首页 > 最新文献

Nano Convergence最新文献

英文 中文
Enhanced performance of hafnia self-rectifying ferroelectric tunnel junctions at cryogenic temperatures 在低温下增强半铪自整流铁电隧道结的性能。
IF 13.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-12-16 DOI: 10.1186/s40580-024-00461-2
Junghyeon Hwang, Chaeheon Kim, Jinho Ahn, Sanghun Jeon

The advancement in high-performance computing technologies, including quantum and aerospace systems, necessitates components that operate efficiently at cryogenic temperatures. In this study, we demonstrate a hafnia-based ferroelectric tunnel junction (FTJ) that achieves a record-high tunneling electroresistance (TER) ratio of over 200,000 and decade-long retention characteristics. By introducing asymmetric oxygen vacancies through the strategic use of indium oxide (InOx) layer, we enhance the TER ratio without increasing off-current, addressing the longstanding issue of low on-current in hafnia-based FTJs. Unlike prior approaches that led to leakage currents, our method optimizes tunneling behavior by leveraging the differential oxygen dissociation energy between InOx and hafnium zirconium oxide (HZO). This results in asymmetric modulation of the tunnel barrier, enhancing electron tunneling in one polarization state while maintaining stability in the opposite state. Furthermore, we explore the intrinsic characteristics of the FTJ at cryogenic temperatures, where reduced thermal energy minimizes leakage currents and allows the maximization of device performance. These findings establish a new benchmark for TER in hafnia-based FTJs and provide valuable insights for the integration of these devices into advanced cryogenic memory systems.

Graphical Abstract

高性能计算技术的进步,包括量子和航空航天系统,需要在低温下高效运行的组件。在这项研究中,我们展示了一种基于铪的铁电隧道结(FTJ),它实现了超过20万的创纪录的隧道电阻(TER)比和长达十年的保持特性。通过战略性地使用氧化铟(InOx)层引入不对称氧空位,我们在不增加关流的情况下提高了TER比率,解决了长期以来基于铪的ftj的低通流问题。与之前导致泄漏电流的方法不同,我们的方法通过利用InOx和氧化锆铪(HZO)之间不同的氧解离能来优化隧道行为。这导致了隧道势垒的不对称调制,增强了电子在一个偏振态的隧穿,同时保持了相反偏振态的稳定。此外,我们探索了低温下FTJ的固有特性,在低温下,减少的热能使泄漏电流最小化,并使器件性能最大化。这些发现为基于hafnia的ftj中的TER建立了新的基准,并为将这些设备集成到先进的低温存储系统中提供了有价值的见解。
{"title":"Enhanced performance of hafnia self-rectifying ferroelectric tunnel junctions at cryogenic temperatures","authors":"Junghyeon Hwang,&nbsp;Chaeheon Kim,&nbsp;Jinho Ahn,&nbsp;Sanghun Jeon","doi":"10.1186/s40580-024-00461-2","DOIUrl":"10.1186/s40580-024-00461-2","url":null,"abstract":"<div><p>The advancement in high-performance computing technologies, including quantum and aerospace systems, necessitates components that operate efficiently at cryogenic temperatures. In this study, we demonstrate a hafnia-based ferroelectric tunnel junction (FTJ) that achieves a record-high tunneling electroresistance (TER) ratio of over 200,000 and decade-long retention characteristics. By introducing asymmetric oxygen vacancies through the strategic use of indium oxide (InO<sub>x</sub>) layer, we enhance the TER ratio without increasing off-current, addressing the longstanding issue of low on-current in hafnia-based FTJs. Unlike prior approaches that led to leakage currents, our method optimizes tunneling behavior by leveraging the differential oxygen dissociation energy between InO<sub>x</sub> and hafnium zirconium oxide (HZO). This results in asymmetric modulation of the tunnel barrier, enhancing electron tunneling in one polarization state while maintaining stability in the opposite state. Furthermore, we explore the intrinsic characteristics of the FTJ at cryogenic temperatures, where reduced thermal energy minimizes leakage currents and allows the maximization of device performance. These findings establish a new benchmark for TER in hafnia-based FTJs and provide valuable insights for the integration of these devices into advanced cryogenic memory systems.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"11 1","pages":""},"PeriodicalIF":13.4,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-024-00461-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142833387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineering of buried interfaces in perovskites: advancing sustainable photovoltaics 过氧化物中的埋藏界面工程:推动可持续光伏技术的发展。
IF 13.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-12-16 DOI: 10.1186/s40580-024-00464-z
Jihyun Kim, William Jo

Perovskite solar cells (PSCs) have garnered significant attention for their high power conversion efficiency (PCE) and potential for cost-effective, large-scale manufacturing. This comprehensive review focuses on the role of buried interface engineering in enhancing the performance and stability of PSCs with both n-type electron transport layer/perovskite/p-type hole transport layer (n-i-p) and p-type hole transport layer/perovskite/n-type electron transport layer (p-i-n) structures. This study highlights key challenges associated with interface engineering, such as charge extraction, recombination loss, and energy level alignment. Various interface engineering techniques, such as surface passivation, self-assembled monolayers, and additive engineering, are explored in terms of their effectiveness in mitigating recombination loss and improving long-term device stability. This review also provides an in-depth analysis of material selection for the electron and hole transport layers, defect management techniques, and the influence of these on perovskite film quality and device stability. Advanced characterization methods for buried interfaces are discussed, providing insights into the structural, morphological, and electronic properties that govern device performance. Furthermore, we explore emerging approaches that target homogenous cation distribution and phase stability at buried interfaces, both of which are crucial for improving PCEs beyond current benchmarks. By synthesizing the latest research findings and identifying key challenges, this review aims to guide future directions in interface engineering for PSCs and ensure their successful use in next-generation sustainable energy technologies.

