p>Wound treatment requires a plethora of independent properties. Hydration, anti-bacterial properties, oxygenation and patient-specific drug delivery all contribute to the best possible wound healing. Three-dimensional (3D) printing has emerged as a set of techniques to realize individually adapted wound dressings with open porous structure from biomedically optimized materials. To include all the desired properties into the so-called bioinks is still challenging. In this work, a bioink system based on anti-bacterial zinc oxide tetrapods (t-ZnO) and biocompatible sodium alginate is presented. Additive manufacturing of these hydrogels with high t-ZnO content (up to 15 wt.%) could be realized. Additionally, protein adsorption on the t-ZnO particles was evaluated to test their suitability as carriers for active pharmaceutical ingredients (APIs). Open porous and closed cell printed wound dressings were tested for their cell and skin compatibility and anti-bacterial properties. In these categories, the open porous constructs exhibited protruding t-ZnO arms and proved to be anti-bacterial. Dermatological tests on ex vivo skin showed no negative influence of the alginate wound dressing on the skin, making this bioink an ideal carrier and evaluation platform for APIs in wound treatment and healing.</p></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"10 1","pages":""},"PeriodicalIF":11.7,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-023-00401-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134796698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-15DOI: 10.1186/s40580-023-00402-5
Jungbin Yoon, Hohyeon Han, Jinah Jang
In the field of tissue engineering and regenerative medicine, various hydrogels derived from the extracellular matrix have been utilized for creating engineered tissues and implantable scaffolds. While these hydrogels hold immense promise in the healthcare landscape, conventional bioinks based on ECM hydrogels face several challenges, particularly in terms of lacking the necessary mechanical properties required for 3D bioprinting process. To address these limitations, researchers are actively exploring novel nanomaterial-reinforced ECM hydrogels for both mechanical and functional aspects. In this review, we focused on discussing recent advancements in the fabrication of engineered tissues and monitoring systems using nanobioinks and nanomaterials via 3D bioprinting technology. We highlighted the synergistic benefits of combining numerous nanomaterials into ECM hydrogels and imposing geometrical effects by 3D bioprinting technology. Furthermore, we also elaborated on critical issues remaining at the moment, such as the inhomogeneous dispersion of nanomaterials and consequent technical and practical issues, in the fabrication of complex 3D structures with nanobioinks and nanomaterials. Finally, we elaborated on plausible outlooks for facilitating the use of nanomaterials in biofabrication and advancing the function of engineered tissues.
{"title":"Nanomaterials-incorporated hydrogels for 3D bioprinting technology","authors":"Jungbin Yoon, Hohyeon Han, Jinah Jang","doi":"10.1186/s40580-023-00402-5","DOIUrl":"10.1186/s40580-023-00402-5","url":null,"abstract":"<div><p>In the field of tissue engineering and regenerative medicine, various hydrogels derived from the extracellular matrix have been utilized for creating engineered tissues and implantable scaffolds. While these hydrogels hold immense promise in the healthcare landscape, conventional bioinks based on ECM hydrogels face several challenges, particularly in terms of lacking the necessary mechanical properties required for 3D bioprinting process. To address these limitations, researchers are actively exploring novel nanomaterial-reinforced ECM hydrogels for both mechanical and functional aspects. In this review, we focused on discussing recent advancements in the fabrication of engineered tissues and monitoring systems using nanobioinks and nanomaterials via 3D bioprinting technology. We highlighted the synergistic benefits of combining numerous nanomaterials into ECM hydrogels and imposing geometrical effects by 3D bioprinting technology. Furthermore, we also elaborated on critical issues remaining at the moment, such as the inhomogeneous dispersion of nanomaterials and consequent technical and practical issues, in the fabrication of complex 3D structures with nanobioinks and nanomaterials. Finally, we elaborated on plausible outlooks for facilitating the use of nanomaterials in biofabrication and advancing the function of engineered tissues.</p></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"10 1","pages":""},"PeriodicalIF":11.7,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-023-00402-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134648097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-30DOI: 10.1186/s40580-023-00399-x
Lina Kim, Seongjae Jo, Gyeong-Ji Kim, Kyung Ho Kim, Sung Eun Seo, Eunsu Ryu, Chan Jae Shin, Yu Kyung Kim, Jeong-Woo Choi, Oh Seok Kwon
Antibody sensor to detect viruses has been widely used but has problems such as the difficulty of right direction control of the receptor site on solid substrate, and long time and high cost for design and production of antibodies to new emerging viruses. The virus detection sensor with a recombinant protein embedded liposome (R/Li) was newly developed to solve the above problems, in which R/Li was assembled on AuNPs (Au@R/Li) to increase the sensitivity using localized surface plasmon resonance (LSPR) method. Recombinant angiotensin-converting enzyme-2 (ACE2) was used as host receptors of SARS-CoV and SARS-CoV-2, and the direction of enzyme active site for virus attachment could be controlled by the integration with liposome. The recombinant protein embedded liposomes were assembled on AuNPs, and LSPR method was used for detection. With the sensor platform S1 protein of both viruses was detected with detection limit of 10 pg/ml and SARS-CoV-2 in clinical samples was detected with 10 ~ 35 Ct values. In the selectivity test, MERS-CoV did not show a signal due to no binding with Au@R/Li. The proposed sensor platform can be used as promising detection method with high sensitivity and selectivity for the early and simple diagnosis of new emerging viruses.