Pub Date : 2025-02-07DOI: 10.1186/s40580-025-00476-3
Dongha Kim, Dongju Lee, Jiseok Park, Jihoon Bae, Aiping Chen, Judith L. MacManus-Driscoll, Sungwon Lee, Shinbuhm Lee
The interest in highly sensitive sensors is rapidly increasing for detecting very tiny signals for Internet of Things devices. Here, we achieve ultra-sensitive correlated breathable sensors based on freestanding VO2 membranes. We fabricate the membranes by growing VO2 films onto sacrificial Sr3Al2O6 layer grown on SrTiO3, selectively dissolving the Sr3Al2O6 in water, and then rendering freestanding VO2 membrane on nanomesh. The nanomeshes are extremely flexible, sweat permeable, and readily skin-adhesive. The resistance of the VO2 membranes is reversibly tuned by human’s tiny mechanical stimuli and breath stimuli. The stimuli modulate the Peierls dimerization of one-dimensional V−V chains in the VO2 lattice which concomitantly controls the electron correlation and hence resistivity. Since our breathable sensors operate based on quantum-mechanical correlation effects, their sensitivity is 1−2 orders of magnitude higher than conventional tactile and respiratory sensors based on other materials. Thus, the freestanding membranes of correlated oxides on epidermal nanomeshes are multifunctional platforms for developing ultra-sensitive correlated breathable sensors.
{"title":"Freestanding VO2 membranes on epidermal nanomesh for ultra-sensitive correlated breathable sensors","authors":"Dongha Kim, Dongju Lee, Jiseok Park, Jihoon Bae, Aiping Chen, Judith L. MacManus-Driscoll, Sungwon Lee, Shinbuhm Lee","doi":"10.1186/s40580-025-00476-3","DOIUrl":"10.1186/s40580-025-00476-3","url":null,"abstract":"<div><p>The interest in highly sensitive sensors is rapidly increasing for detecting very tiny signals for Internet of Things devices. Here, we achieve ultra-sensitive correlated breathable sensors based on freestanding VO<sub>2</sub> membranes. We fabricate the membranes by growing VO<sub>2</sub> films onto sacrificial Sr<sub>3</sub>Al<sub>2</sub>O<sub>6</sub> layer grown on SrTiO<sub>3</sub>, selectively dissolving the Sr<sub>3</sub>Al<sub>2</sub>O<sub>6</sub> in water, and then rendering freestanding VO<sub>2</sub> membrane on nanomesh. The nanomeshes are extremely flexible, sweat permeable, and readily skin-adhesive. The resistance of the VO<sub>2</sub> membranes is reversibly tuned by human’s tiny mechanical stimuli and breath stimuli. The stimuli modulate the Peierls dimerization of one-dimensional V−V chains in the VO<sub>2</sub> lattice which concomitantly controls the electron correlation and hence resistivity. Since our breathable sensors operate based on quantum-mechanical correlation effects, their sensitivity is 1−2 orders of magnitude higher than conventional tactile and respiratory sensors based on other materials. Thus, the freestanding membranes of correlated oxides on epidermal nanomeshes are multifunctional platforms for developing ultra-sensitive correlated breathable sensors.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"12 1","pages":""},"PeriodicalIF":13.4,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-025-00476-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143361907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-06DOI: 10.1186/s40580-024-00468-9
Duy Thanh Tran, Phan Khanh Linh Tran, Deepanshu Malhotra, Thanh Hai Nguyen, Tran Thien An Nguyen, Nguyen Tram Anh Duong, Nam Hoon Kim, Joong Hee Lee
The conversion of electricity into hydrogen (H2) gas through electrochemical water splitting using efficient electrocatalysts has been one of the most important future technologies to create vast amounts of clean and renewable energy. Low-temperature electrolyzer systems, such as proton exchange membrane water electrolyzers, alkaline water electrolyzers, and anion exchange membrane water electrolyzers are at the forefront of current technologies. Their performance, however, generally depends on electricity costs and system efficiency, which can be significantly improved by developing high-performance electrocatalysts to enhance the kinetics of both the cathodic hydrogen evolution reaction and the anodic oxygen evolution reaction. Despite numerous active research efforts in catalyst development, the performance of water electrolysis remains insufficient for commercialization. Ongoing research into innovative electrocatalysts and an understanding of the catalytic mechanisms are critical to enhancing their activity and stability for electrolyzers. This is still a focus at academic institutes/universities and industrial R&D centers. Herein, we provide an overview of the current state and future directions of electrocatalysts and water electrolyzers for electrochemical H2 production. Additionally, we describe in detail the technological framework of electrocatalysts and water electrolyzers for H2 production as utilized by relevant global companies.