Graphical Abstract

钙钛矿太阳能电池(PSCs)因其高功率转换效率(PCE)和具有成本效益、大规模生产的潜力而受到广泛关注。本文综述了埋藏界面工程在提高具有n型电子传输层/钙钛矿/p型空穴传输层(n-i-p)和p型空穴传输层/钙钛矿/n型电子传输层(p-i-n)结构的psc的性能和稳定性中的作用。这项研究强调了与界面工程相关的关键挑战,如电荷提取、重组损失和能级对齐。各种界面工程技术,如表面钝化、自组装单层和增材工程,在减轻复合损失和提高长期器件稳定性方面的有效性进行了探索。本文还深入分析了电子和空穴传输层的材料选择,缺陷管理技术,以及这些对钙钛矿薄膜质量和器件稳定性的影响。讨论了埋藏界面的高级表征方法,提供了对控制器件性能的结构,形态和电子特性的见解。此外,我们探索了针对埋藏界面的均匀阳离子分布和相稳定性的新兴方法,这两者对于提高pce超越当前基准至关重要。通过对最新研究成果的综合和对关键挑战的识别,本文旨在指导PSCs界面工程的未来发展方向,并确保其在下一代可持续能源技术中的成功应用。
{"title":"Engineering of buried interfaces in perovskites: advancing sustainable photovoltaics","authors":"Jihyun Kim,&nbsp;William Jo","doi":"10.1186/s40580-024-00464-z","DOIUrl":"10.1186/s40580-024-00464-z","url":null,"abstract":"<div><p>Perovskite solar cells (PSCs) have garnered significant attention for their high power conversion efficiency (PCE) and potential for cost-effective, large-scale manufacturing. This comprehensive review focuses on the role of buried interface engineering in enhancing the performance and stability of PSCs with both n-type electron transport layer/perovskite/p-type hole transport layer (n-i-p) and p-type hole transport layer/perovskite/n-type electron transport layer (p-i-n) structures. This study highlights key challenges associated with interface engineering, such as charge extraction, recombination loss, and energy level alignment. Various interface engineering techniques, such as surface passivation, self-assembled monolayers, and additive engineering, are explored in terms of their effectiveness in mitigating recombination loss and improving long-term device stability. This review also provides an in-depth analysis of material selection for the electron and hole transport layers, defect management techniques, and the influence of these on perovskite film quality and device stability. Advanced characterization methods for buried interfaces are discussed, providing insights into the structural, morphological, and electronic properties that govern device performance. Furthermore, we explore emerging approaches that target homogenous cation distribution and phase stability at buried interfaces, both of which are crucial for improving PCEs beyond current benchmarks. By synthesizing the latest research findings and identifying key challenges, this review aims to guide future directions in interface engineering for PSCs and ensure their successful use in next-generation sustainable energy technologies.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"11 1","pages":""},"PeriodicalIF":13.4,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-024-00464-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142833386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanomaterial-based detection of circulating tumor cells and circulating cancer stem cells for cancer immunotherapy 基于纳米材料的循环肿瘤细胞和循环肿瘤干细胞检测用于肿瘤免疫治疗
IF 13.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-12-13 DOI: 10.1186/s40580-024-00466-x
Yeochan Yun, Seewoo Kim, Sang-Nam Lee, Hyeon-Yeol Cho, Jeong-Woo Choi

Nanomaterials have emerged as transformative tools for detecting circulating tumor cells (CTCs) and circulating cancer stem cells (CCSCs), significantly enhancing cancer diagnostics and immunotherapy. Nanomaterials, including those composed of gold, magnetic materials, and silica, have enhanced the sensitivity, specificity, and efficiency of isolating these rare cells from blood. These developments are of paramount importance for the early detection of cancer and for providing real-time insights into metastasis and treatment resistance, which are essential for the development of personalized immunotherapies. The combination of nanomaterial-based platforms with phenotyping techniques, such as Raman spectroscopy and microfluidics, enables researchers to enhance immunotherapy protocols targeting specific CTC and CCSC markers. Nanomaterials also facilitate the targeted delivery of immunotherapeutic agents, including immune checkpoint inhibitors and therapeutic antibodies, directly to tumor cells. This synergistic approach has the potential to enhance therapeutic efficacy and mitigate the risk of metastasis and relapse. In conclusion, this review critically examines the use of nanomaterial-driven detection systems for detecting CTCs and CCSCs, their application in immunotherapy, and suggests future directions, highlighting their potential to transform the integration of diagnostics and treatment, thereby paving the way for more precise and personalized cancer therapies.

Graphical Abstract

纳米材料已经成为检测循环肿瘤细胞(ctc)和循环癌症干细胞(CCSCs)的变革性工具,显著增强了癌症诊断和免疫治疗。纳米材料,包括由金、磁性材料和二氧化硅组成的纳米材料,提高了从血液中分离这些稀有细胞的灵敏度、特异性和效率。这些进展对于癌症的早期发现和提供转移和治疗耐药性的实时洞察至关重要,这对于个性化免疫疗法的发展至关重要。基于纳米材料的平台与表型技术(如拉曼光谱和微流体)的结合,使研究人员能够增强针对特定CTC和CCSC标记物的免疫治疗方案。纳米材料也促进了免疫治疗剂的靶向递送,包括免疫检查点抑制剂和治疗性抗体,直接到肿瘤细胞。这种协同的方法有可能提高治疗效果,减轻转移和复发的风险。总之,本文综述了纳米材料驱动检测系统在检测ctc和CCSCs中的应用,以及它们在免疫治疗中的应用,并提出了未来的发展方向,强调了它们在整合诊断和治疗方面的潜力,从而为更精确和个性化的癌症治疗铺平了道路。图形抽象
{"title":"Nanomaterial-based detection of circulating tumor cells and circulating cancer stem cells for cancer immunotherapy","authors":"Yeochan Yun,&nbsp;Seewoo Kim,&nbsp;Sang-Nam Lee,&nbsp;Hyeon-Yeol Cho,&nbsp;Jeong-Woo Choi","doi":"10.1186/s40580-024-00466-x","DOIUrl":"10.1186/s40580-024-00466-x","url":null,"abstract":"<div><p>Nanomaterials have emerged as transformative tools for detecting circulating tumor cells (CTCs) and circulating cancer stem cells (CCSCs), significantly enhancing cancer diagnostics and immunotherapy. Nanomaterials, including those composed of gold, magnetic materials, and silica, have enhanced the sensitivity, specificity, and efficiency of isolating these rare cells from blood. These developments are of paramount importance for the early detection of cancer and for providing real-time insights into metastasis and treatment resistance, which are essential for the development of personalized immunotherapies. The combination of nanomaterial-based platforms with phenotyping techniques, such as Raman spectroscopy and microfluidics, enables researchers to enhance immunotherapy protocols targeting specific CTC and CCSC markers. Nanomaterials also facilitate the targeted delivery of immunotherapeutic agents, including immune checkpoint inhibitors and therapeutic antibodies, directly to tumor cells. This synergistic approach has the potential to enhance therapeutic efficacy and mitigate the risk of metastasis and relapse. In conclusion, this review critically examines the use of nanomaterial-driven detection systems for detecting CTCs and CCSCs, their application in immunotherapy, and suggests future directions, highlighting their potential to transform the integration of diagnostics and treatment, thereby paving the way for more precise and personalized cancer therapies.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"11 1","pages":""},"PeriodicalIF":13.4,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-024-00466-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142810922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Persistent ferromagnetic ground state in pristine and Ni-doped Fe3GaTe2 flakes 原始和掺镍Fe3GaTe2薄片的持久铁磁基态
IF 13.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-12-12 DOI: 10.1186/s40580-024-00458-x
Ki-Hoon Son, Sehoon Oh, Junho Lee, Sobin Yun, Yunseo Shin, Shaohua Yan, Chaun Jang, Hong-Sub Lee, Hechang Lei, Se Young Park, Hyejin Ryu

Room-temperature magnetism and its stability upon miniaturization are essential characteristics required for materials for spintronic devices and information storage. Among various candidates, Fe3GaTe2 stands out due to its high Curie temperature and strong perpendicular magnetic anisotropy (PMA), recently gaining large attention as one of the promising candidate materials for spintronics applications. In this study, we measured the thickness-dependent ferromagnetic properties of Fe3GaTe2 and (Fe1 − xNix)3GaTe2 (with x = 0.1) flakes. We observed that both pristine and Ni-doped Fe3GaTe2 exhibit persistent ferromagnetism, with only a minor decrease in TC as the thickness is reduced to a few tens of nanometers. This capacity to retain robust ferromagnetic properties at reduced dimensions is highly advantageous for thin-film applications, which is crucial for the scaling of spintronic devices. Understanding and controlling thickness-dependent magnetic properties is fundamental to harnessing the full potential of Fe3GaTe2 in van der Waals magnetic heterostructures and advanced spintronic technologies.

室温磁性及其小型化后的稳定性是自旋电子器件和信息存储材料所需要的基本特性。在各种候选材料中,Fe3GaTe2因其高居里温度和强垂直磁各向异性(PMA)而脱颖而出,近年来作为自旋电子学应用的有前途的候选材料之一而受到广泛关注。在这项研究中,我们测量了Fe3GaTe2和(Fe1−xNix)3GaTe2 (x = 0.1)薄片的厚度依赖性铁磁性能。我们观察到原始的和ni掺杂的Fe3GaTe2都表现出持久的铁磁性,当厚度减少到几十纳米时,TC只有轻微的下降。这种在减小尺寸时保持强大铁磁性的能力对于薄膜应用非常有利,这对于自旋电子器件的缩放至关重要。理解和控制与厚度相关的磁性是充分利用Fe3GaTe2在范德华磁异质结构和先进自旋电子技术中的全部潜力的基础。
{"title":"Persistent ferromagnetic ground state in pristine and Ni-doped Fe3GaTe2 flakes","authors":"Ki-Hoon Son,&nbsp;Sehoon Oh,&nbsp;Junho Lee,&nbsp;Sobin Yun,&nbsp;Yunseo Shin,&nbsp;Shaohua Yan,&nbsp;Chaun Jang,&nbsp;Hong-Sub Lee,&nbsp;Hechang Lei,&nbsp;Se Young Park,&nbsp;Hyejin Ryu","doi":"10.1186/s40580-024-00458-x","DOIUrl":"10.1186/s40580-024-00458-x","url":null,"abstract":"<div><p>Room-temperature magnetism and its stability upon miniaturization are essential characteristics required for materials for spintronic devices and information storage. Among various candidates, Fe<sub>3</sub>GaTe<sub>2</sub> stands out due to its high Curie temperature and strong perpendicular magnetic anisotropy (PMA), recently gaining large attention as one of the promising candidate materials for spintronics applications. In this study, we measured the thickness-dependent ferromagnetic properties of Fe<sub>3</sub>GaTe<sub>2</sub> and (Fe<sub>1 − x</sub>Ni<sub>x</sub>)<sub>3</sub>GaTe<sub>2</sub> (with x = 0.1) flakes. We observed that both pristine and Ni-doped Fe<sub>3</sub>GaTe<sub>2</sub> exhibit persistent ferromagnetism, with only a minor decrease in T<sub>C</sub> as the thickness is reduced to a few tens of nanometers. This capacity to retain robust ferromagnetic properties at reduced dimensions is highly advantageous for thin-film applications, which is crucial for the scaling of spintronic devices. Understanding and controlling thickness-dependent magnetic properties is fundamental to harnessing the full potential of Fe<sub>3</sub>GaTe<sub>2</sub> in van der Waals magnetic heterostructures and advanced spintronic technologies.</p></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"11 1","pages":""},"PeriodicalIF":13.4,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-024-00458-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142811125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Li-ion transport in two-dimensional nanofluidic membranes 二维纳米流体膜中锂离子的输运
IF 13.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-12-12 DOI: 10.1186/s40580-024-00465-y
Gyu Won Kim, Minwoo Lee, Jihong Bae, Jihoon Han, Seokmin Park, Wooyoung Shim