{"title":"Current status of developed electrocatalysts for water splitting technologies: from experimental to industrial perspective","authors":"Duy Thanh Tran, Phan Khanh Linh Tran, Deepanshu Malhotra, Thanh Hai Nguyen, Tran Thien An Nguyen, Nguyen Tram Anh Duong, Nam Hoon Kim, Joong Hee Lee","doi":"10.1186/s40580-024-00468-9","DOIUrl":"10.1186/s40580-024-00468-9","url":null,"abstract":"<p>The conversion of electricity into hydrogen (H<sub>2</sub>) gas through electrochemical water splitting using efficient electrocatalysts has been one of the most important future technologies to create vast amounts of clean and renewable energy. Low-temperature electrolyzer systems, such as proton exchange membrane water electrolyzers, alkaline water electrolyzers, and anion exchange membrane water electrolyzers are at the forefront of current technologies. Their performance, however, generally depends on electricity costs and system efficiency, which can be significantly improved by developing high-performance electrocatalysts to enhance the kinetics of both the cathodic hydrogen evolution reaction and the anodic oxygen evolution reaction. Despite numerous active research efforts in catalyst development, the performance of water electrolysis remains insufficient for commercialization. Ongoing research into innovative electrocatalysts and an understanding of the catalytic mechanisms are critical to enhancing their activity and stability for electrolyzers. This is still a focus at academic institutes/universities and industrial R&D centers. Herein, we provide an overview of the current state and future directions of electrocatalysts and water electrolyzers for electrochemical H<sub>2</sub> production. Additionally, we describe in detail the technological framework of electrocatalysts and water electrolyzers for H<sub>2</sub> production as utilized by relevant global companies.</p>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"12 1","pages":""},"PeriodicalIF":13.4,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-024-00468-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143361892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-03DOI: 10.1186/s40580-025-00475-4
Jungbum Kim, Donghyuk Seo, So-Yeol Yoo, Hye-Jin Lee, Jisun Kim, Ji Eun Yeom, Jae-Young Lee, Wooram Park, Kyung Soo Hong, Wonhwa Lee
Acute lung injury (ALI) is characterized by severe inflammation in lung tissue, excessive immune response and impaired lung function. In hospitalized high-risk patients and cases of secondary infection due to surgical contamination, it can lead to higher mortality rates and require immediate intervention. Currently, clinical treatments are limited in symptomatic therapy as mechanical ventilation and corticosteroids, having insufficient efficacy in mitigating the cause of progression to severe illness. Here we report a pulmonary targeting lung-homing nanoliposome (LHN) designed to attenuate excessive Neutrophil Extracellular Trap formation (NETosis) through sivelestat and DNase-1, coupled with an anti-inflammatory effect mediated by 25-hydroxycholesterol (25-HC), offering a promising intervention for the acute phase of ALI. Through intratracheal delivery, we intend prompt and constant action within the lungs to effectively prevent excessive NETosis. Isolated neutrophils from blood samples of severe ARDS patients demonstrated significant anti-NETosis effects, as well as reduced proinflammatory cytokine secretion. Furthermore, in a murine model of LPS-induced ALI, we confirmed improvements in lung histopathology, and early respiratory function. Also, attenuation of systemic inflammatory response syndrome (SIRS), with notable reductions in NETosis and neutrophil trafficking was investigated. This presents a targeted therapeutic approach that can be applied in early stages of high-risk patients to prevent severe pulmonary disease progression.