The growing demand for lithium, driven by its critical role in lithium-ion batteries (LIBs) and other applications, has intensified the need for efficient extraction methods from aqua-based resources such as seawater. Among various approaches, 2D channel membranes have emerged as promising candidates due to their tunable ion selectivity and scalability. While significant progress has been made in achieving high Li+/Mg2+ selectivity, enhancing Li+ ion selectivity over Na+ ion, the dominant monovalent cation in seawater, remains a challenge due to their similar properties. This review provides a comprehensive analysis of the fundamental mechanisms underlying Li+ selectivity in 2D channel membranes, focusing on the dehydration and diffusion processes that dictate ion transport. Inspired by the principles of biological ion channels, we identify key factors—channel size, surface charge, and binding sites—that influence energy barriers and shape the interplay between dehydration and diffusion. We highlight recent progress in leveraging these factors to enhance Li+/Na+ selectivity and address the challenges posed by counteracting effects in ion transport. While substantial advancements have been made, the lack of comprehensive principles guiding the interplay of these variables across permeation steps represents a key obstacle to optimizing Li+/Na+ selectivity. Nonetheless, with their inherent chemical stability and fabrication scalability, 2D channel membranes offer significant potential for lithium extraction if these challenges can be addressed. This review provides insights into the current state of 2D channel membrane technologies and outlines future directions for achieving enhanced Li+ ion selectivity, particularly in seawater applications.

Graphical Abstract

由于锂在锂离子电池(LIBs)和其他应用中的关键作用,对锂的需求不断增长,因此需要从海水等水基资源中高效提取锂。在各种方法中,二维通道膜由于其可调的离子选择性和可扩展性而成为有希望的候选者。虽然在实现高Li+/Mg2+选择性方面取得了重大进展,但由于其相似的性质,提高Li+离子对海水中主要单价阳离子Na+离子的选择性仍然是一个挑战。本文对二维通道膜中Li+选择性的基本机制进行了全面分析,重点研究了离子传输的脱水和扩散过程。受生物离子通道原理的启发,我们确定了影响能量屏障和形成脱水和扩散之间相互作用的关键因素——通道大小、表面电荷和结合位点。我们强调了利用这些因素来提高Li+/Na+选择性和解决离子传输中抵消效应带来的挑战的最新进展。虽然已经取得了实质性的进展,但缺乏指导这些变量在渗透步骤中的相互作用的综合原则,这是优化Li+/Na+选择性的关键障碍。尽管如此,由于其固有的化学稳定性和制造可扩展性,如果这些挑战能够得到解决,2D通道膜将为锂提取提供巨大的潜力。本文综述了二维通道膜技术的现状,并概述了实现增强Li+离子选择性的未来方向,特别是在海水应用中。图形抽象
{"title":"Li-ion transport in two-dimensional nanofluidic membranes","authors":"Gyu Won Kim,&nbsp;Minwoo Lee,&nbsp;Jihong Bae,&nbsp;Jihoon Han,&nbsp;Seokmin Park,&nbsp;Wooyoung Shim","doi":"10.1186/s40580-024-00465-y","DOIUrl":"10.1186/s40580-024-00465-y","url":null,"abstract":"<div><p>The growing demand for lithium, driven by its critical role in lithium-ion batteries (LIBs) and other applications, has intensified the need for efficient extraction methods from aqua-based resources such as seawater. Among various approaches, 2D channel membranes have emerged as promising candidates due to their tunable ion selectivity and scalability. While significant progress has been made in achieving high Li<sup>+</sup>/Mg<sup>2+</sup> selectivity, enhancing Li<sup>+</sup> ion selectivity over Na<sup>+</sup> ion, the dominant monovalent cation in seawater, remains a challenge due to their similar properties. This review provides a comprehensive analysis of the fundamental mechanisms underlying Li<sup>+</sup> selectivity in 2D channel membranes, focusing on the dehydration and diffusion processes that dictate ion transport. Inspired by the principles of biological ion channels, we identify key factors—channel size, surface charge, and binding sites—that influence energy barriers and shape the interplay between dehydration and diffusion. We highlight recent progress in leveraging these factors to enhance Li<sup>+</sup>/Na<sup>+</sup> selectivity and address the challenges posed by counteracting effects in ion transport. While substantial advancements have been made, the lack of comprehensive principles guiding the interplay of these variables across permeation steps represents a key obstacle to optimizing Li<sup>+</sup>/Na<sup>+</sup> selectivity. Nonetheless, with their inherent chemical stability and fabrication scalability, 2D channel membranes offer significant potential for lithium extraction if these challenges can be addressed. This review provides insights into the current state of 2D channel membrane technologies and outlines future directions for achieving enhanced Li<sup>+</sup> ion selectivity, particularly in seawater applications.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"11 1","pages":""},"PeriodicalIF":13.4,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-024-00465-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142811126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nano-fluorescence imaging: advancing lymphatic disease diagnosis and monitoring 纳米荧光成像:推进淋巴疾病的诊断和监测。
IF 13.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-12-11 DOI: 10.1186/s40580-024-00462-1
Chae Yeon Han, Sang-Hun Choi, Soo-Hyang Chi, Ji Hyun Hong, Young-Eun Cho, Jihoon Kim

The lymphatic system plays a crucial role in maintaining physiological homeostasis and regulating immune responses. Traditional imaging modalities such as magnetic resonance imaging, computerized tomography, and positron emission tomography have been widely used to diagnose disorders in the lymphatic system, including lymphedema, lymphangioma, lymphatic metastasis, and Castleman disease. Nano-fluorescence technology has distinct advantages—including naked-eye visibility, operational simplicity, portability of the laser, and real-time visibility—and serves as an innovative alternative to traditional imaging techniques. This review explores recent advancements in nano-fluorescence imaging aimed at enhancing the resolution of lymphatic structure, function, and immunity. After delineating the fundamental characteristics of lymphatic systems, it elaborates on the development of various nano-fluorescence systems (including nanoparticles incorporating fluorescent dyes and those with intrinsic fluorescence) while addressing key challenges such as photobleaching, limited tissue penetration, biocompatibility, and signal interference from biomolecules. Furthermore, this review highlights the clinical applications of nano-fluorescence and its potential integration into standard diagnostic protocols. Ongoing advancements in nanoparticle technology underscore the potential of nano-fluorescence to revolutionize the diagnosis and treatment of lymphatic disease.

Graphical abstract

淋巴系统在维持生理稳态和调节免疫反应中起着至关重要的作用。磁共振成像、计算机断层扫描和正电子发射断层扫描等传统成像方式已广泛用于淋巴系统疾病的诊断,包括淋巴水肿、淋巴管瘤、淋巴转移和Castleman病。纳米荧光技术具有明显的优势,包括肉眼可见、操作简单、激光的便携性和实时可见性,是传统成像技术的创新替代方案。本文综述了纳米荧光成像技术的最新进展,旨在提高淋巴结构、功能和免疫的分辨率。在描述了淋巴系统的基本特征之后,它详细阐述了各种纳米荧光系统的发展(包括含有荧光染料和那些具有固有荧光的纳米粒子),同时解决了诸如光漂白、有限组织渗透、生物相容性和生物分子信号干扰等关键挑战。此外,本文综述了纳米荧光的临床应用及其纳入标准诊断方案的潜力。纳米粒子技术的不断进步强调了纳米荧光在淋巴疾病的诊断和治疗方面的革命性潜力。
{"title":"Nano-fluorescence imaging: advancing lymphatic disease diagnosis and monitoring","authors":"Chae Yeon Han,&nbsp;Sang-Hun Choi,&nbsp;Soo-Hyang Chi,&nbsp;Ji Hyun Hong,&nbsp;Young-Eun Cho,&nbsp;Jihoon Kim","doi":"10.1186/s40580-024-00462-1","DOIUrl":"10.1186/s40580-024-00462-1","url":null,"abstract":"<div><p>The lymphatic system plays a crucial role in maintaining physiological homeostasis and regulating immune responses. Traditional imaging modalities such as magnetic resonance imaging, computerized tomography, and positron emission tomography have been widely used to diagnose disorders in the lymphatic system, including lymphedema, lymphangioma, lymphatic metastasis, and Castleman disease. Nano-fluorescence technology has distinct advantages—including naked-eye visibility, operational simplicity, portability of the laser, and real-time visibility—and serves as an innovative alternative to traditional imaging techniques. This review explores recent advancements in nano-fluorescence imaging aimed at enhancing the resolution of lymphatic structure, function, and immunity. After delineating the fundamental characteristics of lymphatic systems, it elaborates on the development of various nano-fluorescence systems (including nanoparticles incorporating fluorescent dyes and those with intrinsic fluorescence) while addressing key challenges such as photobleaching, limited tissue penetration, biocompatibility, and signal interference from biomolecules. Furthermore, this review highlights the clinical applications of nano-fluorescence and its potential integration into standard diagnostic protocols. Ongoing advancements in nanoparticle technology underscore the potential of nano-fluorescence to revolutionize the diagnosis and treatment of lymphatic disease.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"11 1","pages":""},"PeriodicalIF":13.4,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-024-00462-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142805840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent progress in realizing novel one-dimensional polymorphs via nanotube encapsulation 纳米管封装实现新型一维多晶的最新进展。
IF 13.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-12-04 DOI: 10.1186/s40580-024-00460-3
Yangjin Lee, Uje Choi, Kwanpyo Kim, Alex Zettl