{"title":"Lung-homing nanoliposomes for early intervention in NETosis and inflammation during acute lung injury","authors":"Jungbum Kim, Donghyuk Seo, So-Yeol Yoo, Hye-Jin Lee, Jisun Kim, Ji Eun Yeom, Jae-Young Lee, Wooram Park, Kyung Soo Hong, Wonhwa Lee","doi":"10.1186/s40580-025-00475-4","DOIUrl":"10.1186/s40580-025-00475-4","url":null,"abstract":"<div><p>Acute lung injury (ALI) is characterized by severe inflammation in lung tissue, excessive immune response and impaired lung function. In hospitalized high-risk patients and cases of secondary infection due to surgical contamination, it can lead to higher mortality rates and require immediate intervention. Currently, clinical treatments are limited in symptomatic therapy as mechanical ventilation and corticosteroids, having insufficient efficacy in mitigating the cause of progression to severe illness. Here we report a pulmonary targeting lung-homing nanoliposome (LHN) designed to attenuate excessive Neutrophil Extracellular Trap formation (NETosis) through sivelestat and DNase-1, coupled with an anti-inflammatory effect mediated by 25-hydroxycholesterol (25-HC), offering a promising intervention for the acute phase of ALI. Through intratracheal delivery, we intend prompt and constant action within the lungs to effectively prevent excessive NETosis. Isolated neutrophils from blood samples of severe ARDS patients demonstrated significant anti-NETosis effects, as well as reduced proinflammatory cytokine secretion. Furthermore, in a murine model of LPS-induced ALI, we confirmed improvements in lung histopathology, and early respiratory function. Also, attenuation of systemic inflammatory response syndrome (SIRS), with notable reductions in NETosis and neutrophil trafficking was investigated. This presents a targeted therapeutic approach that can be applied in early stages of high-risk patients to prevent severe pulmonary disease progression.</p></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"12 1","pages":""},"PeriodicalIF":13.4,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-025-00475-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143078377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-30DOI: 10.1186/s40580-025-00474-5
Yongsu Lee, Hae-Won Lee, Su Jin Kim, Jeong Min Park, Byoung Hun Lee, Chang Goo Kang
Metal-oxide thin-film semiconductors have been highlighted as next-generation space semiconductors owing to their excellent radiation hardness based on their dimensional advantages of very low thickness and insensitivity to crystal structure. However, thin-film transistors (TFTs) do not exhibit intrinsic radiation hardness owing to the chemical reactions at the interface exposed to ambient air. In this study, significantly enhanced radiation hardness of Al2O3-passivated ZnO TFTs against high-energy protons with energies of up to 100 MeV is obtained owing to the passivation layer blocking interactions with external reactants, thereby maintaining the chemical stability of the thin-film semiconductor. These results highlight the potential of passivated metal-oxide thin films for developing reliable radiation-hardened semiconductor devices that can be used in harsh space environments. In addition, the relationship between low-frequency noise and defects due to oxygen vacancies was revealed, which can be utilized to improve device reliability.
{"title":"Enhanced high-energy proton radiation hardness of ZnO thin-film transistors with a passivation layer","authors":"Yongsu Lee, Hae-Won Lee, Su Jin Kim, Jeong Min Park, Byoung Hun Lee, Chang Goo Kang","doi":"10.1186/s40580-025-00474-5","DOIUrl":"10.1186/s40580-025-00474-5","url":null,"abstract":"<div><p>Metal-oxide thin-film semiconductors have been highlighted as next-generation space semiconductors owing to their excellent radiation hardness based on their dimensional advantages of very low thickness and insensitivity to crystal structure. However, thin-film transistors (TFTs) do not exhibit intrinsic radiation hardness owing to the chemical reactions at the interface exposed to ambient air. In this study, significantly enhanced radiation hardness of Al<sub>2</sub>O<sub>3</sub>-passivated ZnO TFTs against high-energy protons with energies of up to 100 MeV is obtained owing to the passivation layer blocking interactions with external reactants, thereby maintaining the chemical stability of the thin-film semiconductor. These results highlight the potential of passivated metal-oxide thin films for developing reliable radiation-hardened semiconductor devices that can be used in harsh space environments. In addition, the relationship between low-frequency noise and defects due to oxygen vacancies was revealed, which can be utilized to improve device reliability.</p></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"12 1","pages":""},"PeriodicalIF":13.4,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11782758/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143063086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-24DOI: 10.1186/s40580-024-00467-w
Seong Chan Cho, Jun Ho Seok, Hung Ngo Manh, Jae Hun Seol, Chi Ho Lee, Sang Uck Lee
Electrochemical water splitting, which encompasses the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER), offers a promising route for sustainable hydrogen production. The development of efficient and cost-effective electrocatalysts is crucial for advancing this technology, especially given the reliance on expensive transition metals, such as Pt and Ir, in traditional catalysts. This review highlights recent advances in the design and optimization of electrocatalysts, focusing on density functional theory (DFT) as a key tool for understanding and improving catalytic performance in the HER and OER. We begin by exploring DFT-based approaches for evaluating catalytic activity under both acidic and alkaline conditions. The review then shifts to a material-oriented perspective, showcasing key catalyst materials and the theoretical strategies employed to enhance their performance. In addition, we discuss scaling relationships that exist between binding energies and electronic structures through the use of charge-density analysis and d-band theory. Advanced concepts, such as the effects of adsorbate coverage, solvation, and applied potential on catalytic behavior, are also discussed. We finally focus on integrating machine learning (ML) with DFT to enable high-throughput screening and accelerate the discovery of novel water-splitting catalysts. This comprehensive review underscores the pivotal role that DFT plays in advancing electrocatalyst design and highlights its potential for shaping the future of sustainable hydrogen production.