Encapsulation of various materials inside nanotubes has emerged as an effective method in nanotechnology that facilitates the formation of novel one-dimensional (1D) structures and enhances their functionality. Because of the effects of geometrical confinement and electronic interactions with host nanotubes, encapsulated materials often exhibit low-dimensional polymorphic structures that differ from their bulk forms. These polymorphs exhibit unique properties, including altered electrical, optical, and magnetic behaviors, making them promising candidates for applications in electronics, energy storage, spintronics, and quantum devices. This review explores recent advancements in the encapsulation of a wide range of materials such as organic molecules, elemental substances, metal halides, metal chalcogenides, and other complex compounds. In particular, we focus on novel polymorphs formed through the geometrical confinement effect within the nanotubes. The atomic structure, other key properties, and potential applications of these encapsulated materials are discussed, highlighting the impact of nanotube encapsulation on their functionalities.

Graphical Abstract

将各种材料封装在纳米管内是一种有效的纳米技术,有助于形成新的一维结构并增强其功能。由于几何约束和与宿主纳米管的电子相互作用的影响,封装材料通常表现出不同于其块状形式的低维多晶结构。这些多晶体表现出独特的特性,包括改变的电学、光学和磁性行为,使它们成为电子、能量存储、自旋电子学和量子器件应用的有希望的候选者。本文综述了近年来在有机分子、单质物质、金属卤化物、金属硫族化物等多种材料包封方面的研究进展。我们特别关注通过纳米管内几何约束效应形成的新型多晶。讨论了纳米管封装材料的原子结构、其他关键性能和潜在应用,重点介绍了纳米管封装对其功能的影响。
{"title":"Recent progress in realizing novel one-dimensional polymorphs via nanotube encapsulation","authors":"Yangjin Lee,&nbsp;Uje Choi,&nbsp;Kwanpyo Kim,&nbsp;Alex Zettl","doi":"10.1186/s40580-024-00460-3","DOIUrl":"10.1186/s40580-024-00460-3","url":null,"abstract":"<div><p>Encapsulation of various materials inside nanotubes has emerged as an effective method in nanotechnology that facilitates the formation of novel one-dimensional (1D) structures and enhances their functionality. Because of the effects of geometrical confinement and electronic interactions with host nanotubes, encapsulated materials often exhibit low-dimensional polymorphic structures that differ from their bulk forms. These polymorphs exhibit unique properties, including altered electrical, optical, and magnetic behaviors, making them promising candidates for applications in electronics, energy storage, spintronics, and quantum devices. This review explores recent advancements in the encapsulation of a wide range of materials such as organic molecules, elemental substances, metal halides, metal chalcogenides, and other complex compounds. In particular, we focus on novel polymorphs formed through the geometrical confinement effect within the nanotubes. The atomic structure, other key properties, and potential applications of these encapsulated materials are discussed, highlighting the impact of nanotube encapsulation on their functionalities.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"11 1","pages":""},"PeriodicalIF":13.4,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-024-00460-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142765303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interfacial charge transfer on hierarchical synergistic shell wall of MXene/MoS2 on CdS nanospheres: heterostructure integrity for visible light responsive photocatalytic H2 evolution MXene/MoS2在CdS纳米球层状协同壳壁上的界面电荷转移:可见光响应光催化析氢的异质结构完整性
IF 13.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-12-02 DOI: 10.1186/s40580-024-00454-1
Kugalur Shanmugam Ranjith, Ali Mohammadi, Ganji Seeta Rama Raju, Yun Suk Huh, Young-Kyu Han

Energy scarcity and environmental pollution have prompted research in hydrogen generation from solar to develop clean energy through highly efficient, effective, and long-lasting photocatalytic systems. Designing a catalyst with robust stability and an effective carrier separation rate was achieved through heterostructure assembly, but certain functionalities must be explored. In this paper we designed a ternary heterostructure assembly of CdS nanospheres wrapped with hierarchical shell walls of layered MXene-tagged MoS2 nanoflakes, forming intimate interfaces through an in-situ growth process. An in-layered shell wall of MXene with surface-wrapped MoS2 nanoflakes as a core–shell assembly improved the photo-corrosion resistance and accelerated the production of photocatalytic H2 (38.5 mmol g−1 h−1), which is 10.7, 3.1, and 1.9 times faster than that of CdS, CdS–MXe, and CdS–MoS2 nanostructures, respectively. The apparent quantum efficiency of the CdS–MXe2.4/MoS2 heterostructure was calculated to be 34.6% at λ = 420 nm. X-ray and ultraviolet photoelectron spectroscopies validated the electronic states, energy band alignment, and work function of the heterostructures, whilst time-resolved photoluminescence measured the carrier lifespan to evaluate the effective charge migration in the CdS-MXe/MoS2 heterostructure. The dual surface wrapping of MXe/MoS2 over CdS nanospheres confirmed the structural durability that remained intact throughout the photocatalytic reaction, promoting approximately 93.1% of its catalytic property even after five repeatable cycles. This study examined how the MXene heterostructure template improves the catalytic efficiency and opens a new way to design MXene-based durable heterostructure catalysts for solar-energy conversion.

Graphical Abstract

能源短缺和环境污染促使太阳能制氢研究通过高效、有效和持久的光催化系统开发清洁能源。通过异质结构组装可以设计出稳定性强、载流子分离率高的催化剂,但还需进一步探索催化剂的某些功能。在本文中,我们设计了一个三元异质结构的CdS纳米球,包裹着层状mxene标记的MoS2纳米片的分层壳壁,通过原位生长过程形成亲密界面。以表面包裹MoS2纳米片为核心的MXene层状壳壁提高了MXene的抗光腐蚀性能,并加速了光催化H2的生成(38.5 mmol g−1 h−1),分别比CdS、CdS - mxe和CdS - MoS2纳米结构快10.7倍、3.1倍和1.9倍。在λ = 420 nm处,CdS-MXe2.4 /MoS2异质结构的表观量子效率为34.6%。x射线和紫外光电子能谱验证了异质结构的电子态、能带排列和功函数,而时间分辨光致发光测量了载流子寿命,以评估cd - mxe /MoS2异质结构中的有效电荷迁移。MXe/MoS2在CdS纳米球上的双重表面包裹证实了结构耐久性,在整个光催化反应中保持完整,即使在5个重复循环后,其催化性能也提高了约93.1%。本研究考察了MXene异质结构模板如何提高催化效率,为设计基于MXene的太阳能转换耐用异质结构催化剂开辟了一条新途径。图形抽象
{"title":"Interfacial charge transfer on hierarchical synergistic shell wall of MXene/MoS2 on CdS nanospheres: heterostructure integrity for visible light responsive photocatalytic H2 evolution","authors":"Kugalur Shanmugam Ranjith,&nbsp;Ali Mohammadi,&nbsp;Ganji Seeta Rama Raju,&nbsp;Yun Suk Huh,&nbsp;Young-Kyu Han","doi":"10.1186/s40580-024-00454-1","DOIUrl":"10.1186/s40580-024-00454-1","url":null,"abstract":"<div><p>Energy scarcity and environmental pollution have prompted research in hydrogen generation from solar to develop clean energy through highly efficient, effective, and long-lasting photocatalytic systems. Designing a catalyst with robust stability and an effective carrier separation rate was achieved through heterostructure assembly, but certain functionalities must be explored. In this paper we designed a ternary heterostructure assembly of CdS nanospheres wrapped with hierarchical shell walls of layered MXene-tagged MoS<sub>2</sub> nanoflakes, forming intimate interfaces through an in-situ growth process. An in-layered shell wall of MXene with surface-wrapped MoS<sub>2</sub> nanoflakes as a core–shell assembly improved the photo-corrosion resistance and accelerated the production of photocatalytic H<sub>2</sub> (38.5 mmol g<sup>−1</sup> h<sup>−1</sup>), which is 10.7, 3.1, and 1.9 times faster than that of CdS, CdS–MXe, and CdS–MoS<sub>2</sub> nanostructures, respectively. The apparent quantum efficiency of the CdS–MXe<sub>2.4</sub>/MoS<sub>2</sub> heterostructure was calculated to be 34.6% at λ = 420 nm. X-ray and ultraviolet photoelectron spectroscopies validated the electronic states, energy band alignment, and work function of the heterostructures, whilst time-resolved photoluminescence measured the carrier lifespan to evaluate the effective charge migration in the CdS-MXe/MoS<sub>2</sub> heterostructure. The dual surface wrapping of MXe/MoS<sub>2</sub> over CdS nanospheres confirmed the structural durability that remained intact throughout the photocatalytic reaction, promoting approximately 93.1% of its catalytic property even after five repeatable cycles. This study examined how the MXene heterostructure template improves the catalytic efficiency and opens a new way to design MXene-based durable heterostructure catalysts for solar-energy conversion.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"11 1","pages":""},"PeriodicalIF":13.4,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-024-00454-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142761731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Topological surface states of semimetal TaSb2 半金属TaSb2的拓扑表面态
IF 13.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-12-02 DOI: 10.1186/s40580-024-00457-y
Ji-Eun Lee, Yu Liu, Jinwoong Hwang, Choongyu Hwang, Cedomir Petrovic, Se Young Park, Hyejin Ryu, Sung-Kwan Mo

Topological surface states, protected by the global symmetry of the materials, are the keys to understanding various novel electrical, magnetic, and optical properties. TaSb2 is a newly discovered topological material with unique transport phenomena, including negative magnetoresistance and resistivity plateau, whose microscopic understanding is yet to be reached. In this study, we investigate the electronic band structure of TaSb2 using angle-resolved photoemission spectroscopy and density functional theory. Our analyses reveal distinct bulk and surface states in TaSb2, providing direct evidence of its topological nature. Notably, surface states predominate the electronic contribution near the Fermi level, while bulk bands are mostly located at higher binding energies. Our study underlines the importance of systematic investigations into the electronic structures of topological materials, offering insights into their fundamental properties and potential applications in future technologies.

Graphical Abstract

受材料全局对称性保护的拓扑表面态是理解各种新型电、磁和光学性质的关键。TaSb2是一种新发现的拓扑材料,具有独特的输运现象,包括负磁阻和电阻率平台,其微观认识尚未达到。在这项研究中,我们利用角分辨光发射光谱和密度泛函理论研究了TaSb2的电子能带结构。我们的分析揭示了TaSb2中不同的体态和表面态,为其拓扑性质提供了直接证据。值得注意的是,表面态主导了费米能级附近的电子贡献,而体能带大多位于更高的结合能。我们的研究强调了对拓扑材料的电子结构进行系统研究的重要性,为其基本特性和未来技术的潜在应用提供了见解。图形抽象
{"title":"Topological surface states of semimetal TaSb2","authors":"Ji-Eun Lee,&nbsp;Yu Liu,&nbsp;Jinwoong Hwang,&nbsp;Choongyu Hwang,&nbsp;Cedomir Petrovic,&nbsp;Se Young Park,&nbsp;Hyejin Ryu,&nbsp;Sung-Kwan Mo","doi":"10.1186/s40580-024-00457-y","DOIUrl":"10.1186/s40580-024-00457-y","url":null,"abstract":"<div><p>Topological surface states, protected by the global symmetry of the materials, are the keys to understanding various novel electrical, magnetic, and optical properties. TaSb<sub>2</sub> is a newly discovered topological material with unique transport phenomena, including negative magnetoresistance and resistivity plateau, whose microscopic understanding is yet to be reached. In this study, we investigate the electronic band structure of TaSb<sub>2</sub> using angle-resolved photoemission spectroscopy and density functional theory. Our analyses reveal distinct bulk and surface states in TaSb<sub>2</sub>, providing direct evidence of its topological nature. Notably, surface states predominate the electronic contribution near the Fermi level, while bulk bands are mostly located at higher binding energies. Our study underlines the importance of systematic investigations into the electronic structures of topological materials, offering insights into their fundamental properties and potential applications in future technologies.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"11 1","pages":""},"PeriodicalIF":13.4,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-024-00457-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142761732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spectroelectrochemical insights into the intrinsic nature of lead halide perovskites 光谱电化学洞察卤化铅钙钛矿的内在性质
IF 13.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-30 DOI: 10.1186/s40580-024-00459-w
Seonhong Min, Minwook Jeon, Junsang Cho, Jin Ho Bang, Prashant V. Kamat

Lead halide perovskites have emerged as a new class of semiconductor materials with exceptional optoelectronic properties, sparking significant research interest in photovoltaics and light-emitting diodes. However, achieving long-term operational stability remains a critical hurdle. The soft, ionic nature of the halide perovskite lattice renders them vulnerable to various instabilities. These instabilities can be triggered by factors such as photoexcitation, electrical bias, and the surrounding electrolyte/solvent or atmosphere under operating conditions. Spectroelectrochemistry offers a powerful approach to bridge the gap between electrochemistry and photochemistry (or spectroscopy), by providing a comprehensive understanding of the band structure and excited-state dynamics of halide perovskites. This review summarizes recent advances that highlight the fundamental principles, the electronic band structure of halide perovskite materials, and the photoelectrochemical phenomena observed upon photo- and electro-chemical charge injections. Further, we discuss halide instability, encompassing halide oxidation, vacancy formation, ion migration, degradation, and sequential expulsion under electrical bias. Spectroelectrochemical studies that provide a deeper understanding of interfacial processes and halide mobility can pave the way for the design of more robust perovskites, accelerating future research and development efforts.

Graphical Abstract

卤化铅钙钛矿作为一类具有优异光电性能的新型半导体材料,在光伏和发光二极管领域引起了广泛的研究兴趣。然而,实现长期业务稳定仍然是一个关键障碍。卤化物钙钛矿晶格的软离子性质使它们容易受到各种不稳定性的影响。这些不稳定性可以由光激发、电偏压和周围电解质/溶剂或操作条件下的气氛等因素触发。光谱电化学通过全面了解卤化物钙钛矿的能带结构和激发态动力学,为弥合电化学和光化学(或光谱学)之间的差距提供了一种强大的方法。本文综述了卤化物钙钛矿材料的基本原理、电子能带结构以及在光电和电化学电荷注入下观察到的光电化学现象的最新进展。此外,我们还讨论了卤化物的不稳定性,包括卤化物氧化、空位形成、离子迁移、降解和电偏压下的顺序排出。光谱电化学研究提供了对界面过程和卤化物迁移率的更深入了解,可以为设计更坚固的钙钛矿铺平道路,加速未来的研究和开发工作。图形抽象
{"title":"Spectroelectrochemical insights into the intrinsic nature of lead halide perovskites","authors":"Seonhong Min,&nbsp;Minwook Jeon,&nbsp;Junsang Cho,&nbsp;Jin Ho Bang,&nbsp;Prashant V. Kamat","doi":"10.1186/s40580-024-00459-w","DOIUrl":"10.1186/s40580-024-00459-w","url":null,"abstract":"<div><p>Lead halide perovskites have emerged as a new class of semiconductor materials with exceptional optoelectronic properties, sparking significant research interest in photovoltaics and light-emitting diodes. However, achieving long-term operational stability remains a critical hurdle. The soft, ionic nature of the halide perovskite lattice renders them vulnerable to various instabilities. These instabilities can be triggered by factors such as photoexcitation, electrical bias, and the surrounding electrolyte/solvent or atmosphere under operating conditions. Spectroelectrochemistry offers a powerful approach to bridge the gap between electrochemistry and photochemistry (or spectroscopy), by providing a comprehensive understanding of the band structure and excited-state dynamics of halide perovskites. This review summarizes recent advances that highlight the fundamental principles, the electronic band structure of halide perovskite materials, and the photoelectrochemical phenomena observed upon photo- and electro-chemical charge injections. Further, we discuss halide instability, encompassing halide oxidation, vacancy formation, ion migration, degradation, and sequential expulsion under electrical bias. Spectroelectrochemical studies that provide a deeper understanding of interfacial processes and halide mobility can pave the way for the design of more robust perovskites, accelerating future research and development efforts.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"11 1","pages":""},"PeriodicalIF":13.4,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-024-00459-w","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142753961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nano Convergence
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1